1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "resolv_cache.h"
30
31 #include <resolv.h>
32 #include <stdarg.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <time.h>
37 #include "pthread.h"
38
39 #include <errno.h>
40 #include <arpa/nameser.h>
41 #include <sys/system_properties.h>
42 #include <net/if.h>
43 #include <netdb.h>
44 #include <linux/if.h>
45
46 #include <arpa/inet.h>
47 #include "resolv_private.h"
48 #include "resolv_netid.h"
49 #include "res_private.h"
50
51 #include "private/libc_logging.h"
52
53 /* This code implements a small and *simple* DNS resolver cache.
54 *
55 * It is only used to cache DNS answers for a time defined by the smallest TTL
56 * among the answer records in order to reduce DNS traffic. It is not supposed
57 * to be a full DNS cache, since we plan to implement that in the future in a
58 * dedicated process running on the system.
59 *
60 * Note that its design is kept simple very intentionally, i.e.:
61 *
62 * - it takes raw DNS query packet data as input, and returns raw DNS
63 * answer packet data as output
64 *
65 * (this means that two similar queries that encode the DNS name
66 * differently will be treated distinctly).
67 *
68 * the smallest TTL value among the answer records are used as the time
69 * to keep an answer in the cache.
70 *
71 * this is bad, but we absolutely want to avoid parsing the answer packets
72 * (and should be solved by the later full DNS cache process).
73 *
74 * - the implementation is just a (query-data) => (answer-data) hash table
75 * with a trivial least-recently-used expiration policy.
76 *
77 * Doing this keeps the code simple and avoids to deal with a lot of things
78 * that a full DNS cache is expected to do.
79 *
80 * The API is also very simple:
81 *
82 * - the client calls _resolv_cache_get() to obtain a handle to the cache.
83 * this will initialize the cache on first usage. the result can be NULL
84 * if the cache is disabled.
85 *
86 * - the client calls _resolv_cache_lookup() before performing a query
87 *
88 * if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
89 * has been copied into the client-provided answer buffer.
90 *
91 * if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
92 * a request normally, *then* call _resolv_cache_add() to add the received
93 * answer to the cache.
94 *
95 * if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
96 * perform a request normally, and *not* call _resolv_cache_add()
97 *
98 * note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
99 * is too short to accomodate the cached result.
100 */
101
102 /* the name of an environment variable that will be checked the first time
103 * this code is called if its value is "0", then the resolver cache is
104 * disabled.
105 */
106 #define CONFIG_ENV "BIONIC_DNSCACHE"
107
108 /* default number of entries kept in the cache. This value has been
109 * determined by browsing through various sites and counting the number
110 * of corresponding requests. Keep in mind that our framework is currently
111 * performing two requests per name lookup (one for IPv4, the other for IPv6)
112 *
113 * www.google.com 4
114 * www.ysearch.com 6
115 * www.amazon.com 8
116 * www.nytimes.com 22
117 * www.espn.com 28
118 * www.msn.com 28
119 * www.lemonde.fr 35
120 *
121 * (determined in 2009-2-17 from Paris, France, results may vary depending
122 * on location)
123 *
124 * most high-level websites use lots of media/ad servers with different names
125 * but these are generally reused when browsing through the site.
126 *
127 * As such, a value of 64 should be relatively comfortable at the moment.
128 *
129 * ******************************************
130 * * NOTE - this has changed.
131 * * 1) we've added IPv6 support so each dns query results in 2 responses
132 * * 2) we've made this a system-wide cache, so the cost is less (it's not
133 * * duplicated in each process) and the need is greater (more processes
134 * * making different requests).
135 * * Upping by 2x for IPv6
136 * * Upping by another 5x for the centralized nature
137 * *****************************************
138 */
139 #define CONFIG_MAX_ENTRIES 64 * 2 * 5
140 /* name of the system property that can be used to set the cache size */
141
142 /****************************************************************************/
143 /****************************************************************************/
144 /***** *****/
145 /***** *****/
146 /***** *****/
147 /****************************************************************************/
148 /****************************************************************************/
149
150 /* set to 1 to debug cache operations */
151 #define DEBUG 0
152
153 /* set to 1 to debug query data */
154 #define DEBUG_DATA 0
155
156 #if DEBUG
157 #define __DEBUG__
158 #else
159 #define __DEBUG__ __attribute__((unused))
160 #endif
161
162 #undef XLOG
163
164 #define XLOG(...) ({ \
165 if (DEBUG) { \
166 __libc_format_log(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__); \
167 } else { \
168 ((void)0); \
169 } \
170 })
171
172 /** BOUNDED BUFFER FORMATTING
173 **/
174
175 /* technical note:
176 *
177 * the following debugging routines are used to append data to a bounded
178 * buffer they take two parameters that are:
179 *
180 * - p : a pointer to the current cursor position in the buffer
181 * this value is initially set to the buffer's address.
182 *
183 * - end : the address of the buffer's limit, i.e. of the first byte
184 * after the buffer. this address should never be touched.
185 *
186 * IMPORTANT: it is assumed that end > buffer_address, i.e.
187 * that the buffer is at least one byte.
188 *
189 * the _bprint_() functions return the new value of 'p' after the data
190 * has been appended, and also ensure the following:
191 *
192 * - the returned value will never be strictly greater than 'end'
193 *
194 * - a return value equal to 'end' means that truncation occured
195 * (in which case, end[-1] will be set to 0)
196 *
197 * - after returning from a _bprint_() function, the content of the buffer
198 * is always 0-terminated, even in the event of truncation.
199 *
200 * these conventions allow you to call _bprint_ functions multiple times and
201 * only check for truncation at the end of the sequence, as in:
202 *
203 * char buff[1000], *p = buff, *end = p + sizeof(buff);
204 *
205 * p = _bprint_c(p, end, '"');
206 * p = _bprint_s(p, end, my_string);
207 * p = _bprint_c(p, end, '"');
208 *
209 * if (p >= end) {
210 * // buffer was too small
211 * }
212 *
213 * printf( "%s", buff );
214 */
215
216 /* add a char to a bounded buffer */
217 char*
_bprint_c(char * p,char * end,int c)218 _bprint_c( char* p, char* end, int c )
219 {
220 if (p < end) {
221 if (p+1 == end)
222 *p++ = 0;
223 else {
224 *p++ = (char) c;
225 *p = 0;
226 }
227 }
228 return p;
229 }
230
231 /* add a sequence of bytes to a bounded buffer */
232 char*
_bprint_b(char * p,char * end,const char * buf,int len)233 _bprint_b( char* p, char* end, const char* buf, int len )
234 {
235 int avail = end - p;
236
237 if (avail <= 0 || len <= 0)
238 return p;
239
240 if (avail > len)
241 avail = len;
242
243 memcpy( p, buf, avail );
244 p += avail;
245
246 if (p < end)
247 p[0] = 0;
248 else
249 end[-1] = 0;
250
251 return p;
252 }
253
254 /* add a string to a bounded buffer */
255 char*
_bprint_s(char * p,char * end,const char * str)256 _bprint_s( char* p, char* end, const char* str )
257 {
258 return _bprint_b(p, end, str, strlen(str));
259 }
260
261 /* add a formatted string to a bounded buffer */
262 char* _bprint( char* p, char* end, const char* format, ... ) __DEBUG__;
_bprint(char * p,char * end,const char * format,...)263 char* _bprint( char* p, char* end, const char* format, ... )
264 {
265 int avail, n;
266 va_list args;
267
268 avail = end - p;
269
270 if (avail <= 0)
271 return p;
272
273 va_start(args, format);
274 n = vsnprintf( p, avail, format, args);
275 va_end(args);
276
277 /* certain C libraries return -1 in case of truncation */
278 if (n < 0 || n > avail)
279 n = avail;
280
281 p += n;
282 /* certain C libraries do not zero-terminate in case of truncation */
283 if (p == end)
284 p[-1] = 0;
285
286 return p;
287 }
288
289 /* add a hex value to a bounded buffer, up to 8 digits */
290 char*
_bprint_hex(char * p,char * end,unsigned value,int numDigits)291 _bprint_hex( char* p, char* end, unsigned value, int numDigits )
292 {
293 char text[sizeof(unsigned)*2];
294 int nn = 0;
295
296 while (numDigits-- > 0) {
297 text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15];
298 }
299 return _bprint_b(p, end, text, nn);
300 }
301
302 /* add the hexadecimal dump of some memory area to a bounded buffer */
303 char*
_bprint_hexdump(char * p,char * end,const uint8_t * data,int datalen)304 _bprint_hexdump( char* p, char* end, const uint8_t* data, int datalen )
305 {
306 int lineSize = 16;
307
308 while (datalen > 0) {
309 int avail = datalen;
310 int nn;
311
312 if (avail > lineSize)
313 avail = lineSize;
314
