1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <gtest/gtest.h>
18
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/syscall.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include <unwind.h>
31
32 #include <atomic>
33 #include <vector>
34
35 #include "private/bionic_constants.h"
36 #include "private/bionic_macros.h"
37 #include "private/ScopeGuard.h"
38 #include "BionicDeathTest.h"
39 #include "ScopedSignalHandler.h"
40 #include "utils.h"
41
TEST(pthread,pthread_key_create)42 TEST(pthread, pthread_key_create) {
43 pthread_key_t key;
44 ASSERT_EQ(0, pthread_key_create(&key, NULL));
45 ASSERT_EQ(0, pthread_key_delete(key));
46 // Can't delete a key that's already been deleted.
47 ASSERT_EQ(EINVAL, pthread_key_delete(key));
48 }
49
TEST(pthread,pthread_keys_max)50 TEST(pthread, pthread_keys_max) {
51 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
52 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
53 }
54
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)55 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
56 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
57 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
58 }
59
TEST(pthread,pthread_key_many_distinct)60 TEST(pthread, pthread_key_many_distinct) {
61 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
62 // pthread keys, but We should be able to allocate at least this many keys.
63 int nkeys = PTHREAD_KEYS_MAX / 2;
64 std::vector<pthread_key_t> keys;
65
66 auto scope_guard = make_scope_guard([&keys]{
67 for (const auto& key : keys) {
68 EXPECT_EQ(0, pthread_key_delete(key));
69 }
70 });
71
72 for (int i = 0; i < nkeys; ++i) {
73 pthread_key_t key;
74 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
75 ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
76 keys.push_back(key);
77 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
78 }
79
80 for (int i = keys.size() - 1; i >= 0; --i) {
81 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
82 pthread_key_t key = keys.back();
83 keys.pop_back();
84 ASSERT_EQ(0, pthread_key_delete(key));
85 }
86 }
87
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)88 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
89 std::vector<pthread_key_t> keys;
90 int rv = 0;
91
92 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
93 // be more than we are allowed to allocate now.
94 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
95 pthread_key_t key;
96 rv = pthread_key_create(&key, NULL);
97 if (rv == EAGAIN) {
98 break;
99 }
100 EXPECT_EQ(0, rv);
101 keys.push_back(key);
102 }
103
104 // Don't leak keys.
105 for (const auto& key : keys) {
106 EXPECT_EQ(0, pthread_key_delete(key));
107 }
108 keys.clear();
109
110 // We should have eventually reached the maximum number of keys and received
111 // EAGAIN.
112 ASSERT_EQ(EAGAIN, rv);
113 }
114
TEST(pthread,pthread_key_delete)115 TEST(pthread, pthread_key_delete) {
116 void* expected = reinterpret_cast<void*>(1234);
117 pthread_key_t key;
118 ASSERT_EQ(0, pthread_key_create(&key, NULL));
119 ASSERT_EQ(0, pthread_setspecific(key, expected));
120 ASSERT_EQ(expected, pthread_getspecific(key));
121 ASSERT_EQ(0, pthread_key_delete(key));
122 // After deletion, pthread_getspecific returns NULL.
123 ASSERT_EQ(NULL, pthread_getspecific(key));
124 // And you can't use pthread_setspecific with the deleted key.
125 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
126 }
127
TEST(pthread,pthread_key_fork)128 TEST(pthread, pthread_key_fork) {
129 void* expected = reinterpret_cast<void*>(1234);
130 pthread_key_t key;
131 ASSERT_EQ(0, pthread_key_create(&key, NULL));
132 ASSERT_EQ(0, pthread_setspecific(key, expected));
133 ASSERT_EQ(expected, pthread_getspecific(key));
134
135 pid_t pid = fork();
136 ASSERT_NE(-1, pid) << strerror(errno);
137
138 if (pid == 0) {
139 // The surviving thread inherits all the forking thread's TLS values...
140 ASSERT_EQ(expected, pthread_getspecific(key));
141 _exit(99);
142 }
143
144 AssertChildExited(pid, 99);
145
146 ASSERT_EQ(expected, pthread_getspecific(key));
147 ASSERT_EQ(0, pthread_key_delete(key));
148 }
149
DirtyKeyFn(void * key)150 static void* DirtyKeyFn(void* key) {
151 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
152 }
153
TEST(pthread,pthread_key_dirty)154 TEST(pthread, pthread_key_dirty) {
155 pthread_key_t key;
156 ASSERT_EQ(0, pthread_key_create(&key, NULL));
157
158 size_t stack_size = 640 * 1024;
159 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
160 ASSERT_NE(MAP_FAILED, stack);
161 memset(stack, 0xff, stack_size);
162
163 pthread_attr_t attr;
164 ASSERT_EQ(0, pthread_attr_init(&attr));
165 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
166
167 pthread_t t;
168 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
169
170 void* result;
171 ASSERT_EQ(0, pthread_join(t, &result));
172 ASSERT_EQ(nullptr, result); // Not ~0!
173
174 ASSERT_EQ(0, munmap(stack, stack_size));
175 ASSERT_EQ(0, pthread_key_delete(key));
176 }
177
TEST(pthread,static_pthread_key_used_before_creation)178 TEST(pthread, static_pthread_key_used_before_creation) {
179 #if defined(__BIONIC__)
180 // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
181 // So here tests if the static/global default value 0 can be detected as invalid key.
182 static pthread_key_t key;
183 ASSERT_EQ(nullptr, pthread_getspecific(key));
184 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
185 ASSERT_EQ(EINVAL, pthread_key_delete(key));
186 #else
187 GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
188 #endif
189 }
190
IdFn(void * arg)191 static void* IdFn(void* arg) {
192 return arg;
193 }
194
195 class SpinFunctionHelper {
196 public:
SpinFunctionHelper()197 SpinFunctionHelper() {
198 SpinFunctionHelper::spin_flag_ = true;
199 }
~SpinFunctionHelper()200 ~SpinFunctionHelper() {
201 UnSpin();
202 }
GetFunction()203 auto GetFunction() -> void* (*)(void*) {
204 return SpinFunctionHelper::SpinFn;
205 }
206
UnSpin()207 void UnSpin() {
208 SpinFunctionHelper::spin_flag_ = false;
209 }
210
211 private:
SpinFn(void *)212 static void* SpinFn(void*) {
213 while (spin_flag_) {}
214 return NULL;
215 }
216 static std::atomic<bool> spin_flag_;
217 };
218
219 // It doesn't matter if spin_flag_ is used in several tests,
220 // because it is always set to false after each test. Each thread
221 // loops on spin_flag_ can find it becomes false at some time.
222 std::atomic<bool> SpinFunctionHelper::spin_flag_;
223
JoinFn(void * arg)224 static void* JoinFn(void* arg) {
225 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
226 }
227
AssertDetached(pthread_t t,bool is_detached)228 static void AssertDetached(pthread_t t, bool is_detached) {
229 pthread_attr_t attr;
230 ASSERT_EQ(0, pthread_getattr_np(t, &attr));
231 int detach_state;
232 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
233 pthread_attr_destroy(&attr);
234 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
235 }
236
MakeDeadThread(pthread_t & t)237 static void MakeDeadThread(pthread_t& t) {
238 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
239 ASSERT_EQ(0, pthread_join(t, NULL));
240 }
241
TEST(pthread,pthread_create)242 TEST(pthread, pthread_create) {
243 void* expected_result = reinterpret_cast<void*>(123);
244 // Can we create a thread?
