1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Implementation notes:
6 //
7 // We need to remove a piece from the ELF shared library. However, we also
8 // want to avoid fixing DWARF cfi data and relative relocation addresses.
9 // So after packing we shift offets and starting address of the RX segment
10 // while preserving code/data vaddrs location.
11 // This requires some fixups for symtab/hash/gnu_hash dynamic section addresses.
12
13 #include "elf_file.h"
14
15 #include <stdlib.h>
16 #include <sys/types.h>
17 #include <unistd.h>
18 #include <algorithm>
19 #include <string>
20 #include <vector>
21
22 #include "debug.h"
23 #include "elf_traits.h"
24 #include "libelf.h"
25 #include "packer.h"
26
27 namespace relocation_packer {
28
29 // Out-of-band dynamic tags used to indicate the offset and size of the
30 // android packed relocations section.
31 static constexpr int32_t DT_ANDROID_REL = DT_LOOS + 2;
32 static constexpr int32_t DT_ANDROID_RELSZ = DT_LOOS + 3;
33
34 static constexpr int32_t DT_ANDROID_RELA = DT_LOOS + 4;
35 static constexpr int32_t DT_ANDROID_RELASZ = DT_LOOS + 5;
36
37 static constexpr uint32_t SHT_ANDROID_REL = SHT_LOOS + 1;
38 static constexpr uint32_t SHT_ANDROID_RELA = SHT_LOOS + 2;
39
40 static const size_t kPageSize = 4096;
41
42 // Alignment to preserve, in bytes. This must be at least as large as the
43 // largest d_align and sh_addralign values found in the loaded file.
44 // Out of caution for RELRO page alignment, we preserve to a complete target
45 // page. See http://www.airs.com/blog/archives/189.
46 static const size_t kPreserveAlignment = kPageSize;
47
48 // Get section data. Checks that the section has exactly one data entry,
49 // so that the section size and the data size are the same. True in
50 // practice for all sections we resize when packing or unpacking. Done
51 // by ensuring that a call to elf_getdata(section, data) returns NULL as
52 // the next data entry.
GetSectionData(Elf_Scn * section)53 static Elf_Data* GetSectionData(Elf_Scn* section) {
54 Elf_Data* data = elf_getdata(section, NULL);
55 CHECK(data && elf_getdata(section, data) == NULL);
56 return data;
57 }
58
59 // Rewrite section data. Allocates new data and makes it the data element's
60 // buffer. Relies on program exit to free allocated data.
RewriteSectionData(Elf_Scn * section,const void * section_data,size_t size)61 static void RewriteSectionData(Elf_Scn* section,
62 const void* section_data,
63 size_t size) {
64 Elf_Data* data = GetSectionData(section);
65 CHECK(size == data->d_size);
66 uint8_t* area = new uint8_t[size];
67 memcpy(area, section_data, size);
68 data->d_buf = area;
69 }
70
71 // Verbose ELF header logging.
72 template <typename Ehdr>
VerboseLogElfHeader(const Ehdr * elf_header)73 static void VerboseLogElfHeader(const Ehdr* elf_header) {
74 VLOG(1) << "e_phoff = " << elf_header->e_phoff;
75 VLOG(1) << "e_shoff = " << elf_header->e_shoff;
76 VLOG(1) << "e_ehsize = " << elf_header->e_ehsize;
77 VLOG(1) << "e_phentsize = " << elf_header->e_phentsize;
78 VLOG(1) << "e_phnum = " << elf_header->e_phnum;
79 VLOG(1) << "e_shnum = " << elf_header->e_shnum;
80 VLOG(1) << "e_shstrndx = " << elf_header->e_shstrndx;
81 }
82
83 // Verbose ELF program header logging.
84 template <typename Phdr>
VerboseLogProgramHeader(size_t program_header_index,const Phdr * program_header)85 static void VerboseLogProgramHeader(size_t program_header_index,
86 const Phdr* program_header) {
87 std::string type;
88 switch (program_header->p_type) {
89 case PT_NULL: type = "NULL"; break;
90 case PT_LOAD: type = "LOAD"; break;
91 case PT_DYNAMIC: type = "DYNAMIC"; break;
92 case PT_INTERP: type = "INTERP"; break;
93 case PT_PHDR: type = "PHDR"; break;
94 case PT_GNU_RELRO: type = "GNU_RELRO"; break;
95 case PT_GNU_STACK: type = "GNU_STACK"; break;
96 case PT_ARM_EXIDX: type = "EXIDX"; break;
97 default: type = "(OTHER)"; break;
98 }
99 VLOG(1) << "phdr[" << program_header_index << "] : " << type;
100 VLOG(1) << " p_offset = " << program_header->p_offset;
101 VLOG(1) << " p_vaddr = " << program_header->p_vaddr;
102 VLOG(1) << " p_paddr = " << program_header->p_paddr;
103 VLOG(1) << " p_filesz = " << program_header->p_filesz;
104 VLOG(1) << " p_memsz = " << program_header->p_memsz;
105 VLOG(1) << " p_flags = " << program_header->p_flags;
106 VLOG(1) << " p_align = " << program_header->p_align;
107 }
108
109 // Verbose ELF section header logging.