315 for (nn = 0; nn < avail; nn++) {
316 if (nn > 0)
317 p = _bprint_c(p, end, ' ');
318 p = _bprint_hex(p, end, data[nn], 2);
319 }
320 for ( ; nn < lineSize; nn++ ) {
321 p = _bprint_s(p, end, " ");
322 }
323 p = _bprint_s(p, end, " ");
324
325 for (nn = 0; nn < avail; nn++) {
326 int c = data[nn];
327
328 if (c < 32 || c > 127)
329 c = '.';
330
331 p = _bprint_c(p, end, c);
332 }
333 p = _bprint_c(p, end, '\n');
334
335 data += avail;
336 datalen -= avail;
337 }
338 return p;
339 }
340
341 /* dump the content of a query of packet to the log */
342 void XLOG_BYTES( const void* base, int len ) __DEBUG__;
XLOG_BYTES(const void * base,int len)343 void XLOG_BYTES( const void* base, int len )
344 {
345 if (DEBUG_DATA) {
346 char buff[1024];
347 char* p = buff, *end = p + sizeof(buff);
348
349 p = _bprint_hexdump(p, end, base, len);
350 XLOG("%s",buff);
351 }
352 } __DEBUG__
353
354 static time_t
_time_now(void)355 _time_now( void )
356 {
357 struct timeval tv;
358
359 gettimeofday( &tv, NULL );
360 return tv.tv_sec;
361 }
362
363 /* reminder: the general format of a DNS packet is the following:
364 *
365 * HEADER (12 bytes)
366 * QUESTION (variable)
367 * ANSWER (variable)
368 * AUTHORITY (variable)
369 * ADDITIONNAL (variable)
370 *
371 * the HEADER is made of:
372 *
373 * ID : 16 : 16-bit unique query identification field
374 *
375 * QR : 1 : set to 0 for queries, and 1 for responses
376 * Opcode : 4 : set to 0 for queries
377 * AA : 1 : set to 0 for queries
378 * TC : 1 : truncation flag, will be set to 0 in queries
379 * RD : 1 : recursion desired
380 *
381 * RA : 1 : recursion available (0 in queries)
382 * Z : 3 : three reserved zero bits
383 * RCODE : 4 : response code (always 0=NOERROR in queries)
384 *
385 * QDCount: 16 : question count
386 * ANCount: 16 : Answer count (0 in queries)
387 * NSCount: 16: Authority Record count (0 in queries)
388 * ARCount: 16: Additionnal Record count (0 in queries)
389 *
390 * the QUESTION is made of QDCount Question Record (QRs)
391 * the ANSWER is made of ANCount RRs
392 * the AUTHORITY is made of NSCount RRs
393 * the ADDITIONNAL is made of ARCount RRs
394 *
395 * Each Question Record (QR) is made of:
396 *
397 * QNAME : variable : Query DNS NAME
398 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
399 * CLASS : 16 : class of query (IN=1)
400 *
401 * Each Resource Record (RR) is made of:
402 *
403 * NAME : variable : DNS NAME
404 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
405 * CLASS : 16 : class of query (IN=1)
406 * TTL : 32 : seconds to cache this RR (0=none)
407 * RDLENGTH: 16 : size of RDDATA in bytes
408 * RDDATA : variable : RR data (depends on TYPE)
409 *
410 * Each QNAME contains a domain name encoded as a sequence of 'labels'
411 * terminated by a zero. Each label has the following format:
412 *
413 * LEN : 8 : lenght of label (MUST be < 64)
414 * NAME : 8*LEN : label length (must exclude dots)
415 *
416 * A value of 0 in the encoding is interpreted as the 'root' domain and
417 * terminates the encoding. So 'www.android.com' will be encoded as:
418 *
419 * <3>www<7>android<3>com<0>
420 *
421 * Where <n> represents the byte with value 'n'
422 *
423 * Each NAME reflects the QNAME of the question, but has a slightly more
424 * complex encoding in order to provide message compression. This is achieved
425 * by using a 2-byte pointer, with format:
426 *
427 * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
428 * OFFSET : 14 : offset to another part of the DNS packet
429 *
430 * The offset is relative to the start of the DNS packet and must point
431 * A pointer terminates the encoding.
432 *
433 * The NAME can be encoded in one of the following formats:
434 *
435 * - a sequence of simple labels terminated by 0 (like QNAMEs)
436 * - a single pointer
437 * - a sequence of simple labels terminated by a pointer
438 *
439 * A pointer shall always point to either a pointer of a sequence of
440 * labels (which can themselves be terminated by either a 0 or a pointer)
441 *
442 * The expanded length of a given domain name should not exceed 255 bytes.
443 *
444 * NOTE: we don't parse the answer packets, so don't need to deal with NAME
445 * records, only QNAMEs.
446 */
447
448 #define DNS_HEADER_SIZE 12
449
450 #define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */
451 #define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */
452 #define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */
453 #define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
454 #define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
455
456 #define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */
457
458 typedef struct {
459 const uint8_t* base;
460 const uint8_t* end;
461 const uint8_t* cursor;
462 } DnsPacket;
463
464 static void
_dnsPacket_init(DnsPacket * packet,const uint8_t * buff,int bufflen)465 _dnsPacket_init( DnsPacket* packet, const uint8_t* buff, int bufflen )
466 {
467 packet->base = buff;
468 packet->end = buff + bufflen;
469 packet->cursor = buff;
470 }
471
472 static void
_dnsPacket_rewind(DnsPacket * packet)473 _dnsPacket_rewind( DnsPacket* packet )
474 {
475 packet->cursor = packet->base;
476 }
477
478 static void
_dnsPacket_skip(DnsPacket * packet,int count)479 _dnsPacket_skip( DnsPacket* packet, int count )
480 {
481 const uint8_t* p = packet->cursor + count;
482
483 if (p > packet->end)
484 p = packet->end;
485
486 packet->cursor = p;
487 }
488
489 static int
_dnsPacket_readInt16(DnsPacket * packet)490 _dnsPacket_readInt16( DnsPacket* packet )
491 {
492 const uint8_t* p = packet->cursor;
493
494 if (p+2 > packet->end)
495 return -1;
496
497 packet->cursor = p+2;
498 return (p[0]<< 8) | p[1];
499 }
500
501 /** QUERY CHECKING
502 **/
503
504 /* check bytes in a dns packet. returns 1 on success, 0 on failure.
505 * the cursor is only advanced in the case of success
506 */
507 static int
_dnsPacket_checkBytes(DnsPacket * packet,int numBytes,const void * bytes)508 _dnsPacket_checkBytes( DnsPacket* packet, int numBytes, const void* bytes )
509 {
510 const uint8_t* p = packet->cursor;
511
512 if (p + numBytes > packet->end)
513 return 0;
514
515 if (memcmp(p, bytes, numBytes) != 0)
516 return 0;
517
518 packet->cursor = p + numBytes;
519 return 1;
520 }
521
522 /* parse and skip a given QNAME stored in a query packet,
523 * from the current cursor position. returns 1 on success,
524 * or 0 for malformed data.
525 */
526 static int
_dnsPacket_checkQName(DnsPacket * packet)527 _dnsPacket_checkQName( DnsPacket* packet )
528 {
529 const uint8_t* p = packet->cursor;
530 const uint8_t* end = packet->end;
531
532 for (;;) {
533 int c;
534
535 if (p >= end)
536 break;
537
538 c = *p++;
539
540 if (c == 0) {
541 packet->cursor = p;
542 return 1;
543 }
544
545 /* we don't expect label compression in QNAMEs */
546 if (c >= 64)
547 break;
548
549 p += c;
550 /* we rely on the bound check at the start
551 * of the loop here */
552 }
553 /* malformed data */
554 XLOG("malformed QNAME");
555 return 0;
556 }
557
558 /* parse and skip a given QR stored in a packet.
559 * returns 1 on success, and 0 on failure
560 */
561 static int
_dnsPacket_checkQR(DnsPacket * packet)562 _dnsPacket_checkQR( DnsPacket* packet )
563 {
564 if (!_dnsPacket_checkQName(packet))
565 return 0;
566
567 /* TYPE must be one of the things we support */
568 if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
569 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
570 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
571 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
572 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL))
573 {
574 XLOG("unsupported TYPE");
575 return 0;
576 }
577 /* CLASS must be IN */
578 if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
579 XLOG("unsupported CLASS");
580 return 0;
581 }
582
583 return 1;
584 }
585
586 /* check the header of a DNS Query packet, return 1 if it is one
587 * type of query we can cache, or 0 otherwise
588 */
589 static int
_dnsPacket_checkQuery(DnsPacket * packet)590 _dnsPacket_checkQuery( DnsPacket* packet )
591 {
592 const uint8_t* p = packet->base;
593 int qdCount, anCount, dnCount, arCount;
594
595 if (p + DNS_HEADER_SIZE > packet->end) {
596 XLOG("query packet too small");
597 return 0;
598 }
599
600 /* QR must be set to 0, opcode must be 0 and AA must be 0 */
601 /* RA, Z, and RCODE must be 0 */
602 if ((p[2] & 0xFC) != 0 || p[3] != 0) {
603 XLOG("query packet flags unsupported");
604 return 0;
605 }
606
607 /* Note that we ignore the TC and RD bits here for the
608 * following reasons:
609 *
610 * - there is no point for a query packet sent to a server
611 * to have the TC bit set, but the implementation might
612 * set the bit in the query buffer for its own needs
613 * between a _resolv_cache_lookup and a
614 * _resolv_cache_add. We should not freak out if this
615 * is the case.
616 *
617 * - we consider that the result from a RD=0 or a RD=1
618 * query might be different, hence that the RD bit
619 * should be used to differentiate cached result.