245 pthread_t t;
246 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
247 // If we join, do we get the expected value back?
248 void* result;
249 ASSERT_EQ(0, pthread_join(t, &result));
250 ASSERT_EQ(expected_result, result);
251 }
252
TEST(pthread,pthread_create_EAGAIN)253 TEST(pthread, pthread_create_EAGAIN) {
254 pthread_attr_t attributes;
255 ASSERT_EQ(0, pthread_attr_init(&attributes));
256 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
257
258 pthread_t t;
259 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
260 }
261
TEST(pthread,pthread_no_join_after_detach)262 TEST(pthread, pthread_no_join_after_detach) {
263 SpinFunctionHelper spinhelper;
264
265 pthread_t t1;
266 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
267
268 // After a pthread_detach...
269 ASSERT_EQ(0, pthread_detach(t1));
270 AssertDetached(t1, true);
271
272 // ...pthread_join should fail.
273 ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
274 }
275
TEST(pthread,pthread_no_op_detach_after_join)276 TEST(pthread, pthread_no_op_detach_after_join) {
277 SpinFunctionHelper spinhelper;
278
279 pthread_t t1;
280 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
281
282 // If thread 2 is already waiting to join thread 1...
283 pthread_t t2;
284 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
285
286 sleep(1); // (Give t2 a chance to call pthread_join.)
287
288 #if defined(__BIONIC__)
289 ASSERT_EQ(EINVAL, pthread_detach(t1));
290 #else
291 ASSERT_EQ(0, pthread_detach(t1));
292 #endif
293 AssertDetached(t1, false);
294
295 spinhelper.UnSpin();
296
297 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
298 void* join_result;
299 ASSERT_EQ(0, pthread_join(t2, &join_result));
300 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
301 }
302
TEST(pthread,pthread_join_self)303 TEST(pthread, pthread_join_self) {
304 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
305 }
306
307 struct TestBug37410 {
308 pthread_t main_thread;
309 pthread_mutex_t mutex;
310
mainTestBug37410311 static void main() {
312 TestBug37410 data;
313 data.main_thread = pthread_self();
314 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
315 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
316
317 pthread_t t;
318 ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
319
320 // Wait for the thread to be running...
321 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
322 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
323
324 // ...and exit.
325 pthread_exit(NULL);
326 }
327
328 private:
thread_fnTestBug37410329 static void* thread_fn(void* arg) {
330 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
331
332 // Let the main thread know we're running.
333 pthread_mutex_unlock(&data->mutex);
334
335 // And wait for the main thread to exit.
336 pthread_join(data->main_thread, NULL);
337
338 return NULL;
339 }
340 };
341
342 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
343 // run this test (which exits normally) in its own process.
344
345 class pthread_DeathTest : public BionicDeathTest {};
346
TEST_F(pthread_DeathTest,pthread_bug_37410)347 TEST_F(pthread_DeathTest, pthread_bug_37410) {
348 // http://code.google.com/p/android/issues/detail?id=37410
349 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
350 }
351
SignalHandlerFn(void * arg)352 static void* SignalHandlerFn(void* arg) {
353 sigset_t wait_set;
354 sigfillset(&wait_set);
355 return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
356 }
357
TEST(pthread,pthread_sigmask)358 TEST(pthread, pthread_sigmask) {
359 // Check that SIGUSR1 isn't blocked.
360 sigset_t original_set;
361 sigemptyset(&original_set);
362 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
363 ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
364
365 // Block SIGUSR1.
366 sigset_t set;
367 sigemptyset(&set);
368 sigaddset(&set, SIGUSR1);
369 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
370
371 // Check that SIGUSR1 is blocked.
372 sigset_t final_set;
373 sigemptyset(&final_set);
374 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
375 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
376 // ...and that sigprocmask agrees with pthread_sigmask.
377 sigemptyset(&final_set);
378 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
379 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
380
381 // Spawn a thread that calls sigwait and tells us what it received.
382 pthread_t signal_thread;
383 int received_signal = -1;
384 ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
385
386 // Send that thread SIGUSR1.
387 pthread_kill(signal_thread, SIGUSR1);
388
389 // See what it got.
390 void* join_result;
391 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
392 ASSERT_EQ(SIGUSR1, received_signal);
393 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
394
395 // Restore the original signal mask.
396 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
397 }
398
TEST(pthread,pthread_setname_np__too_long)399 TEST(pthread, pthread_setname_np__too_long) {
400 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
401 ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
402 ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
403 }
404
TEST(pthread,pthread_setname_np__self)405 TEST(pthread, pthread_setname_np__self) {
406 ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
407 }
408
TEST(pthread,pthread_setname_np__other)409 TEST(pthread, pthread_setname_np__other) {
410 SpinFunctionHelper spinhelper;
411
412 pthread_t t1;
413 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
414 ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
415 spinhelper.UnSpin();
416 ASSERT_EQ(0, pthread_join(t1, nullptr));
417 }
418
TEST(pthread,pthread_setname_np__no_such_thread)419 TEST(pthread, pthread_setname_np__no_such_thread) {
420 pthread_t dead_thread;
421 MakeDeadThread(dead_thread);
422
423 // Call pthread_setname_np after thread has already exited.
424 ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
425 }
426
TEST(pthread,pthread_kill__0)427 TEST(pthread, pthread_kill__0) {
428 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
429 ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
430 }
431
TEST(pthread,pthread_kill__invalid_signal)432 TEST(pthread, pthread_kill__invalid_signal) {
433 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
434 }
435
pthread_kill__in_signal_handler_helper(int signal_number)436 static void pthread_kill__in_signal_handler_helper(int signal_number) {
437 static int count = 0;
438 ASSERT_EQ(SIGALRM, signal_number);
439 if (++count == 1) {
440 // Can we call pthread_kill from a signal handler?