620 *
621 * this implies that RD is checked when hashing or
622 * comparing query packets, but not TC
623 */
624
625 /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
626 qdCount = (p[4] << 8) | p[5];
627 anCount = (p[6] << 8) | p[7];
628 dnCount = (p[8] << 8) | p[9];
629 arCount = (p[10]<< 8) | p[11];
630
631 if (anCount != 0 || dnCount != 0 || arCount != 0) {
632 XLOG("query packet contains non-query records");
633 return 0;
634 }
635
636 if (qdCount == 0) {
637 XLOG("query packet doesn't contain query record");
638 return 0;
639 }
640
641 /* Check QDCOUNT QRs */
642 packet->cursor = p + DNS_HEADER_SIZE;
643
644 for (;qdCount > 0; qdCount--)
645 if (!_dnsPacket_checkQR(packet))
646 return 0;
647
648 return 1;
649 }
650
651 /** QUERY DEBUGGING
652 **/
653 #if DEBUG
654 static char*
_dnsPacket_bprintQName(DnsPacket * packet,char * bp,char * bend)655 _dnsPacket_bprintQName(DnsPacket* packet, char* bp, char* bend)
656 {
657 const uint8_t* p = packet->cursor;
658 const uint8_t* end = packet->end;
659 int first = 1;
660
661 for (;;) {
662 int c;
663
664 if (p >= end)
665 break;
666
667 c = *p++;
668
669 if (c == 0) {
670 packet->cursor = p;
671 return bp;
672 }
673
674 /* we don't expect label compression in QNAMEs */
675 if (c >= 64)
676 break;
677
678 if (first)
679 first = 0;
680 else
681 bp = _bprint_c(bp, bend, '.');
682
683 bp = _bprint_b(bp, bend, (const char*)p, c);
684
685 p += c;
686 /* we rely on the bound check at the start
687 * of the loop here */
688 }
689 /* malformed data */
690 bp = _bprint_s(bp, bend, "<MALFORMED>");
691 return bp;
692 }
693
694 static char*
_dnsPacket_bprintQR(DnsPacket * packet,char * p,char * end)695 _dnsPacket_bprintQR(DnsPacket* packet, char* p, char* end)
696 {
697 #define QQ(x) { DNS_TYPE_##x, #x }
698 static const struct {
699 const char* typeBytes;
700 const char* typeString;
701 } qTypes[] =
702 {
703 QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL),
704 { NULL, NULL }
705 };
706 int nn;
707 const char* typeString = NULL;
708
709 /* dump QNAME */
710 p = _dnsPacket_bprintQName(packet, p, end);
711
712 /* dump TYPE */
713 p = _bprint_s(p, end, " (");
714
715 for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
716 if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
717 typeString = qTypes[nn].typeString;
718 break;
719 }
720 }
721
722 if (typeString != NULL)
723 p = _bprint_s(p, end, typeString);
724 else {
725 int typeCode = _dnsPacket_readInt16(packet);
726 p = _bprint(p, end, "UNKNOWN-%d", typeCode);
727 }
728
729 p = _bprint_c(p, end, ')');
730
731 /* skip CLASS */
732 _dnsPacket_skip(packet, 2);
733 return p;
734 }
735
736 /* this function assumes the packet has already been checked */
737 static char*
_dnsPacket_bprintQuery(DnsPacket * packet,char * p,char * end)738 _dnsPacket_bprintQuery( DnsPacket* packet, char* p, char* end )
739 {
740 int qdCount;
741
742 if (packet->base[2] & 0x1) {
743 p = _bprint_s(p, end, "RECURSIVE ");
744 }
745
746 _dnsPacket_skip(packet, 4);
747 qdCount = _dnsPacket_readInt16(packet);
748 _dnsPacket_skip(packet, 6);
749
750 for ( ; qdCount > 0; qdCount-- ) {
751 p = _dnsPacket_bprintQR(packet, p, end);
752 }
753 return p;
754 }
755 #endif
756
757
758 /** QUERY HASHING SUPPORT
759 **
760 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
761 ** BEEN SUCCESFULLY CHECKED.
762 **/
763
764 /* use 32-bit FNV hash function */
765 #define FNV_MULT 16777619U
766 #define FNV_BASIS 2166136261U
767
768 static unsigned
_dnsPacket_hashBytes(DnsPacket * packet,int numBytes,unsigned hash)769 _dnsPacket_hashBytes( DnsPacket* packet, int numBytes, unsigned hash )
770 {
771 const uint8_t* p = packet->cursor;
772 const uint8_t* end = packet->end;
773
774 while (numBytes > 0 && p < end) {
775 hash = hash*FNV_MULT ^ *p++;
776 }
777 packet->cursor = p;
778 return hash;
779 }
780
781
782 static unsigned
_dnsPacket_hashQName(DnsPacket * packet,unsigned hash)783 _dnsPacket_hashQName( DnsPacket* packet, unsigned hash )
784 {
785 const uint8_t* p = packet->cursor;
786 const uint8_t* end = packet->end;
787
788 for (;;) {
789 int c;
790
791 if (p >= end) { /* should not happen */
792 XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
793 break;
794 }
795
796 c = *p++;
797
798 if (c == 0)
799 break;
800
801 if (c >= 64) {
802 XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
803 break;
804 }
805 if (p + c >= end) {
806 XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
807 __FUNCTION__);
808 break;
809 }
810 while (c > 0) {
811 hash = hash*FNV_MULT ^ *p++;
812 c -= 1;
813 }
814 }
815 packet->cursor = p;
816 return hash;
817 }
818
819 static unsigned
_dnsPacket_hashQR(DnsPacket * packet,unsigned hash)820 _dnsPacket_hashQR( DnsPacket* packet, unsigned hash )
821 {
822 hash = _dnsPacket_hashQName(packet, hash);
823 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
824 return hash;
825 }
826
827 static unsigned
_dnsPacket_hashQuery(DnsPacket * packet)828 _dnsPacket_hashQuery( DnsPacket* packet )
829 {
830 unsigned hash = FNV_BASIS;
831 int count;
832 _dnsPacket_rewind(packet);
833
834 /* we ignore the TC bit for reasons explained in
835 * _dnsPacket_checkQuery().
836 *
837 * however we hash the RD bit to differentiate
838 * between answers for recursive and non-recursive
839 * queries.
840 */
841 hash = hash*FNV_MULT ^ (packet->base[2] & 1);
842
843 /* assume: other flags are 0 */
844 _dnsPacket_skip(packet, 4);
845
846 /* read QDCOUNT */
847 count = _dnsPacket_readInt16(packet);
848
849 /* assume: ANcount, NScount, ARcount are 0 */
850 _dnsPacket_skip(packet, 6);
851
852 /* hash QDCOUNT QRs */
853 for ( ; count > 0; count-- )
854 hash = _dnsPacket_hashQR(packet, hash);
855
856 return hash;
857 }
858
859
860 /** QUERY COMPARISON
861 **
862 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
863 ** BEEN SUCCESFULLY CHECKED.
864 **/
865
866 static int
_dnsPacket_isEqualDomainName(DnsPacket * pack1,DnsPacket * pack2)867 _dnsPacket_isEqualDomainName( DnsPacket* pack1, DnsPacket* pack2 )
868 {
869 const uint8_t* p1 = pack1->cursor;
870 const uint8_t* end1 = pack1->end;
871 const uint8_t* p2 = pack2->cursor;
872 const uint8_t* end2 = pack2->end;
873
874 for (;;) {
875 int c1, c2;
876
877 if (p1 >= end1 || p2 >= end2) {
878 XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
879 break;
880 }
881 c1 = *p1++;
882 c2 = *p2++;
883 if (c1 != c2)
884 break;
885
886 if (c1 == 0) {
887 pack1->cursor = p1;
888 pack2->cursor = p2;
889 return 1;
890 }
891 if (c1 >= 64) {
892 XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
893 break;
894 }
895 if ((p1+c1 > end1) || (p2+c1 > end2)) {
896 XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
897 __FUNCTION__);
898 break;
899 }
900 if (memcmp(p1, p2, c1) != 0)
901 break;
902 p1 += c1;
903 p2 += c1;
904 /* we rely on the bound checks at the start of the loop */
905 }
906 /* not the same, or one is malformed */
907 XLOG("different DN");
908 return 0;
909 }
910
911 static int
_dnsPacket_isEqualBytes(DnsPacket * pack1,DnsPacket * pack2,int numBytes)912 _dnsPacket_isEqualBytes( DnsPacket* pack1, DnsPacket* pack2, int numBytes )
913 {
914 const uint8_t* p1 = pack1->cursor;
915 const uint8_t* p2 = pack2->cursor;
916
917 if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end )
918 return 0;
919
920 if ( memcmp(p1, p2, numBytes) != 0 )
921 return 0;
922
923 pack1->cursor += numBytes;
924 pack2->cursor += numBytes;
925 return 1;
926 }
927
928 static int
_dnsPacket_isEqualQR(DnsPacket * pack1,DnsPacket * pack2)929 _dnsPacket_isEqualQR( DnsPacket* pack1, DnsPacket* pack2 )
930 {
931 /* compare domain name encoding + TYPE + CLASS */
932 if ( !_dnsPacket_isEqualDomainName(pack1, pack2) ||
933 !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) )
934 return 0;
935
936 return 1;
937 }
938
939 static int
_dnsPacket_isEqualQuery(DnsPacket * pack1,DnsPacket * pack2)940 _dnsPacket_isEqualQuery( DnsPacket* pack1, DnsPacket* pack2 )
941 {
942 int count1, count2;
943
944 /* compare the headers, ignore most fields */
945 _dnsPacket_rewind(pack1);
946 _dnsPacket_rewind(pack2);
947
948 /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
949 if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
950 XLOG("different RD");
951 return 0;
952 }
953
954 /* assume: other flags are all 0 */
955 _dnsPacket_skip(pack1, 4);
956 _dnsPacket_skip(pack2, 4);
957
958 /* compare QDCOUNT */
959 count1 = _dnsPacket_readInt16(pack1);
960 count2 = _dnsPacket_readInt16(pack2);
961 if (count1 != count2 || count1 < 0) {
962 XLOG("different QDCOUNT");
963 return 0;
964 }
965
966 /* assume: ANcount, NScount and ARcount are all 0 */
967 _dnsPacket_skip(pack1, 6);
968 _dnsPacket_skip(pack2, 6);
969
970 /* compare the QDCOUNT QRs */
971 for ( ; count1 > 0; count1-- ) {
972 if (!_dnsPacket_isEqualQR(pack1, pack2)) {
973 XLOG("different QR");
974 return 0;
975 }
976 }
977 return 1;
978 }
979
980 /****************************************************************************/
981 /****************************************************************************/
982 /***** *****/
983 /***** *****/
984 /***** *****/
985 /****************************************************************************/
986 /****************************************************************************/
987
988 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
989 * structure though they are conceptually part of the hash table.
990 *
991 * similarly, mru_next and mru_prev are part of the global MRU list
992 */
993 typedef struct Entry {
994 unsigned int hash; /* hash value */
995 struct Entry* hlink; /* next in collision chain */
996 struct Entry* mru_prev;
997 struct Entry* mru_next;
998
999 const uint8_t* query;
1000 int querylen;
1001 const uint8_t* answer;
1002 int answerlen;
1003 time_t expires; /* time_t when the entry isn't valid any more */
1004 int id; /* for debugging purpose */
1005 } Entry;
1006
1007 /**
1008 * Find the TTL for a negative DNS result. This is defined as the minimum
1009 * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
1010 *
1011 * Return 0 if not found.
1012 */
1013 static u_long
answer_getNegativeTTL(ns_msg handle)1014 answer_getNegativeTTL(ns_msg handle) {
1015 int n, nscount;
1016 u_long result = 0;
1017 ns_rr rr;
1018
1019 nscount = ns_msg_count(handle, ns_s_ns);
1020 for (n = 0; n < nscount; n++) {
1021 if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
1022 const u_char *rdata = ns_rr_rdata(rr); // find the data
1023 const u_char *edata = rdata + ns_rr_rdlen(rr); // add the len to find the end
1024 int len;
1025 u_long ttl, rec_result = ns_rr_ttl(rr);
1026
1027 // find the MINIMUM-TTL field from the blob of binary data for this record
1028 // skip the server name
1029 len = dn_skipname(rdata, edata);
1030 if (len == -1) continue; // error skipping
1031 rdata += len;
1032
1033 // skip the admin name
1034 len = dn_skipname(rdata, edata);
1035 if (len == -1) continue; // error skipping
1036 rdata += len;
1037
1038 if (edata - rdata != 5*NS_INT32SZ) continue;
1039 // skip: serial number + refresh interval + retry interval + expiry
1040 rdata += NS_INT32SZ * 4;
1041 // finally read the MINIMUM TTL
1042 ttl = ns_get32(rdata);
1043 if (ttl < rec_result) {
1044 rec_result = ttl;
1045 }
1046 // Now that the record is read successfully, apply the new min TTL
1047 if (n == 0 || rec_result < result) {
1048 result = rec_result;
1049 }
1050 }
1051 }
1052 return result;
1053 }
1054
1055 /**
1056 * Parse the answer records and find the appropriate
1057 * smallest TTL among the records. This might be from
1058 * the answer records if found or from the SOA record
1059 * if it's a negative result.
1060 *
1061 * The returned TTL is the number of seconds to
1062 * keep the answer in the cache.
1063 *
1064 * In case of parse error zero (0) is returned which
1065 * indicates that the answer shall not be cached.
1066 */
1067 static u_long
answer_getTTL(const void * answer,int answerlen)1068 answer_getTTL(const void* answer, int answerlen)
1069 {
1070 ns_msg handle;
1071 int ancount, n;
1072 u_long result, ttl;
1073 ns_rr rr;
1074
1075 result = 0;
1076 if (ns_initparse(answer, answerlen, &handle) >= 0) {
1077 // get number of answer records
1078 ancount = ns_msg_count(handle, ns_s_an);
1079
1080 if (ancount == 0) {
1081 // a response with no answers? Cache this negative result.
1082 result = answer_getNegativeTTL(handle);
1083 } else {
1084 for (n = 0; n < ancount; n++) {
1085 if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
1086 ttl = ns_rr_ttl(rr);
1087 if (n == 0 || ttl < result) {
1088 result = ttl;
1089 }
1090 } else {
1091 XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno));
1092 }
1093 }
1094 }
1095 } else {
1096 XLOG("ns_parserr failed. %s\n", strerror(errno));
1097 }
1098
1099 XLOG("TTL = %lu\n", result);
1100
1101 return result;
1102 }
1103
1104 static void
entry_free(Entry * e)1105 entry_free( Entry* e )
1106 {
1107 /* everything is allocated in a single memory block */
1108 if (e) {
1109 free(e);
1110 }
1111 }
1112
1113 static __inline__ void
entry_mru_remove(Entry * e)1114 entry_mru_remove( Entry* e )
1115 {
1116 e->mru_prev->mru_next = e->mru_next;
1117 e->mru_next->mru_prev = e->mru_prev;
1118 }
1119
1120 static __inline__ void
entry_mru_add(Entry * e,Entry * list)1121 entry_mru_add( Entry* e, Entry* list )
1122 {
1123 Entry* first = list->mru_next;
1124
1125 e->mru_next = first;
1126 e->mru_prev = list;
1127
1128 list->mru_next = e;
1129 first->mru_prev = e;
1130 }
1131
1132 /* compute the hash of a given entry, this is a hash of most
1133 * data in the query (key) */
1134 static unsigned
entry_hash(const Entry * e)1135 entry_hash( const Entry* e )
1136 {
1137 DnsPacket pack[1];
1138
1139 _dnsPacket_init(pack, e->query, e->querylen);
1140 return _dnsPacket_hashQuery(pack);
1141 }
1142
1143 /* initialize an Entry as a search key, this also checks the input query packet
1144 * returns 1 on success, or 0 in case of unsupported/malformed data */
1145 static int
entry_init_key(Entry * e,const void * query,int querylen)1146 entry_init_key( Entry* e, const void* query, int querylen )
1147 {
1148 DnsPacket pack[1];
1149
1150 memset(e, 0, sizeof(*e));
1151
1152 e->query = query;
1153 e->querylen = querylen;
1154 e->hash = entry_hash(e);
1155
1156 _dnsPacket_init(pack, query, querylen);
1157
1158 return _dnsPacket_checkQuery(pack);
1159 }
1160
1161 /* allocate a new entry as a cache node */
1162 static Entry*
entry_alloc(const Entry * init,const void * answer,int answerlen)1163 entry_alloc( const Entry* init, const void* answer, int answerlen )
1164 {
1165 Entry* e;
1166 int size;
1167
1168 size = sizeof(*e) + init->querylen + answerlen;
1169 e = calloc(size, 1);
1170 if (e == NULL)
1171 return e;
1172
1173 e->hash = init->hash;
1174 e->query = (const uint8_t*)(e+1);
1175 e->querylen = init->querylen;
1176
1177 memcpy( (char*)e->query, init->query, e->querylen );
1178
1179 e->answer = e->query + e->querylen;
1180 e->answerlen = answerlen;
1181
1182 memcpy( (char*)e->answer, answer, e->answerlen );
1183
1184 return e;
1185 }
1186
1187 static int
entry_equals(const Entry * e1,const Entry * e2)1188 entry_equals( const Entry* e1, const Entry* e2 )
1189 {
1190 DnsPacket pack1[1], pack2[1];
1191
1192 if (e1->querylen != e2->querylen) {
1193 return 0;
1194 }
1195 _dnsPacket_init(pack1, e1->query, e1->querylen);
1196 _dnsPacket_init(pack2, e2->query, e2->querylen);
1197
1198 return _dnsPacket_isEqualQuery(pack1, pack2);
1199 }
1200
1201 /****************************************************************************/
1202 /****************************************************************************/
1203 /***** *****/
1204 /***** *****/
1205 /***** *****/
1206 /****************************************************************************/
1207 /****************************************************************************/
1208
1209 /* We use a simple hash table with external collision lists
1210 * for simplicity, the hash-table fields 'hash' and 'hlink' are
1211 * inlined in the Entry structure.
1212 */
1213
1214 /* Maximum time for a thread to wait for an pending request */
1215 #define PENDING_REQUEST_TIMEOUT 20;
1216
1217 typedef struct pending_req_info {
1218 unsigned int hash;
1219 pthread_cond_t cond;
1220 struct pending_req_info* next;
1221 } PendingReqInfo;
1222
1223 typedef struct resolv_cache {
1224 int max_entries;
1225 int num_entries;
1226 Entry mru_list;
1227 int last_id;
1228 Entry* entries;
1229 PendingReqInfo pending_requests;
1230 } Cache;
1231
1232 struct resolv_cache_info {
1233 unsigned netid;
1234 Cache* cache;
1235 struct resolv_cache_info* next;
1236 int nscount;
1237 char* nameservers[MAXNS];
1238 struct addrinfo* nsaddrinfo[MAXNS];
1239 int revision_id; // # times the nameservers have been replaced
1240 struct __res_params params;
1241 struct __res_stats nsstats[MAXNS];
1242 char defdname[MAXDNSRCHPATH];
1243 int dnsrch_offset[MAXDNSRCH+1]; // offsets into defdname
1244 };
1245
1246 #define HTABLE_VALID(x) ((x) != NULL && (x) != HTABLE_DELETED)
1247
1248 static pthread_once_t _res_cache_once = PTHREAD_ONCE_INIT;
1249 static void _res_cache_init(void);
1250
1251 // lock protecting everything in the _resolve_cache_info structs (next ptr, etc)
1252 static pthread_mutex_t _res_cache_list_lock;
1253
1254 /* gets cache associated with a network, or NULL if none exists */
1255 static struct resolv_cache* _find_named_cache_locked(unsigned netid);
1256
1257 static void
_cache_flush_pending_requests_locked(struct resolv_cache * cache)1258 _cache_flush_pending_requests_locked( struct resolv_cache* cache )
1259 {
1260 struct pending_req_info *ri, *tmp;
1261 if (cache) {
1262 ri = cache->pending_requests.next;
1263
1264 while (ri) {
1265 tmp = ri;
1266 ri = ri->next;
1267 pthread_cond_broadcast(&tmp->cond);
1268
1269 pthread_cond_destroy(&tmp->cond);
1270 free(tmp);
1271 }
1272
1273 cache->pending_requests.next = NULL;
1274 }
1275 }
1276
1277 /* Return 0 if no pending request is found matching the key.