441 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
442 }
443 }
444
TEST(pthread,pthread_kill__in_signal_handler)445 TEST(pthread, pthread_kill__in_signal_handler) {
446 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
447 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
448 }
449
TEST(pthread,pthread_detach__no_such_thread)450 TEST(pthread, pthread_detach__no_such_thread) {
451 pthread_t dead_thread;
452 MakeDeadThread(dead_thread);
453
454 ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
455 }
456
TEST(pthread,pthread_getcpuclockid__clock_gettime)457 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
458 SpinFunctionHelper spinhelper;
459
460 pthread_t t;
461 ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
462
463 clockid_t c;
464 ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
465 timespec ts;
466 ASSERT_EQ(0, clock_gettime(c, &ts));
467 spinhelper.UnSpin();
468 ASSERT_EQ(0, pthread_join(t, nullptr));
469 }
470
TEST(pthread,pthread_getcpuclockid__no_such_thread)471 TEST(pthread, pthread_getcpuclockid__no_such_thread) {
472 pthread_t dead_thread;
473 MakeDeadThread(dead_thread);
474
475 clockid_t c;
476 ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
477 }
478
TEST(pthread,pthread_getschedparam__no_such_thread)479 TEST(pthread, pthread_getschedparam__no_such_thread) {
480 pthread_t dead_thread;
481 MakeDeadThread(dead_thread);
482
483 int policy;
484 sched_param param;
485 ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m));
486 }
487
TEST(pthread,pthread_setschedparam__no_such_thread)488 TEST(pthread, pthread_setschedparam__no_such_thread) {
489 pthread_t dead_thread;
490 MakeDeadThread(dead_thread);
491
492 int policy = 0;
493 sched_param param;
494 ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m));
495 }
496
TEST(pthread,pthread_join__no_such_thread)497 TEST(pthread, pthread_join__no_such_thread) {
498 pthread_t dead_thread;
499 MakeDeadThread(dead_thread);
500
501 ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
502 }
503
TEST(pthread,pthread_kill__no_such_thread)504 TEST(pthread, pthread_kill__no_such_thread) {
505 pthread_t dead_thread;
506 MakeDeadThread(dead_thread);
507
508 ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
509 }
510
TEST(pthread,pthread_join__multijoin)511 TEST(pthread, pthread_join__multijoin) {
512 SpinFunctionHelper spinhelper;
513
514 pthread_t t1;
515 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
516
517 pthread_t t2;
518 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
519
520 sleep(1); // (Give t2 a chance to call pthread_join.)
521
522 // Multiple joins to the same thread should fail.
523 ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
524
525 spinhelper.UnSpin();
526
527 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
528 void* join_result;
529 ASSERT_EQ(0, pthread_join(t2, &join_result));
530 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
531 }
532
TEST(pthread,pthread_join__race)533 TEST(pthread, pthread_join__race) {
534 // http://b/11693195 --- pthread_join could return before the thread had actually exited.
535 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
536 for (size_t i = 0; i < 1024; ++i) {
537 size_t stack_size = 640*1024;
538 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
539
540 pthread_attr_t a;
541 pthread_attr_init(&a);
542 pthread_attr_setstack(&a, stack, stack_size);
543
544 pthread_t t;
545 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
546 ASSERT_EQ(0, pthread_join(t, NULL));
547 ASSERT_EQ(0, munmap(stack, stack_size));
548 }
549 }
550
GetActualGuardSizeFn(void * arg)551 static void* GetActualGuardSizeFn(void* arg) {
552 pthread_attr_t attributes;
553 pthread_getattr_np(pthread_self(), &attributes);
554 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
555 return NULL;
556 }
557
GetActualGuardSize(const pthread_attr_t & attributes)558 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
559 size_t result;
560 pthread_t t;
561 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
562 pthread_join(t, NULL);
563 return result;
564 }
565
GetActualStackSizeFn(void * arg)566 static void* GetActualStackSizeFn(void* arg) {
567 pthread_attr_t attributes;
568 pthread_getattr_np(pthread_self(), &attributes);
569 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
570 return NULL;
571 }
572
GetActualStackSize(const pthread_attr_t & attributes)573 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
574 size_t result;
575 pthread_t t;
576 pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
577 pthread_join(t, NULL);
578 return result;
579 }
580
TEST(pthread,pthread_attr_setguardsize)581 TEST(pthread, pthread_attr_setguardsize) {
582 pthread_attr_t attributes;
583 ASSERT_EQ(0, pthread_attr_init(&attributes));
584
585 // Get the default guard size.
586 size_t default_guard_size;
587 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
588
589 // No such thing as too small: will be rounded up to one page by pthread_create.
590 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
591 size_t guard_size;
592 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
593 ASSERT_EQ(128U, guard_size);
594 ASSERT_EQ(4096U, GetActualGuardSize(attributes));
595
596 // Large enough and a multiple of the page size.
597 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
598 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
599 ASSERT_EQ(32*1024U, guard_size);
600
601 // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
602 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
603 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
604 ASSERT_EQ(32*1024U + 1, guard_size);
605 }
606
TEST(pthread,pthread_attr_setstacksize)607 TEST(pthread, pthread_attr_setstacksize) {
608 pthread_attr_t attributes;
609 ASSERT_EQ(0, pthread_attr_init(&attributes));
610
611 // Get the default stack size.
612 size_t default_stack_size;
613 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
614
615 // Too small.
616 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
617 size_t stack_size;
618 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
619 ASSERT_EQ(default_stack_size, stack_size);
620 ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
621
622 // Large enough and a multiple of the page size; may be rounded up by pthread_create.
623 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
624 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
625 ASSERT_EQ(32*1024U, stack_size);
626 ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
627
628 // Large enough but not aligned; will be rounded up by pthread_create.
629 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
630 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
631 ASSERT_EQ(32*1024U + 1, stack_size);
632 #if defined(__BIONIC__)
633 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
634 #else // __BIONIC__
635 // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
636 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
637 #endif // __BIONIC__
638 }
639
TEST(pthread,pthread_rwlockattr_smoke)640 TEST(pthread, pthread_rwlockattr_smoke) {
641 pthread_rwlockattr_t attr;
642 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
643
644 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
645 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
646 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
647 int pshared;
648 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
649 ASSERT_EQ(pshared_value_array[i], pshared);
650 }
651
652 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
653 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
654 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
655 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
656 int kind;
657 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
658 ASSERT_EQ(kind_array[i], kind);
659 }
660
661 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
662 }
663
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)664 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
665 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
666 pthread_rwlock_t lock2;
667 ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
668 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
669 }
670
TEST(pthread,pthread_rwlock_smoke)671 TEST(pthread, pthread_rwlock_smoke) {
672 pthread_rwlock_t l;
673 ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
674
675 // Single read lock
676 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
677 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
678
679 // Multiple read lock
680 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
681 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
682 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
683 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
684
685 // Write lock
686 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
687 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
688
689 // Try writer lock
690 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
691 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
692 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
693 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
694
695 // Try reader lock
696 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
697 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
698 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
699 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
700 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
701
702 // Try writer lock after unlock
703 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
704 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
705
706 // EDEADLK in "read after write"
707 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
708 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
709 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
710
711 // EDEADLK in "write after write"
712 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
713 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
714 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
715
716 ASSERT_EQ(0, pthread_rwlock_destroy(&l));
717 }
718
719 struct RwlockWakeupHelperArg {
720 pthread_rwlock_t lock;
721 enum Progress {
722 LOCK_INITIALIZED,
723 LOCK_WAITING,
724 LOCK_RELEASED,
725 LOCK_ACCESSED,
726 LOCK_TIMEDOUT,
727 };
728 std::atomic<Progress> progress;
729 std::atomic<pid_t> tid;
730 std::function<int (pthread_rwlock_t*)> trylock_function;
731 std::function<int (pthread_rwlock_t*)> lock_function;
732 std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
733 };
734
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)735 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
736 arg->tid = gettid();
737 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
738 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
739
740 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
741 ASSERT_EQ(0, arg->lock_function(&arg->lock));
742 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
743 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
744
745 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
746 }
747
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)748 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
749 RwlockWakeupHelperArg wakeup_arg;
750 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
751 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
752 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
753 wakeup_arg.tid = 0;
754 wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
755 wakeup_arg.lock_function = lock_function;
756
757 pthread_t thread;
758 ASSERT_EQ(0, pthread_create(&thread, NULL,
759 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
760 WaitUntilThreadSleep(wakeup_arg.tid);
761 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
762
763 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
764 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
765
766 ASSERT_EQ(0, pthread_join(thread, NULL));
767 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
768 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
769 }
770
TEST(pthread,pthread_rwlock_reader_wakeup_writer)771 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
772 test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
773 }
774
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)775 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
776 timespec ts;
777 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
778 ts.tv_sec += 1;
779 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
780 return pthread_rwlock_timedwrlock(lock, &ts);
781 });
782 }
783
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)784 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
785 RwlockWakeupHelperArg wakeup_arg;
786 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
787 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
788 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
789 wakeup_arg.tid = 0;
790 wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
791 wakeup_arg.lock_function = lock_function;
792
793 pthread_t thread;
794 ASSERT_EQ(0, pthread_create(&thread, NULL,
795 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
796 WaitUntilThreadSleep(wakeup_arg.tid);
797 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
798
799 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
800 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
801
802 ASSERT_EQ(0, pthread_join(thread, NULL));
803 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
804 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
805 }
806
TEST(pthread,pthread_rwlock_writer_wakeup_reader)807 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
808 test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
809 }
810
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)811 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
812 timespec ts;
813 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
814 ts.tv_sec += 1;
815 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
816 return pthread_rwlock_timedrdlock(lock, &ts);
817 });
818 }
819
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)820 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
821 arg->tid = gettid();
822 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
823 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
824
825 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
826
827 timespec ts;
828 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
829 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
830 ts.tv_nsec = -1;
831 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
832 ts.tv_nsec = NS_PER_S;
833 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
834 ts.tv_nsec = NS_PER_S - 1;
835 ts.tv_sec = -1;
836 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
837 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
838 ts.tv_sec += 1;
839 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
840 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
841 arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
842 }
843
TEST(pthread,pthread_rwlock_timedrdlock_timeout)844 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
845 RwlockWakeupHelperArg wakeup_arg;
846 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
847 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
848 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
849 wakeup_arg.tid = 0;
850 wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
851 wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock;
852
853 pthread_t thread;
854 ASSERT_EQ(0, pthread_create(&thread, nullptr,
855 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
856 WaitUntilThreadSleep(wakeup_arg.tid);
857 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
858
859 ASSERT_EQ(0, pthread_join(thread, nullptr));
860 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
861 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
862 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
863 }
864
TEST(pthread,pthread_rwlock_timedwrlock_timeout)865 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
866 RwlockWakeupHelperArg wakeup_arg;
867 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
868 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
869 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
870 wakeup_arg.tid = 0;
871 wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
872 wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock;
873
874 pthread_t thread;
875 ASSERT_EQ(0, pthread_create(&thread, nullptr,
876 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
877 WaitUntilThreadSleep(wakeup_arg.tid);
878 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
879
880 ASSERT_EQ(0, pthread_join(thread, nullptr));
881 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
882 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
883 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
884 }
885
886 class RwlockKindTestHelper {
887 private:
888 struct ThreadArg {
889 RwlockKindTestHelper* helper;
890 std::atomic<pid_t>& tid;
891
ThreadArgRwlockKindTestHelper::ThreadArg892 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
893 : helper(helper), tid(tid) { }
894 };
895
896 public:
897 pthread_rwlock_t lock;
898
899 public:
RwlockKindTestHelper(int kind_type)900 RwlockKindTestHelper(int kind_type) {
901 InitRwlock(kind_type);
902 }
903
~RwlockKindTestHelper()904 ~RwlockKindTestHelper() {
905 DestroyRwlock();
906 }
907
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)908 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
909 tid = 0;
910 ThreadArg* arg = new ThreadArg(this, tid);
911 ASSERT_EQ(0, pthread_create(&thread, NULL,
912 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
913 }
914
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)915 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
916 tid = 0;
917 ThreadArg* arg = new ThreadArg(this, tid);
918 ASSERT_EQ(0, pthread_create(&thread, NULL,
919 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
920 }
921
922 private:
InitRwlock(int kind_type)923 void InitRwlock(int kind_type) {
924 pthread_rwlockattr_t attr;
925 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
926 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
927 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
928 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
929 }
930
DestroyRwlock()931 void DestroyRwlock() {
932 ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
933 }
934
WriterThreadFn(ThreadArg * arg)935 static void WriterThreadFn(ThreadArg* arg) {
936 arg->tid = gettid();
937
938 RwlockKindTestHelper* helper = arg->helper;
939 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
940 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
941 delete arg;
942 }
943
ReaderThreadFn(ThreadArg * arg)944 static void ReaderThreadFn(ThreadArg* arg) {
945 arg->tid = gettid();
946
947 RwlockKindTestHelper* helper = arg->helper;
948 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
949 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
950 delete arg;
951 }
952 };
953
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)954 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
955 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
956 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
957
958 pthread_t writer_thread;
959 std::atomic<pid_t> writer_tid;
960 helper.CreateWriterThread(writer_thread, writer_tid);
961 WaitUntilThreadSleep(writer_tid);
962
963 pthread_t reader_thread;
964 std::atomic<pid_t> reader_tid;
965 helper.CreateReaderThread(reader_thread, reader_tid);
966 ASSERT_EQ(0, pthread_join(reader_thread, NULL));
967
968 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
969 ASSERT_EQ(0, pthread_join(writer_thread, NULL));
970 }
971
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)972 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
973 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
974 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
975
976 pthread_t writer_thread;
977 std::atomic<pid_t> writer_tid;
978 helper.CreateWriterThread(writer_thread, writer_tid);
979 WaitUntilThreadSleep(writer_tid);
980
981 pthread_t reader_thread;
982 std::atomic<pid_t> reader_tid;
983 helper.CreateReaderThread(reader_thread, reader_tid);
984 WaitUntilThreadSleep(reader_tid);
985
986 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
987 ASSERT_EQ(0, pthread_join(writer_thread, NULL));
988 ASSERT_EQ(0, pthread_join(reader_thread, NULL));
989 }
990
991 static int g_once_fn_call_count = 0;
OnceFn()992 static void OnceFn() {
993 ++g_once_fn_call_count;
994 }
995
TEST(pthread,pthread_once_smoke)996 TEST(pthread, pthread_once_smoke) {
997 pthread_once_t once_control = PTHREAD_ONCE_INIT;
998 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
999 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1000 ASSERT_EQ(1, g_once_fn_call_count);
1001 }
1002
1003 static std::string pthread_once_1934122_result = "";
1004
Routine2()1005 static void Routine2() {
1006 pthread_once_1934122_result += "2";
1007 }
1008
Routine1()1009 static void Routine1() {
1010 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1011 pthread_once_1934122_result += "1";
1012 pthread_once(&once_control_2, &Routine2);
1013 }
1014
TEST(pthread,pthread_once_1934122)1015 TEST(pthread, pthread_once_1934122) {
1016 // Very old versions of Android couldn't call pthread_once from a
1017 // pthread_once init routine. http://b/1934122.