1278 * If a matching request is found the calling thread will wait until
1279 * the matching request completes, then update *cache and return 1. */
1280 static int
_cache_check_pending_request_locked(struct resolv_cache ** cache,Entry * key,unsigned netid)1281 _cache_check_pending_request_locked( struct resolv_cache** cache, Entry* key, unsigned netid )
1282 {
1283 struct pending_req_info *ri, *prev;
1284 int exist = 0;
1285
1286 if (*cache && key) {
1287 ri = (*cache)->pending_requests.next;
1288 prev = &(*cache)->pending_requests;
1289 while (ri) {
1290 if (ri->hash == key->hash) {
1291 exist = 1;
1292 break;
1293 }
1294 prev = ri;
1295 ri = ri->next;
1296 }
1297
1298 if (!exist) {
1299 ri = calloc(1, sizeof(struct pending_req_info));
1300 if (ri) {
1301 ri->hash = key->hash;
1302 pthread_cond_init(&ri->cond, NULL);
1303 prev->next = ri;
1304 }
1305 } else {
1306 struct timespec ts = {0,0};
1307 XLOG("Waiting for previous request");
1308 ts.tv_sec = _time_now() + PENDING_REQUEST_TIMEOUT;
1309 pthread_cond_timedwait(&ri->cond, &_res_cache_list_lock, &ts);
1310 /* Must update *cache as it could have been deleted. */
1311 *cache = _find_named_cache_locked(netid);
1312 }
1313 }
1314
1315 return exist;
1316 }
1317
1318 /* notify any waiting thread that waiting on a request
1319 * matching the key has been added to the cache */
1320 static void
_cache_notify_waiting_tid_locked(struct resolv_cache * cache,Entry * key)1321 _cache_notify_waiting_tid_locked( struct resolv_cache* cache, Entry* key )
1322 {
1323 struct pending_req_info *ri, *prev;
1324
1325 if (cache && key) {
1326 ri = cache->pending_requests.next;
1327 prev = &cache->pending_requests;
1328 while (ri) {
1329 if (ri->hash == key->hash) {
1330 pthread_cond_broadcast(&ri->cond);
1331 break;
1332 }
1333 prev = ri;
1334 ri = ri->next;
1335 }
1336
1337 // remove item from list and destroy
1338 if (ri) {
1339 prev->next = ri->next;
1340 pthread_cond_destroy(&ri->cond);
1341 free(ri);
1342 }
1343 }
1344 }
1345
1346 /* notify the cache that the query failed */
1347 void
_resolv_cache_query_failed(unsigned netid,const void * query,int querylen)1348 _resolv_cache_query_failed( unsigned netid,
1349 const void* query,
1350 int querylen)
1351 {
1352 Entry key[1];
1353 Cache* cache;
1354
1355 if (!entry_init_key(key, query, querylen))
1356 return;
1357
1358 pthread_mutex_lock(&_res_cache_list_lock);
1359
1360 cache = _find_named_cache_locked(netid);
1361
1362 if (cache) {
1363 _cache_notify_waiting_tid_locked(cache, key);
1364 }
1365
1366 pthread_mutex_unlock(&_res_cache_list_lock);
1367 }
1368
1369 static struct resolv_cache_info* _find_cache_info_locked(unsigned netid);
1370
1371 static void
_cache_flush_locked(Cache * cache)1372 _cache_flush_locked( Cache* cache )
1373 {
1374 int nn;
1375
1376 for (nn = 0; nn < cache->max_entries; nn++)
1377 {
1378 Entry** pnode = (Entry**) &cache->entries[nn];
1379
1380 while (*pnode != NULL) {
1381 Entry* node = *pnode;
1382 *pnode = node->hlink;
1383 entry_free(node);
1384 }
1385 }
1386
1387 // flush pending request
1388 _cache_flush_pending_requests_locked(cache);
1389
1390 cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
1391 cache->num_entries = 0;
1392 cache->last_id = 0;
1393
1394 XLOG("*************************\n"
1395 "*** DNS CACHE FLUSHED ***\n"
1396 "*************************");
1397 }
1398
1399 static int
_res_cache_get_max_entries(void)1400 _res_cache_get_max_entries( void )
1401 {
1402 int cache_size = CONFIG_MAX_ENTRIES;
1403
1404 const char* cache_mode = getenv("ANDROID_DNS_MODE");
1405 if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) {
1406 // Don't use the cache in local mode. This is used by the proxy itself.
1407 cache_size = 0;
1408 }
1409
1410 XLOG("cache size: %d", cache_size);
1411 return cache_size;
1412 }
1413
1414 static struct resolv_cache*
_resolv_cache_create(void)1415 _resolv_cache_create( void )
1416 {
1417 struct resolv_cache* cache;
1418
1419 cache = calloc(sizeof(*cache), 1);
1420 if (cache) {
1421 cache->max_entries = _res_cache_get_max_entries();
1422 cache->entries = calloc(sizeof(*cache->entries), cache->max_entries);
1423 if (cache->entries) {
1424 cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
1425 XLOG("%s: cache created\n", __FUNCTION__);
1426 } else {
1427 free(cache);
1428 cache = NULL;
1429 }
1430 }
1431 return cache;
1432 }
1433
1434
1435 #if DEBUG
1436 static void
_dump_query(const uint8_t * query,int querylen)1437 _dump_query( const uint8_t* query, int querylen )
1438 {
1439 char temp[256], *p=temp, *end=p+sizeof(temp);
1440 DnsPacket pack[1];
1441
1442 _dnsPacket_init(pack, query, querylen);
1443 p = _dnsPacket_bprintQuery(pack, p, end);
1444 XLOG("QUERY: %s", temp);
1445 }
1446
1447 static void
_cache_dump_mru(Cache * cache)1448 _cache_dump_mru( Cache* cache )
1449 {
1450 char temp[512], *p=temp, *end=p+sizeof(temp);
1451 Entry* e;
1452
1453 p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
1454 for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
1455 p = _bprint(p, end, " %d", e->id);
1456
1457 XLOG("%s", temp);
1458 }
1459
1460 static void
_dump_answer(const void * answer,int answerlen)1461 _dump_answer(const void* answer, int answerlen)
1462 {
1463 res_state statep;
1464 FILE* fp;
1465 char* buf;
1466 int fileLen;
1467
1468 fp = fopen("/data/reslog.txt", "w+e");
1469 if (fp != NULL) {
1470 statep = __res_get_state();
1471
1472 res_pquery(statep, answer, answerlen, fp);
1473
1474 //Get file length
1475 fseek(fp, 0, SEEK_END);
1476 fileLen=ftell(fp);
1477 fseek(fp, 0, SEEK_SET);
1478 buf = (char *)malloc(fileLen+1);
1479 if (buf != NULL) {
1480 //Read file contents into buffer
1481 fread(buf, fileLen, 1, fp);
1482 XLOG("%s\n", buf);
1483 free(buf);
1484 }
1485 fclose(fp);
1486 remove("/data/reslog.txt");
1487 }
1488 else {
1489 errno = 0; // else debug is introducing error signals
1490 XLOG("%s: can't open file\n", __FUNCTION__);
1491 }
1492 }
1493 #endif
1494
1495 #if DEBUG
1496 # define XLOG_QUERY(q,len) _dump_query((q), (len))
1497 # define XLOG_ANSWER(a, len) _dump_answer((a), (len))
1498 #else
1499 # define XLOG_QUERY(q,len) ((void)0)
1500 # define XLOG_ANSWER(a,len) ((void)0)
1501 #endif
1502
1503 /* This function tries to find a key within the hash table
1504 * In case of success, it will return a *pointer* to the hashed key.
1505 * In case of failure, it will return a *pointer* to NULL
1506 *
1507 * So, the caller must check '*result' to check for success/failure.
1508 *
1509 * The main idea is that the result can later be used directly in
1510 * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
1511 * parameter. This makes the code simpler and avoids re-searching
1512 * for the key position in the htable.
1513 *
1514 * The result of a lookup_p is only valid until you alter the hash
1515 * table.
1516 */
1517 static Entry**
_cache_lookup_p(Cache * cache,Entry * key)1518 _cache_lookup_p( Cache* cache,
1519 Entry* key )
1520 {
1521 int index = key->hash % cache->max_entries;
1522 Entry** pnode = (Entry**) &cache->entries[ index ];
1523
1524 while (*pnode != NULL) {
1525 Entry* node = *pnode;
1526
1527 if (node == NULL)
1528 break;
1529
1530 if (node->hash == key->hash && entry_equals(node, key))
1531 break;
1532
1533 pnode = &node->hlink;
1534 }
1535 return pnode;
1536 }
1537
1538 /* Add a new entry to the hash table. 'lookup' must be the
1539 * result of an immediate previous failed _lookup_p() call
1540 * (i.e. with *lookup == NULL), and 'e' is the pointer to the
1541 * newly created entry
1542 */
1543 static void
_cache_add_p(Cache * cache,Entry ** lookup,Entry * e)1544 _cache_add_p( Cache* cache,
1545 Entry** lookup,
1546 Entry* e )
1547 {
1548 *lookup = e;
1549 e->id = ++cache->last_id;
1550 entry_mru_add(e, &cache->mru_list);
1551 cache->num_entries += 1;
1552
1553 XLOG("%s: entry %d added (count=%d)", __FUNCTION__,
1554 e->id, cache->num_entries);
1555 }
1556
1557 /* Remove an existing entry from the hash table,
1558 * 'lookup' must be the result of an immediate previous
1559 * and succesful _lookup_p() call.