1018 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1019 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1020 ASSERT_EQ("12", pthread_once_1934122_result);
1021 }
1022
1023 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1024 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1025 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1026 static int g_atfork_parent_calls = 0;
AtForkParent1()1027 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1028 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1029 static int g_atfork_child_calls = 0;
AtForkChild1()1030 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1031 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1032
TEST(pthread,pthread_atfork_smoke)1033 TEST(pthread, pthread_atfork_smoke) {
1034 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1035 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1036
1037 pid_t pid = fork();
1038 ASSERT_NE(-1, pid) << strerror(errno);
1039
1040 // Child and parent calls are made in the order they were registered.
1041 if (pid == 0) {
1042 ASSERT_EQ(12, g_atfork_child_calls);
1043 _exit(0);
1044 }
1045 ASSERT_EQ(12, g_atfork_parent_calls);
1046
1047 // Prepare calls are made in the reverse order.
1048 ASSERT_EQ(21, g_atfork_prepare_calls);
1049 AssertChildExited(pid, 0);
1050 }
1051
TEST(pthread,pthread_attr_getscope)1052 TEST(pthread, pthread_attr_getscope) {
1053 pthread_attr_t attr;
1054 ASSERT_EQ(0, pthread_attr_init(&attr));
1055
1056 int scope;
1057 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1058 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1059 }
1060
TEST(pthread,pthread_condattr_init)1061 TEST(pthread, pthread_condattr_init) {
1062 pthread_condattr_t attr;
1063 pthread_condattr_init(&attr);
1064
1065 clockid_t clock;
1066 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1067 ASSERT_EQ(CLOCK_REALTIME, clock);
1068
1069 int pshared;
1070 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1071 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1072 }
1073
TEST(pthread,pthread_condattr_setclock)1074 TEST(pthread, pthread_condattr_setclock) {
1075 pthread_condattr_t attr;
1076 pthread_condattr_init(&attr);
1077
1078 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1079 clockid_t clock;
1080 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1081 ASSERT_EQ(CLOCK_REALTIME, clock);
1082
1083 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1084 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1085 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1086
1087 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1088 }
1089
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1090 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1091 #if defined(__BIONIC__)
1092 pthread_condattr_t attr;
1093 pthread_condattr_init(&attr);
1094
1095 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1096 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1097
1098 pthread_cond_t cond_var;
1099 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1100
1101 ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1102 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1103
1104 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1105 clockid_t clock;
1106 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1107 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1108 int pshared;
1109 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1110 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1111 #else // !defined(__BIONIC__)
1112 GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1113 #endif // !defined(__BIONIC__)
1114 }
1115
1116 class pthread_CondWakeupTest : public ::testing::Test {
1117 protected:
1118 pthread_mutex_t mutex;
1119 pthread_cond_t cond;
1120
1121 enum Progress {
1122 INITIALIZED,
1123 WAITING,
1124 SIGNALED,
1125 FINISHED,
1126 };
1127 std::atomic<Progress> progress;
1128 pthread_t thread;
1129 std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1130
1131 protected:
SetUp()1132 void SetUp() override {
1133 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1134 }
1135
InitCond(clockid_t clock=CLOCK_REALTIME)1136 void InitCond(clockid_t clock=CLOCK_REALTIME) {
1137 pthread_condattr_t attr;
1138 ASSERT_EQ(0, pthread_condattr_init(&attr));
1139 ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1140 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1141 ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1142 }
1143
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1144 void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1145 progress = INITIALIZED;
1146 this->wait_function = wait_function;
1147 ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1148 while (progress != WAITING) {
1149 usleep(5000);
1150 }
1151 usleep(5000);
1152 }
1153
TearDown()1154 void TearDown() override {
1155 ASSERT_EQ(0, pthread_join(thread, nullptr));
1156 ASSERT_EQ(FINISHED, progress);
1157 ASSERT_EQ(0, pthread_cond_destroy(&cond));
1158 ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1159 }
1160
1161 private:
WaitThreadFn(pthread_CondWakeupTest * test)1162 static void WaitThreadFn(pthread_CondWakeupTest* test) {
1163 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1164 test->progress = WAITING;
1165 while (test->progress == WAITING) {
1166 ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1167 }
1168 ASSERT_EQ(SIGNALED, test->progress);
1169 test->progress = FINISHED;
1170 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1171 }
1172 };
1173
TEST_F(pthread_CondWakeupTest,signal_wait)1174 TEST_F(pthread_CondWakeupTest, signal_wait) {
1175 InitCond();
1176 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1177 return pthread_cond_wait(cond, mutex);
1178 });
1179 progress = SIGNALED;
1180 ASSERT_EQ(0, pthread_cond_signal(&cond));
1181 }
1182
TEST_F(pthread_CondWakeupTest,broadcast_wait)1183 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1184 InitCond();
1185 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1186 return pthread_cond_wait(cond, mutex);
1187 });
1188 progress = SIGNALED;
1189 ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1190 }
1191
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1192 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1193 InitCond(CLOCK_REALTIME);
1194 timespec ts;
1195 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1196 ts.tv_sec += 1;
1197 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1198 return pthread_cond_timedwait(cond, mutex, &ts);
1199 });
1200 progress = SIGNALED;
1201 ASSERT_EQ(0, pthread_cond_signal(&cond));
1202 }
1203
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1204 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1205 InitCond(CLOCK_MONOTONIC);
1206 timespec ts;
1207 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1208 ts.tv_sec += 1;
1209 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1210 return pthread_cond_timedwait(cond, mutex, &ts);
1211 });
1212 progress = SIGNALED;
1213 ASSERT_EQ(0, pthread_cond_signal(&cond));
1214 }
1215
TEST(pthread,pthread_cond_timedwait_timeout)1216 TEST(pthread, pthread_cond_timedwait_timeout) {
1217 pthread_mutex_t mutex;
1218 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1219 pthread_cond_t cond;
1220 ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1221 ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1222 timespec ts;
1223 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1224 ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1225 ts.tv_nsec = -1;
1226 ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1227 ts.tv_nsec = NS_PER_S;
1228 ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1229 ts.tv_nsec = NS_PER_S - 1;
1230 ts.tv_sec = -1;
1231 ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1232 ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1233 }
1234
TEST(pthread,pthread_attr_getstack__main_thread)1235 TEST(pthread, pthread_attr_getstack__main_thread) {
1236 // This test is only meaningful for the main thread, so make sure we're running on it!
1237 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1238
1239 // Get the main thread's attributes.
1240 pthread_attr_t attributes;
1241 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1242
1243 // Check that we correctly report that the main thread has no guard page.
1244 size_t guard_size;
1245 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1246 ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1247
1248 // Get the stack base and the stack size (both ways).
1249 void* stack_base;
1250 size_t stack_size;
1251 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1252 size_t stack_size2;
1253 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1254
1255 // The two methods of asking for the stack size should agree.
1256 EXPECT_EQ(stack_size, stack_size2);
1257
1258 #if defined(__BIONIC__)
1259 // What does /proc/self/maps' [stack] line say?
1260 void* maps_stack_hi = NULL;
1261 std::vector<map_record> maps;
1262 ASSERT_TRUE(Maps::parse_maps(&maps));
1263 for (const auto& map : maps) {
1264 if (map.pathname == "[stack]") {
1265 maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1266 break;
1267 }
1268 }
1269
1270 // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1271 // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1272 // region isn't very interesting.
1273 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1274
1275 // The stack size should correspond to RLIMIT_STACK.
1276 rlimit rl;
1277 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1278 uint64_t original_rlim_cur = rl.rlim_cur;
1279 if (rl.rlim_cur == RLIM_INFINITY) {
1280 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1281 }
1282 EXPECT_EQ(rl.rlim_cur, stack_size);
1283
1284 auto guard = make_scope_guard([&rl, original_rlim_cur]() {
1285 rl.rlim_cur = original_rlim_cur;
1286 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1287 });
1288
1289 //
1290 // What if RLIMIT_STACK is smaller than the stack's current extent?
1291 //
1292 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1293 rl.rlim_max = RLIM_INFINITY;
1294 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1295
1296 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1297 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1298 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1299
1300 EXPECT_EQ(stack_size, stack_size2);
1301 ASSERT_EQ(1024U, stack_size);
1302
1303 //
1304 // What if RLIMIT_STACK isn't a whole number of pages?
1305 //
1306 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1307 rl.rlim_max = RLIM_INFINITY;
1308 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1309
1310 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1311 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1312 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1313
1314 EXPECT_EQ(stack_size, stack_size2);
1315 ASSERT_EQ(6666U, stack_size);
1316 #endif
1317 }
1318
1319 struct GetStackSignalHandlerArg {
1320 volatile bool done;
1321 void* signal_handler_sp;
1322 void* main_stack_base;
1323 size_t main_stack_size;
1324 };
1325
1326 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1327
getstack_signal_handler(int sig)1328 static void getstack_signal_handler(int sig) {
1329 ASSERT_EQ(SIGUSR1, sig);
1330 // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1331 sleep(1);
1332 pthread_attr_t attr;
1333 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1334 void* stack_base;
1335 size_t stack_size;
1336 ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1337 getstack_signal_handler_arg.signal_handler_sp = &attr;
1338 getstack_signal_handler_arg.main_stack_base = stack_base;
1339 getstack_signal_handler_arg.main_stack_size = stack_size;
1340 getstack_signal_handler_arg.done = true;
1341 }
1342
1343 // The previous code obtained the main thread's stack by reading the entry in
1344 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1345 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1346 // switches a process while the main thread is in an alternate stack, then the kernel will label
1347 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1348 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1349 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1350 // This test is only meaningful for the main thread, so make sure we're running on it!
1351 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1352
1353 const size_t sig_stack_size = 16 * 1024;
1354 void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1355 -1, 0);
1356 ASSERT_NE(MAP_FAILED, sig_stack);
1357 stack_t ss;
1358 ss.ss_sp = sig_stack;
1359 ss.ss_size = sig_stack_size;
1360 ss.ss_flags = 0;
1361 stack_t oss;
1362 ASSERT_EQ(0, sigaltstack(&ss, &oss));
1363
1364 pthread_attr_t attr;
1365 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1366 void* main_stack_base;
1367 size_t main_stack_size;
1368 ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1369
1370 ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1371 getstack_signal_handler_arg.done = false;
1372 kill(getpid(), SIGUSR1);
1373 ASSERT_EQ(true, getstack_signal_handler_arg.done);
1374
1375 // Verify if the stack used by the signal handler is the alternate stack just registered.
1376 ASSERT_LE(sig_stack, getstack_signal_handler_arg.signal_handler_sp);
1377 ASSERT_GE(reinterpret_cast<char*>(sig_stack) + sig_stack_size,
1378 getstack_signal_handler_arg.signal_handler_sp);
1379
1380 // Verify if the main thread's stack got in the signal handler is correct.
1381 ASSERT_EQ(main_stack_base, getstack_signal_handler_arg.main_stack_base);
1382 ASSERT_LE(main_stack_size, getstack_signal_handler_arg.main_stack_size);
1383
1384 ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1385 ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1386 }
1387
pthread_attr_getstack_18908062_helper(void *)1388 static void pthread_attr_getstack_18908062_helper(void*) {
1389 char local_variable;
1390 pthread_attr_t attributes;
1391 pthread_getattr_np(pthread_self(), &attributes);
1392 void* stack_base;
1393 size_t stack_size;
1394 pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1395
1396 // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1397 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1398 ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1399 }
1400
1401 // Check whether something on stack is in the range of
1402 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1403 TEST(pthread, pthread_attr_getstack_18908062) {
1404 pthread_t t;
1405 ASSERT_EQ(0, pthread_create(&t, NULL,
1406 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1407 NULL));
1408 pthread_join(t, NULL);
1409 }
1410
1411 #if defined(__BIONIC__)
1412 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1413
pthread_gettid_np_helper(void * arg)1414 static void* pthread_gettid_np_helper(void* arg) {
1415 *reinterpret_cast<pid_t*>(arg) = gettid();
1416
1417 // Wait for our parent to call pthread_gettid_np on us before exiting.
1418 pthread_mutex_lock(&pthread_gettid_np_mutex);
1419 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1420 return NULL;
1421 }
1422 #endif
1423
TEST(pthread,pthread_gettid_np)1424 TEST(pthread, pthread_gettid_np) {
1425 #if defined(__BIONIC__)
1426 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1427
1428 // Ensure the other thread doesn't exit until after we've called
1429 // pthread_gettid_np on it.
1430 pthread_mutex_lock(&pthread_gettid_np_mutex);
1431
1432 pid_t t_gettid_result;
1433 pthread_t t;
1434 pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1435
1436 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1437
1438 // Release the other thread and wait for it to exit.
1439 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1440 pthread_join(t, NULL);
1441
1442 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1443 #else
1444 GTEST_LOG_(INFO) << "This test does nothing.\n";
1445 #endif
1446 }
1447
1448 static size_t cleanup_counter = 0;
1449
AbortCleanupRoutine(void *)1450 static void AbortCleanupRoutine(void*) {
1451 abort();
1452 }
1453
CountCleanupRoutine(void *)1454 static void CountCleanupRoutine(void*) {
1455 ++cleanup_counter;
1456 }
1457
PthreadCleanupTester()1458 static void PthreadCleanupTester() {
1459 pthread_cleanup_push(CountCleanupRoutine, NULL);
1460 pthread_cleanup_push(CountCleanupRoutine, NULL);
1461 pthread_cleanup_push(AbortCleanupRoutine, NULL);
1462
1463 pthread_cleanup_pop(0); // Pop the abort without executing it.
1464 pthread_cleanup_pop(1); // Pop one count while executing it.
1465 ASSERT_EQ(1U, cleanup_counter);
1466 // Exit while the other count is still on the cleanup stack.