1560 */
1561 static void
_cache_remove_p(Cache * cache,Entry ** lookup)1562 _cache_remove_p( Cache* cache,
1563 Entry** lookup )
1564 {
1565 Entry* e = *lookup;
1566
1567 XLOG("%s: entry %d removed (count=%d)", __FUNCTION__,
1568 e->id, cache->num_entries-1);
1569
1570 entry_mru_remove(e);
1571 *lookup = e->hlink;
1572 entry_free(e);
1573 cache->num_entries -= 1;
1574 }
1575
1576 /* Remove the oldest entry from the hash table.
1577 */
1578 static void
_cache_remove_oldest(Cache * cache)1579 _cache_remove_oldest( Cache* cache )
1580 {
1581 Entry* oldest = cache->mru_list.mru_prev;
1582 Entry** lookup = _cache_lookup_p(cache, oldest);
1583
1584 if (*lookup == NULL) { /* should not happen */
1585 XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__);
1586 return;
1587 }
1588 if (DEBUG) {
1589 XLOG("Cache full - removing oldest");
1590 XLOG_QUERY(oldest->query, oldest->querylen);
1591 }
1592 _cache_remove_p(cache, lookup);
1593 }
1594
1595 /* Remove all expired entries from the hash table.
1596 */
_cache_remove_expired(Cache * cache)1597 static void _cache_remove_expired(Cache* cache) {
1598 Entry* e;
1599 time_t now = _time_now();
1600
1601 for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
1602 // Entry is old, remove
1603 if (now >= e->expires) {
1604 Entry** lookup = _cache_lookup_p(cache, e);
1605 if (*lookup == NULL) { /* should not happen */
1606 XLOG("%s: ENTRY NOT IN HTABLE ?", __FUNCTION__);
1607 return;
1608 }
1609 e = e->mru_next;
1610 _cache_remove_p(cache, lookup);
1611 } else {
1612 e = e->mru_next;
1613 }
1614 }
1615 }
1616
1617 ResolvCacheStatus
_resolv_cache_lookup(unsigned netid,const void * query,int querylen,void * answer,int answersize,int * answerlen)1618 _resolv_cache_lookup( unsigned netid,
1619 const void* query,
1620 int querylen,
1621 void* answer,
1622 int answersize,
1623 int *answerlen )
1624 {
1625 Entry key[1];
1626 Entry** lookup;
1627 Entry* e;
1628 time_t now;
1629 Cache* cache;
1630
1631 ResolvCacheStatus result = RESOLV_CACHE_NOTFOUND;
1632
1633 XLOG("%s: lookup", __FUNCTION__);
1634 XLOG_QUERY(query, querylen);
1635
1636 /* we don't cache malformed queries */
1637 if (!entry_init_key(key, query, querylen)) {
1638 XLOG("%s: unsupported query", __FUNCTION__);
1639 return RESOLV_CACHE_UNSUPPORTED;
1640 }
1641 /* lookup cache */
1642 pthread_once(&_res_cache_once, _res_cache_init);
1643 pthread_mutex_lock(&_res_cache_list_lock);
1644
1645 cache = _find_named_cache_locked(netid);
1646 if (cache == NULL) {
1647 result = RESOLV_CACHE_UNSUPPORTED;
1648 goto Exit;
1649 }
1650
1651 /* see the description of _lookup_p to understand this.
1652 * the function always return a non-NULL pointer.
1653 */
1654 lookup = _cache_lookup_p(cache, key);
1655 e = *lookup;
1656
1657 if (e == NULL) {
1658 XLOG( "NOT IN CACHE");
1659 // calling thread will wait if an outstanding request is found
1660 // that matching this query
1661 if (!_cache_check_pending_request_locked(&cache, key, netid) || cache == NULL) {
1662 goto Exit;
1663 } else {
1664 lookup = _cache_lookup_p(cache, key);
1665 e = *lookup;
1666 if (e == NULL) {
1667 goto Exit;
1668 }
1669 }
1670 }
1671
1672 now = _time_now();
1673
1674 /* remove stale entries here */
1675 if (now >= e->expires) {
1676 XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup );
1677 XLOG_QUERY(e->query, e->querylen);
1678 _cache_remove_p(cache, lookup);
1679 goto Exit;
1680 }
1681
1682 *answerlen = e->answerlen;
1683 if (e->answerlen > answersize) {
1684 /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
1685 result = RESOLV_CACHE_UNSUPPORTED;
1686 XLOG(" ANSWER TOO LONG");
1687 goto Exit;
1688 }
1689
1690 memcpy( answer, e->answer, e->answerlen );
1691
1692 /* bump up this entry to the top of the MRU list */
1693 if (e != cache->mru_list.mru_next) {
1694 entry_mru_remove( e );
1695 entry_mru_add( e, &cache->mru_list );
1696 }
1697
1698 XLOG( "FOUND IN CACHE entry=%p", e );
1699 result = RESOLV_CACHE_FOUND;
1700
1701 Exit:
1702 pthread_mutex_unlock(&_res_cache_list_lock);
1703 return result;
1704 }
1705
1706
1707 void
_resolv_cache_add(unsigned netid,const void * query,int querylen,const void * answer,int answerlen)1708 _resolv_cache_add( unsigned netid,
1709 const void* query,
1710 int querylen,
1711 const void* answer,
1712 int answerlen )
1713 {
1714 Entry key[1];
1715 Entry* e;
1716 Entry** lookup;
1717 u_long ttl;
1718 Cache* cache = NULL;
1719
1720 /* don't assume that the query has already been cached
1721 */
1722 if (!entry_init_key( key, query, querylen )) {
1723 XLOG( "%s: passed invalid query ?", __FUNCTION__);
1724 return;
1725 }
1726
1727 pthread_mutex_lock(&_res_cache_list_lock);
1728
1729 cache = _find_named_cache_locked(netid);
1730 if (cache == NULL) {
1731 goto Exit;
1732 }
1733
1734 XLOG( "%s: query:", __FUNCTION__ );
1735 XLOG_QUERY(query,querylen);
1736 XLOG_ANSWER(answer, answerlen);
1737 #if DEBUG_DATA
1738 XLOG( "answer:");
1739 XLOG_BYTES(answer,answerlen);
1740 #endif
1741
1742 lookup = _cache_lookup_p(cache, key);
1743 e = *lookup;
1744
1745 if (e != NULL) { /* should not happen */
1746 XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
1747 __FUNCTION__, e);
1748 goto Exit;
1749 }
1750
1751 if (cache->num_entries >= cache->max_entries) {
1752 _cache_remove_expired(cache);
1753 if (cache->num_entries >= cache->max_entries) {
1754 _cache_remove_oldest(cache);
1755 }
1756 /* need to lookup again */
1757 lookup = _cache_lookup_p(cache, key);
1758 e = *lookup;
1759 if (e != NULL) {
1760 XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
1761 __FUNCTION__, e);
1762 goto Exit;
1763 }
1764 }
1765
1766 ttl = answer_getTTL(answer, answerlen);
1767 if (ttl > 0) {
1768 e = entry_alloc(key, answer, answerlen);
1769 if (e != NULL) {
1770 e->expires = ttl + _time_now();
1771 _cache_add_p(cache, lookup, e);
1772 }
1773 }
1774 #if DEBUG
1775 _cache_dump_mru(cache);
1776 #endif
1777 Exit:
1778 if (cache != NULL) {
1779 _cache_notify_waiting_tid_locked(cache, key);
1780 }
1781 pthread_mutex_unlock(&_res_cache_list_lock);
1782 }
1783
1784 /****************************************************************************/
1785 /****************************************************************************/
1786 /***** *****/
1787 /***** *****/
1788 /***** *****/
1789 /****************************************************************************/
1790 /****************************************************************************/
1791
1792 // Head of the list of caches. Protected by _res_cache_list_lock.
1793 static struct resolv_cache_info _res_cache_list;
1794
1795 /* insert resolv_cache_info into the list of resolv_cache_infos */
1796 static void _insert_cache_info_locked(struct resolv_cache_info* cache_info);
1797 /* creates a resolv_cache_info */
1798 static struct resolv_cache_info* _create_cache_info( void );
1799 /* gets a resolv_cache_info associated with a network, or NULL if not found */
1800 static struct resolv_cache_info* _find_cache_info_locked(unsigned netid);
1801 /* look up the named cache, and creates one if needed */
1802 static struct resolv_cache* _get_res_cache_for_net_locked(unsigned netid);
1803 /* empty the named cache */
1804 static void _flush_cache_for_net_locked(unsigned netid);
1805 /* empty the nameservers set for the named cache */
1806 static void _free_nameservers_locked(struct resolv_cache_info* cache_info);
1807 /* return 1 if the provided list of name servers differs from the list of name servers
1808 * currently attached to the provided cache_info */
1809 static int _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info,
1810 const char** servers, int numservers);
1811 /* clears the stats samples contained withing the given cache_info */
1812 static void _res_cache_clear_stats_locked(struct resolv_cache_info* cache_info);
1813
1814 static void
_res_cache_init(void)1815 _res_cache_init(void)
1816 {
1817 const char* env = getenv(CONFIG_ENV);
1818
1819 if (env && atoi(env) == 0) {
1820 /* the cache is disabled */
1821 return;
1822 }
1823
1824 memset(&_res_cache_list, 0, sizeof(_res_cache_list));
1825 pthread_mutex_init(&_res_cache_list_lock, NULL);
1826 }
1827
1828 static struct resolv_cache*
_get_res_cache_for_net_locked(unsigned netid)1829 _get_res_cache_for_net_locked(unsigned netid)
1830 {
1831 struct resolv_cache* cache = _find_named_cache_locked(netid);
1832 if (!cache) {
1833 struct resolv_cache_info* cache_info = _create_cache_info();
1834 if (cache_info) {
1835 cache = _resolv_cache_create();
1836 if (cache) {
1837 cache_info->cache = cache;
1838 cache_info->netid = netid;
1839 _insert_cache_info_locked(cache_info);
1840 } else {
1841 free(cache_info);
1842 }
1843 }
1844 }
1845 return cache;
1846 }
1847
1848 void
_resolv_flush_cache_for_net(unsigned netid)1849 _resolv_flush_cache_for_net(unsigned netid)
1850 {
1851 pthread_once(&_res_cache_once, _res_cache_init);
1852 pthread_mutex_lock(&_res_cache_list_lock);
1853
1854 _flush_cache_for_net_locked(netid);
1855
1856 pthread_mutex_unlock(&_res_cache_list_lock);
1857 }
1858
1859 static void
_flush_cache_for_net_locked(unsigned netid)1860 _flush_cache_for_net_locked(unsigned netid)
1861 {
1862 struct resolv_cache* cache = _find_named_cache_locked(netid);
1863 if (cache) {
1864 _cache_flush_locked(cache);
1865 }
1866
1867 // Also clear the NS statistics.