1467 pthread_exit(NULL);
1468
1469 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1470 pthread_cleanup_pop(0);
1471 }
1472
PthreadCleanupStartRoutine(void *)1473 static void* PthreadCleanupStartRoutine(void*) {
1474 PthreadCleanupTester();
1475 return NULL;
1476 }
1477
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1478 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1479 pthread_t t;
1480 ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1481 pthread_join(t, NULL);
1482 ASSERT_EQ(2U, cleanup_counter);
1483 }
1484
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1485 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1486 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1487 }
1488
TEST(pthread,pthread_mutexattr_gettype)1489 TEST(pthread, pthread_mutexattr_gettype) {
1490 pthread_mutexattr_t attr;
1491 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1492
1493 int attr_type;
1494
1495 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1496 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1497 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1498
1499 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1500 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1501 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1502
1503 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1504 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1505 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1506
1507 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1508 }
1509
1510 struct PthreadMutex {
1511 pthread_mutex_t lock;
1512
PthreadMutexPthreadMutex1513 PthreadMutex(int mutex_type) {
1514 init(mutex_type);
1515 }
1516
~PthreadMutexPthreadMutex1517 ~PthreadMutex() {
1518 destroy();
1519 }
1520
1521 private:
initPthreadMutex1522 void init(int mutex_type) {
1523 pthread_mutexattr_t attr;
1524 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1525 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1526 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1527 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1528 }
1529
destroyPthreadMutex1530 void destroy() {
1531 ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1532 }
1533
1534 DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1535 };
1536
TEST(pthread,pthread_mutex_lock_NORMAL)1537 TEST(pthread, pthread_mutex_lock_NORMAL) {
1538 PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1539
1540 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1541 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1542 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1543 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1544 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1545 }
1546
TEST(pthread,pthread_mutex_lock_ERRORCHECK)1547 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1548 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1549
1550 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1551 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1552 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1553 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1554 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1555 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1556 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1557 }
1558
TEST(pthread,pthread_mutex_lock_RECURSIVE)1559 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1560 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1561
1562 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1563 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1564 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1565 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1566 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1567 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1568 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1569 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1570 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1571 }
1572
TEST(pthread,pthread_mutex_init_same_as_static_initializers)1573 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1574 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1575 PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1576 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1577 pthread_mutex_destroy(&lock_normal);
1578
1579 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1580 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1581 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1582 pthread_mutex_destroy(&lock_errorcheck);
1583
1584 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1585 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1586 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1587 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1588 }
1589 class MutexWakeupHelper {
1590 private:
1591 PthreadMutex m;
1592 enum Progress {
1593 LOCK_INITIALIZED,
1594 LOCK_WAITING,
1595 LOCK_RELEASED,
1596 LOCK_ACCESSED
1597 };
1598 std::atomic<Progress> progress;
1599 std::atomic<pid_t> tid;
1600
thread_fn(MutexWakeupHelper * helper)1601 static void thread_fn(MutexWakeupHelper* helper) {
1602 helper->tid = gettid();
1603 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1604 helper->progress = LOCK_WAITING;
1605
1606 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1607 ASSERT_EQ(LOCK_RELEASED, helper->progress);
1608 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1609
1610 helper->progress = LOCK_ACCESSED;
1611 }
1612
1613 public:
MutexWakeupHelper(int mutex_type)1614 MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1615 }
1616
test()1617 void test() {
1618 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1619 progress = LOCK_INITIALIZED;
1620 tid = 0;
1621
1622 pthread_t thread;
1623 ASSERT_EQ(0, pthread_create(&thread, NULL,
1624 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1625
1626 WaitUntilThreadSleep(tid);
1627 ASSERT_EQ(LOCK_WAITING, progress);
1628
1629 progress = LOCK_RELEASED;
1630 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1631
1632 ASSERT_EQ(0, pthread_join(thread, NULL));
1633 ASSERT_EQ(LOCK_ACCESSED, progress);
1634 }
1635 };
1636
TEST(pthread,pthread_mutex_NORMAL_wakeup)1637 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1638 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1639 helper.test();
1640 }
1641
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)1642 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1643 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1644 helper.test();
1645 }
1646
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)1647 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1648 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1649 helper.test();
1650 }
1651
TEST(pthread,pthread_mutex_owner_tid_limit)1652 TEST(pthread, pthread_mutex_owner_tid_limit) {
1653 #if defined(__BIONIC__) && !defined(__LP64__)
1654 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1655 ASSERT_TRUE(fp != NULL);
1656 long pid_max;
1657 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1658 fclose(fp);
1659 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1660 ASSERT_LE(pid_max, 65536);
1661 #else
1662 GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1663 #endif
1664 }
1665
TEST(pthread,pthread_mutex_timedlock)1666 TEST(pthread, pthread_mutex_timedlock) {
1667 pthread_mutex_t m;
1668 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
1669
1670 // If the mutex is already locked, pthread_mutex_timedlock should time out.
1671 ASSERT_EQ(0, pthread_mutex_lock(&m));
1672
1673 timespec ts;
1674 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1675 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1676 ts.tv_nsec = -1;
1677 ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1678 ts.tv_nsec = NS_PER_S;
1679 ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1680 ts.tv_nsec = NS_PER_S - 1;
1681 ts.tv_sec = -1;
1682 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1683
1684 // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1685 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1686
1687 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1688 ts.tv_sec += 1;
1689 ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1690
1691 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1692 ASSERT_EQ(0, pthread_mutex_destroy(&m));
1693 }
1694
1695 class StrictAlignmentAllocator {
1696 public:
allocate(size_t size,size_t alignment)1697 void* allocate(size_t size, size_t alignment) {
1698 char* p = new char[size + alignment * 2];
1699 allocated_array.push_back(p);
1700 while (!is_strict_aligned(p, alignment)) {
1701 ++p;
1702 }
1703 return p;
1704 }
1705
~StrictAlignmentAllocator()1706 ~StrictAlignmentAllocator() {
1707 for (const auto& p : allocated_array) {
1708 delete[] p;
1709 }
1710 }
1711
1712 private:
is_strict_aligned(char * p,size_t alignment)1713 bool is_strict_aligned(char* p, size_t alignment) {
1714 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1715 }
1716
1717 std::vector<char*> allocated_array;
1718 };
1719
TEST(pthread,pthread_types_allow_four_bytes_alignment)1720 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1721 #if defined(__BIONIC__)
1722 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1723 StrictAlignmentAllocator allocator;
1724 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1725 allocator.allocate(sizeof(pthread_mutex_t), 4));
1726 ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1727 ASSERT_EQ(0, pthread_mutex_lock(mutex));
1728 ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1729 ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1730
1731 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1732 allocator.allocate(sizeof(pthread_cond_t), 4));
1733 ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1734 ASSERT_EQ(0, pthread_cond_signal(cond));
1735 ASSERT_EQ(0, pthread_cond_broadcast(cond));
1736 ASSERT_EQ(0, pthread_cond_destroy(cond));
1737
1738 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1739 allocator.allocate(sizeof(pthread_rwlock_t), 4));
1740 ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1741 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1742 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1743 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1744 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1745 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1746
1747 #else
1748 GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1749 #endif
1750 }
1751
TEST(pthread,pthread_mutex_lock_null_32)1752 TEST(pthread, pthread_mutex_lock_null_32) {
1753 #if defined(__BIONIC__) && !defined(__LP64__)
1754 ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
1755 #else
1756 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1757 #endif
1758 }
1759
TEST(pthread,pthread_mutex_unlock_null_32)1760 TEST(pthread, pthread_mutex_unlock_null_32) {
1761 #if defined(__BIONIC__) && !defined(__LP64__)
1762 ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
1763 #else
1764 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1765 #endif
1766 }
1767
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)1768 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1769 #if defined(__BIONIC__) && defined(__LP64__)
1770 pthread_mutex_t* null_value = nullptr;
1771 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1772 #else
1773 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1774 #endif
1775 }
1776
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)1777 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1778 #if defined(__BIONIC__) && defined(__LP64__)
1779 pthread_mutex_t* null_value = nullptr;
1780 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1781 #else
1782 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1783 #endif
1784 }
1785
1786 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
1787
1788 static volatile bool signal_handler_on_altstack_done;
1789
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)1790 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
1791 ASSERT_EQ(SIGUSR1, signo);
1792 // Check if we have enough stack space for unwinding.