1868 struct resolv_cache_info* cache_info = _find_cache_info_locked(netid);
1869 _res_cache_clear_stats_locked(cache_info);
1870 }
1871
_resolv_delete_cache_for_net(unsigned netid)1872 void _resolv_delete_cache_for_net(unsigned netid)
1873 {
1874 pthread_once(&_res_cache_once, _res_cache_init);
1875 pthread_mutex_lock(&_res_cache_list_lock);
1876
1877 struct resolv_cache_info* prev_cache_info = &_res_cache_list;
1878
1879 while (prev_cache_info->next) {
1880 struct resolv_cache_info* cache_info = prev_cache_info->next;
1881
1882 if (cache_info->netid == netid) {
1883 prev_cache_info->next = cache_info->next;
1884 _cache_flush_locked(cache_info->cache);
1885 free(cache_info->cache->entries);
1886 free(cache_info->cache);
1887 _free_nameservers_locked(cache_info);
1888 free(cache_info);
1889 break;
1890 }
1891
1892 prev_cache_info = prev_cache_info->next;
1893 }
1894
1895 pthread_mutex_unlock(&_res_cache_list_lock);
1896 }
1897
1898 static struct resolv_cache_info*
_create_cache_info(void)1899 _create_cache_info(void)
1900 {
1901 struct resolv_cache_info* cache_info;
1902
1903 cache_info = calloc(sizeof(*cache_info), 1);
1904 return cache_info;
1905 }
1906
1907 static void
_insert_cache_info_locked(struct resolv_cache_info * cache_info)1908 _insert_cache_info_locked(struct resolv_cache_info* cache_info)
1909 {
1910 struct resolv_cache_info* last;
1911
1912 for (last = &_res_cache_list; last->next; last = last->next);
1913
1914 last->next = cache_info;
1915
1916 }
1917
1918 static struct resolv_cache*
_find_named_cache_locked(unsigned netid)1919 _find_named_cache_locked(unsigned netid) {
1920
1921 struct resolv_cache_info* info = _find_cache_info_locked(netid);
1922
1923 if (info != NULL) return info->cache;
1924
1925 return NULL;
1926 }
1927
1928 static struct resolv_cache_info*
_find_cache_info_locked(unsigned netid)1929 _find_cache_info_locked(unsigned netid)
1930 {
1931 struct resolv_cache_info* cache_info = _res_cache_list.next;
1932
1933 while (cache_info) {
1934 if (cache_info->netid == netid) {
1935 break;
1936 }
1937
1938 cache_info = cache_info->next;
1939 }
1940 return cache_info;
1941 }
1942
1943 void
_resolv_set_default_params(struct __res_params * params)1944 _resolv_set_default_params(struct __res_params* params) {
1945 params->sample_validity = NSSAMPLE_VALIDITY;
1946 params->success_threshold = SUCCESS_THRESHOLD;
1947 params->min_samples = 0;
1948 params->max_samples = 0;
1949 }
1950
1951 int
_resolv_set_nameservers_for_net(unsigned netid,const char ** servers,unsigned numservers,const char * domains,const struct __res_params * params)1952 _resolv_set_nameservers_for_net(unsigned netid, const char** servers, unsigned numservers,
1953 const char *domains, const struct __res_params* params)
1954 {
1955 char sbuf[NI_MAXSERV];
1956 register char *cp;
1957 int *offset;
1958 struct addrinfo* nsaddrinfo[MAXNS];
1959
1960 if (numservers > MAXNS) {
1961 XLOG("%s: numservers=%u, MAXNS=%u", __FUNCTION__, numservers, MAXNS);
1962 return E2BIG;
1963 }
1964
1965 // Parse the addresses before actually locking or changing any state, in case there is an error.
1966 // As a side effect this also reduces the time the lock is kept.
1967 struct addrinfo hints = {
1968 .ai_family = AF_UNSPEC,
1969 .ai_socktype = SOCK_DGRAM,
1970 .ai_flags = AI_NUMERICHOST
1971 };
1972 snprintf(sbuf, sizeof(sbuf), "%u", NAMESERVER_PORT);
1973 for (unsigned i = 0; i < numservers; i++) {
1974 // The addrinfo structures allocated here are freed in _free_nameservers_locked().
1975 int rt = getaddrinfo(servers[i], sbuf, &hints, &nsaddrinfo[i]);
1976 if (rt != 0) {
1977 for (unsigned j = 0 ; j < i ; j++) {
1978 freeaddrinfo(nsaddrinfo[j]);
1979 nsaddrinfo[j] = NULL;
1980 }
1981 XLOG("%s: getaddrinfo(%s)=%s", __FUNCTION__, servers[i], gai_strerror(rt));
1982 return EINVAL;
1983 }
1984 }
1985
1986 pthread_once(&_res_cache_once, _res_cache_init);
1987 pthread_mutex_lock(&_res_cache_list_lock);
1988
1989 // creates the cache if not created
1990 _get_res_cache_for_net_locked(netid);
1991
1992 struct resolv_cache_info* cache_info = _find_cache_info_locked(netid);
1993
1994 if (cache_info != NULL) {
1995 uint8_t old_max_samples = cache_info->params.max_samples;
1996 if (params != NULL) {
1997 cache_info->params = *params;
1998 } else {
1999 _resolv_set_default_params(&cache_info->params);
2000 }
2001
2002 if (!_resolv_is_nameservers_equal_locked(cache_info, servers, numservers)) {
2003 // free current before adding new
2004 _free_nameservers_locked(cache_info);
2005 unsigned i;
2006 for (i = 0; i < numservers; i++) {
2007 cache_info->nsaddrinfo[i] = nsaddrinfo[i];
2008 cache_info->nameservers[i] = strdup(servers[i]);
2009 XLOG("%s: netid = %u, addr = %s\n", __FUNCTION__, netid, servers[i]);
2010 }
2011 cache_info->nscount = numservers;
2012
2013 // Flush the cache and reset the stats.
2014 _flush_cache_for_net_locked(netid);
2015
2016 // increment the revision id to ensure that sample state is not written back if the
2017 // servers change; in theory it would suffice to do so only if the servers or
2018 // max_samples actually change, in practice the overhead of checking is higher than the
2019 // cost, and overflows are unlikely
2020 ++cache_info->revision_id;
2021 } else if (cache_info->params.max_samples != old_max_samples) {
2022 // If the maximum number of samples changes, the overhead of keeping the most recent
2023 // samples around is not considered worth the effort, so they are cleared instead. All
2024 // other parameters do not affect shared state: Changing these parameters does not
2025 // invalidate the samples, as they only affect aggregation and the conditions under
2026 // which servers are considered usable.
2027 _res_cache_clear_stats_locked(cache_info);
2028 ++cache_info->revision_id;
2029 }
2030
2031 // Always update the search paths, since determining whether they actually changed is
2032 // complex due to the zero-padding, and probably not worth the effort. Cache-flushing
2033 // however is not // necessary, since the stored cache entries do contain the domain, not
2034 // just the host name.
2035 // code moved from res_init.c, load_domain_search_list
2036 strlcpy(cache_info->defdname, domains, sizeof(cache_info->defdname));
2037 if ((cp = strchr(cache_info->defdname, '\n')) != NULL)
2038 *cp = '\0';
2039
2040 cp = cache_info->defdname;
2041 offset = cache_info->dnsrch_offset;
2042 while (offset < cache_info->dnsrch_offset + MAXDNSRCH) {
2043 while (*cp == ' ' || *cp == '\t') /* skip leading white space */
2044 cp++;
2045 if (*cp == '\0') /* stop if nothing more to do */
2046 break;
2047 *offset++ = cp - cache_info->defdname; /* record this search domain */
2048 while (*cp) { /* zero-terminate it */
2049 if (*cp == ' '|| *cp == '\t') {
2050 *cp++ = '\0';
2051 break;
2052 }
2053 cp++;
2054 }
2055 }
2056 *offset = -1; /* cache_info->dnsrch_offset has MAXDNSRCH+1 items */
2057 }
2058
2059 pthread_mutex_unlock(&_res_cache_list_lock);
2060 return 0;
2061 }
2062
2063 static int
_resolv_is_nameservers_equal_locked(struct resolv_cache_info * cache_info,const char ** servers,int numservers)2064 _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info,
2065 const char** servers, int numservers)
2066 {
2067 if (cache_info->nscount != numservers) {
2068 return 0;
2069 }
2070
2071 // Compare each name server against current name servers.
2072 // TODO: this is incorrect if the list of current or previous nameservers
2073 // contains duplicates. This does not really matter because the framework
2074 // filters out duplicates, but we should probably fix it. It's also
2075 // insensitive to the order of the nameservers; we should probably fix that
2076 // too.
2077 for (int i = 0; i < numservers; i++) {
2078 for (int j = 0 ; ; j++) {
2079 if (j >= numservers) {
2080 return 0;
2081 }
2082 if (strcmp(cache_info->nameservers[i], servers[j]) == 0) {
2083 break;
2084 }
2085 }
2086 }
2087
2088 return 1;
2089 }
2090
2091 static void
_free_nameservers_locked(struct resolv_cache_info * cache_info)2092 _free_nameservers_locked(struct resolv_cache_info* cache_info)
2093 {
2094 int i;
2095 for (i = 0; i < cache_info->nscount; i++) {
2096 free(cache_info->nameservers[i]);
2097 cache_info->nameservers[i] = NULL;
2098 if (cache_info->nsaddrinfo[i] != NULL) {
2099 freeaddrinfo(cache_info->nsaddrinfo[i]);
2100 cache_info->nsaddrinfo[i] = NULL;
2101 }
2102 cache_info->nsstats[i].sample_count =
2103 cache_info->nsstats[i].sample_next = 0;
2104 }
2105 cache_info->nscount = 0;
2106 _res_cache_clear_stats_locked(cache_info);
2107 ++cache_info->revision_id;
2108 }
2109
2110 void
_resolv_populate_res_for_net(res_state statp)2111 _resolv_populate_res_for_net(res_state statp)
2112 {
2113 if (statp == NULL) {
2114 return;
2115 }
2116
2117 pthread_once(&_res_cache_once, _res_cache_init);
2118 pthread_mutex_lock(&_res_cache_list_lock);
2119
2120 struct resolv_cache_info* info = _find_cache_info_locked(statp->netid);
2121 if (info != NULL) {
2122 int nserv;
2123 struct addrinfo* ai;
2124 XLOG("%s: %u\n", __FUNCTION__, statp->netid);
2125 for (nserv = 0; nserv < MAXNS; nserv++) {
2126 ai = info->nsaddrinfo[nserv];
2127 if (ai == NULL) {
2128 break;
2129 }
2130
2131 if ((size_t) ai->ai_addrlen <= sizeof(statp->_u._ext.ext->nsaddrs[0])) {
2132 if (statp->_u._ext.ext != NULL) {
2133 memcpy(&statp->_u._ext.ext->nsaddrs[nserv], ai->ai_addr, ai->ai_addrlen);
2134 statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
2135 } else {
2136 if ((size_t) ai->ai_addrlen
2137 <= sizeof(statp->nsaddr_list[0])) {
2138 memcpy(&statp->nsaddr_list[nserv], ai->ai_addr,
2139 ai->ai_addrlen);
2140 } else {
2141 statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
2142 }
2143 }
2144 } else {
2145 XLOG("%s: found too long addrlen", __FUNCTION__);
2146 }
2147 }
2148 statp->nscount = nserv;
2149 // now do search domains. Note that we cache the offsets as this code runs alot
2150 // but the setting/offset-computer only runs when set/changed
2151 // WARNING: Don't use str*cpy() here, this string contains zeroes.
2152 memcpy(statp->defdname, info->defdname, sizeof(statp->defdname));
2153 register char **pp = statp->dnsrch;
2154 register int *p = info->dnsrch_offset;
2155 while (pp < statp->dnsrch + MAXDNSRCH && *p != -1) {
2156 *pp++ = &statp->defdname[0] + *p++;
2157 }
2158 }
2159 pthread_mutex_unlock(&_res_cache_list_lock);
2160 }
2161
2162 /* Resolver reachability statistics. */
2163
2164 static void
_res_cache_add_stats_sample_locked(struct __res_stats * stats,const struct __res_sample * sample,int max_samples)2165 _res_cache_add_stats_sample_locked(struct __res_stats* stats, const struct __res_sample* sample,
2166 int max_samples) {
2167 // Note: This function expects max_samples > 0, otherwise a (harmless) modification of the
2168 // allocated but supposedly unused memory for samples[0] will happen
2169 XLOG("%s: adding sample to stats, next = %d, count = %d", __FUNCTION__,
2170 stats->sample_next, stats->sample_count);
2171 stats->samples[stats->sample_next] = *sample;
2172 if (stats->sample_count < max_samples) {
2173 ++stats->sample_count;
2174 }
2175 if (++stats->sample_next >= max_samples) {
2176 stats->sample_next = 0;
2177 }
2178 }
2179
2180 static void
_res_cache_clear_stats_locked(struct resolv_cache_info * cache_info)2181 _res_cache_clear_stats_locked(struct resolv_cache_info* cache_info) {
2182 if (cache_info) {
2183 for (int i = 0 ; i < MAXNS ; ++i) {
2184 cache_info->nsstats->sample_count = cache_info->nsstats->sample_next = 0;
2185 }
2186 }
2187 }
2188
2189 int
android_net_res_stats_get_info_for_net(unsigned netid,int * nscount,struct sockaddr_storage servers[MAXNS],int * dcount,char domains[MAXDNSRCH][MAXDNSRCHPATH],struct __res_params * params,struct __res_stats stats[MAXNS])2190 android_net_res_stats_get_info_for_net(unsigned netid, int* nscount,
2191 struct sockaddr_storage servers[MAXNS], int* dcount, char domains[MAXDNSRCH][MAXDNSRCHPATH],
2192 struct __res_params* params, struct __res_stats stats[MAXNS]) {
2193 int revision_id = -1;
2194 pthread_mutex_lock(&_res_cache_list_lock);
2195
2196 struct resolv_cache_info* info = _find_cache_info_locked(netid);
2197 if (info) {
2198 if (info->nscount > MAXNS) {
2199 pthread_mutex_unlock(&_res_cache_list_lock);
2200 XLOG("%s: nscount %d > MAXNS %d", __FUNCTION__, info->nscount, MAXNS);
2201 errno = EFAULT;
2202 return -1;
2203 }
2204 int i;
2205 for (i = 0; i < info->nscount; i++) {
2206 // Verify that the following assumptions are held, failure indicates corruption:
2207 // - getaddrinfo() may never return a sockaddr > sockaddr_storage
2208 // - all addresses are valid
2209 // - there is only one address per addrinfo thanks to numeric resolution
2210 int addrlen = info->nsaddrinfo[i]->ai_addrlen;
2211 if (addrlen < (int) sizeof(struct sockaddr) ||
2212 addrlen > (int) sizeof(servers[0])) {
2213 pthread_mutex_unlock(&_res_cache_list_lock);
2214 XLOG("%s: nsaddrinfo[%d].ai_addrlen == %d", __FUNCTION__, i, addrlen);
2215 errno = EMSGSIZE;
2216 return -1;
2217 }
2218 if (info->nsaddrinfo[i]->ai_addr == NULL) {
2219 pthread_mutex_unlock(&_res_cache_list_lock);
2220 XLOG("%s: nsaddrinfo[%d].ai_addr == NULL", __FUNCTION__, i);
2221 errno = ENOENT;
2222 return -1;
2223 }
2224 if (info->nsaddrinfo[i]->ai_next != NULL) {
2225 pthread_mutex_unlock(&_res_cache_list_lock);
2226 XLOG("%s: nsaddrinfo[%d].ai_next != NULL", __FUNCTION__, i);
2227 errno = ENOTUNIQ;
2228 return -1;
2229 }
2230 }
2231 *nscount = info->nscount;
2232 for (i = 0; i < info->nscount; i++) {
2233 memcpy(&servers[i], info->nsaddrinfo[i]->ai_addr, info->nsaddrinfo[i]->ai_addrlen);
2234 stats[i] = info->nsstats[i];
2235 }
2236 for (i = 0; i < MAXDNSRCH; i++) {
2237 const char* cur_domain = info->defdname + info->dnsrch_offset[i];
2238 // dnsrch_offset[i] can either be -1 or point to an empty string to indicate the end
2239 // of the search offsets. Checking for < 0 is not strictly necessary, but safer.
2240 // TODO: Pass in a search domain array instead of a string to
2241 // _resolv_set_nameservers_for_net() and make this double check unnecessary.
2242 if (info->dnsrch_offset[i] < 0 ||
2243 ((size_t)info->dnsrch_offset[i]) >= sizeof(info->defdname) || !cur_domain[0]) {
2244 break;
2245 }
2246 strlcpy(domains[i], cur_domain, MAXDNSRCHPATH);
2247 }
2248 *dcount = i;
2249 *params = info->params;
2250 revision_id = info->revision_id;
2251 }
2252
2253 pthread_mutex_unlock(&_res_cache_list_lock);
2254 return revision_id;
2255 }
2256
2257 int
_resolv_cache_get_resolver_stats(unsigned netid,struct __res_params * params,struct __res_stats stats[MAXNS])2258 _resolv_cache_get_resolver_stats( unsigned netid, struct __res_params* params,
2259 struct __res_stats stats[MAXNS]) {
2260 int revision_id = -1;
2261 pthread_mutex_lock(&_res_cache_list_lock);
2262
2263 struct resolv_cache_info* info = _find_cache_info_locked(netid);
2264 if (info) {
2265 memcpy(stats, info->nsstats, sizeof(info->nsstats));
2266 *params = info->params;
2267 revision_id = info->revision_id;
2268 }
2269
2270 pthread_mutex_unlock(&_res_cache_list_lock);
2271 return revision_id;
2272 }
2273
2274 void
_resolv_cache_add_resolver_stats_sample(unsigned netid,int revision_id,int ns,const struct __res_sample * sample,int max_samples)2275 _resolv_cache_add_resolver_stats_sample( unsigned netid, int revision_id, int ns,
2276 const struct __res_sample* sample, int max_samples) {
2277 if (max_samples <= 0) return;
2278
2279 pthread_mutex_lock(&_res_cache_list_lock);
2280
2281 struct resolv_cache_info* info = _find_cache_info_locked(netid);
2282
2283 if (info && info->revision_id == revision_id) {
2284 _res_cache_add_stats_sample_locked(&info->nsstats[ns], sample, max_samples);
2285 }
2286
2287 pthread_mutex_unlock(&_res_cache_list_lock);
2288 }
2289
2290