1793 int count = 0;
1794 _Unwind_Backtrace(FrameCounter, &count);
1795 ASSERT_GT(count, 0);
1796 // Check if we have enough stack space for logging.
1797 std::string s(2048, '*');
1798 GTEST_LOG_(INFO) << s;
1799 signal_handler_on_altstack_done = true;
1800 }
1801
TEST(pthread,big_enough_signal_stack_for_64bit_arch)1802 TEST(pthread, big_enough_signal_stack_for_64bit_arch) {
1803 signal_handler_on_altstack_done = false;
1804 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
1805 kill(getpid(), SIGUSR1);
1806 ASSERT_TRUE(signal_handler_on_altstack_done);
1807 }
1808
TEST(pthread,pthread_barrierattr_smoke)1809 TEST(pthread, pthread_barrierattr_smoke) {
1810 pthread_barrierattr_t attr;
1811 ASSERT_EQ(0, pthread_barrierattr_init(&attr));
1812 int pshared;
1813 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1814 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1815 ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1816 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1817 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1818 ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
1819 }
1820
1821 struct BarrierTestHelperData {
1822 size_t thread_count;
1823 pthread_barrier_t barrier;
1824 std::atomic<int> finished_mask;
1825 std::atomic<int> serial_thread_count;
1826 size_t iteration_count;
1827 std::atomic<size_t> finished_iteration_count;
1828
BarrierTestHelperDataBarrierTestHelperData1829 BarrierTestHelperData(size_t thread_count, size_t iteration_count)
1830 : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
1831 iteration_count(iteration_count), finished_iteration_count(0) {
1832 }
1833 };
1834
1835 struct BarrierTestHelperArg {
1836 int id;
1837 BarrierTestHelperData* data;
1838 };
1839
BarrierTestHelper(BarrierTestHelperArg * arg)1840 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
1841 for (size_t i = 0; i < arg->data->iteration_count; ++i) {
1842 int result = pthread_barrier_wait(&arg->data->barrier);
1843 if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
1844 arg->data->serial_thread_count++;
1845 } else {
1846 ASSERT_EQ(0, result);
1847 }
1848 arg->data->finished_mask |= (1 << arg->id);
1849 if (arg->data->finished_mask == ((1 << arg->data->thread_count) - 1)) {
1850 ASSERT_EQ(1, arg->data->serial_thread_count);
1851 arg->data->finished_iteration_count++;
1852 arg->data->finished_mask = 0;
1853 arg->data->serial_thread_count = 0;
1854 }
1855 }
1856 }
1857
TEST(pthread,pthread_barrier_smoke)1858 TEST(pthread, pthread_barrier_smoke) {
1859 const size_t BARRIER_ITERATION_COUNT = 10;
1860 const size_t BARRIER_THREAD_COUNT = 10;
1861 BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
1862 ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
1863 std::vector<pthread_t> threads(data.thread_count);
1864 std::vector<BarrierTestHelperArg> args(threads.size());
1865 for (size_t i = 0; i < threads.size(); ++i) {
1866 args[i].id = i;
1867 args[i].data = &data;
1868 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1869 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
1870 }
1871 for (size_t i = 0; i < threads.size(); ++i) {
1872 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1873 }
1874 ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
1875 ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
1876 }
1877
1878 struct BarrierDestroyTestArg {
1879 std::atomic<int> tid;
1880 pthread_barrier_t* barrier;
1881 };
1882
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)1883 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
1884 arg->tid = gettid();
1885 ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
1886 }
1887
TEST(pthread,pthread_barrier_destroy)1888 TEST(pthread, pthread_barrier_destroy) {
1889 pthread_barrier_t barrier;
1890 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
1891 pthread_t thread;
1892 BarrierDestroyTestArg arg;
1893 arg.tid = 0;
1894 arg.barrier = &barrier;
1895 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1896 reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
1897 WaitUntilThreadSleep(arg.tid);
1898 ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
1899 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
1900 // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
1901 ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
1902 ASSERT_EQ(0, pthread_join(thread, nullptr));
1903 #if defined(__BIONIC__)
1904 ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
1905 #endif
1906 }
1907
1908 struct BarrierOrderingTestHelperArg {
1909 pthread_barrier_t* barrier;
1910 size_t* array;
1911 size_t array_length;
1912 size_t id;
1913 };
1914
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)1915 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
1916 const size_t ITERATION_COUNT = 10000;
1917 for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
1918 arg->array[arg->id] = i;
1919 int result = pthread_barrier_wait(arg->barrier);
1920 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
1921 for (size_t j = 0; j < arg->array_length; ++j) {
1922 ASSERT_EQ(i, arg->array[j]);
1923 }
1924 result = pthread_barrier_wait(arg->barrier);
1925 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
1926 }
1927 }
1928
TEST(pthread,pthread_barrier_check_ordering)1929 TEST(pthread, pthread_barrier_check_ordering) {
1930 const size_t THREAD_COUNT = 4;
1931 pthread_barrier_t barrier;
1932 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
1933 size_t array[THREAD_COUNT];
1934 std::vector<pthread_t> threads(THREAD_COUNT);
1935 std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
1936 for (size_t i = 0; i < THREAD_COUNT; ++i) {
1937 args[i].barrier = &barrier;
1938 args[i].array = array;
1939 args[i].array_length = THREAD_COUNT;
1940 args[i].id = i;
1941 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1942 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
1943 &args[i]));
1944 }
1945 for (size_t i = 0; i < THREAD_COUNT; ++i) {
1946 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1947 }
1948 }
1949
TEST(pthread,pthread_spinlock_smoke)1950 TEST(pthread, pthread_spinlock_smoke) {
1951 pthread_spinlock_t lock;
1952 ASSERT_EQ(0, pthread_spin_init(&lock, 0));
1953 ASSERT_EQ(0, pthread_spin_trylock(&lock));
1954 ASSERT_EQ(0, pthread_spin_unlock(&lock));
1955 ASSERT_EQ(0, pthread_spin_lock(&lock));
1956 ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
1957 ASSERT_EQ(0, pthread_spin_unlock(&lock));
1958 ASSERT_EQ(0, pthread_spin_destroy(&lock));
1959 }
1960