110 template <typename Shdr>
VerboseLogSectionHeader(const std::string & section_name,const Shdr * section_header)111 static void VerboseLogSectionHeader(const std::string& section_name,
112 const Shdr* section_header) {
113 VLOG(1) << "section " << section_name;
114 VLOG(1) << " sh_addr = " << section_header->sh_addr;
115 VLOG(1) << " sh_offset = " << section_header->sh_offset;
116 VLOG(1) << " sh_size = " << section_header->sh_size;
117 VLOG(1) << " sh_entsize = " << section_header->sh_entsize;
118 VLOG(1) << " sh_addralign = " << section_header->sh_addralign;
119 }
120
121 // Verbose ELF section data logging.
VerboseLogSectionData(const Elf_Data * data)122 static void VerboseLogSectionData(const Elf_Data* data) {
123 VLOG(1) << " data";
124 VLOG(1) << " d_buf = " << data->d_buf;
125 VLOG(1) << " d_off = " << data->d_off;
126 VLOG(1) << " d_size = " << data->d_size;
127 VLOG(1) << " d_align = " << data->d_align;
128 }
129
130 // Load the complete ELF file into a memory image in libelf, and identify
131 // the .rel.dyn or .rela.dyn, .dynamic, and .android.rel.dyn or
132 // .android.rela.dyn sections. No-op if the ELF file has already been loaded.
133 template <typename ELF>
Load()134 bool ElfFile<ELF>::Load() {
135 if (elf_)
136 return true;
137
138 Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL);
139 CHECK(elf);
140
141 if (elf_kind(elf) != ELF_K_ELF) {
142 LOG(ERROR) << "File not in ELF format";
143 return false;
144 }
145
146 auto elf_header = ELF::getehdr(elf);
147 if (!elf_header) {
148 LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno());
149 return false;
150 }
151
152 if (elf_header->e_type != ET_DYN) {
153 LOG(ERROR) << "ELF file is not a shared object";
154 return false;
155 }
156
157 // Require that our endianness matches that of the target, and that both
158 // are little-endian. Safe for all current build/target combinations.
159 const int endian = elf_header->e_ident[EI_DATA];
160 CHECK(endian == ELFDATA2LSB);
161 CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
162
163 const int file_class = elf_header->e_ident[EI_CLASS];
164 VLOG(1) << "endian = " << endian << ", file class = " << file_class;
165 VerboseLogElfHeader(elf_header);
166
167 auto elf_program_header = ELF::getphdr(elf);
168 CHECK(elf_program_header != nullptr);
169
170 const typename ELF::Phdr* dynamic_program_header = NULL;
171 for (size_t i = 0; i < elf_header->e_phnum; ++i) {
172 auto program_header = &elf_program_header[i];
173 VerboseLogProgramHeader(i, program_header);
174
175 if (program_header->p_type == PT_DYNAMIC) {
176 CHECK(dynamic_program_header == NULL);
177 dynamic_program_header = program_header;
178 }
179 }
180 CHECK(dynamic_program_header != nullptr);
181
182 size_t string_index;
183 elf_getshdrstrndx(elf, &string_index);
184
185 // Notes of the dynamic relocations, packed relocations, and .dynamic
186 // sections. Found while iterating sections, and later stored in class
187 // attributes.
188 Elf_Scn* found_relocations_section = nullptr;
189 Elf_Scn* found_dynamic_section = nullptr;
190
191 // Notes of relocation section types seen. We require one or the other of
192 // these; both is unsupported.
193 bool has_rel_relocations = false;
194 bool has_rela_relocations = false;
195 bool has_android_relocations = false;
196
197 Elf_Scn* section = NULL;
198 while ((section = elf_nextscn(elf, section)) != nullptr) {
199 auto section_header = ELF::getshdr(section);
200 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
201 VerboseLogSectionHeader(name, section_header);
202
203 // Note relocation section types.
204 if (section_header->sh_type == SHT_REL || section_header->sh_type == SHT_ANDROID_REL) {
205 has_rel_relocations = true;
206 }
207 if (section_header->sh_type == SHT_RELA || section_header->sh_type == SHT_ANDROID_RELA) {
208 has_rela_relocations = true;
209 }
210
211 // Note special sections as we encounter them.
212 if ((name == ".rel.dyn" || name == ".rela.dyn") &&
213 section_header->sh_size > 0) {
214 found_relocations_section = section;
215
216 // Note if relocation section is already packed
217 has_android_relocations =
218 section_header->sh_type == SHT_ANDROID_REL ||
219 section_header->sh_type == SHT_ANDROID_RELA;
220 }
221
222 if (section_header->sh_offset == dynamic_program_header->p_offset) {
223 found_dynamic_section = section;
224 }
225
226 // Ensure we preserve alignment, repeated later for the data block(s).
227 CHECK(section_header->sh_addralign <= kPreserveAlignment);
228
229 Elf_Data* data = NULL;
230 while ((data = elf_getdata(section, data)) != NULL) {
231 CHECK(data->d_align <= kPreserveAlignment);
232 VerboseLogSectionData(data);
233 }
234 }
235
236 // Loading failed if we did not find the required special sections.
237 if (!found_relocations_section) {
238 LOG(ERROR) << "Missing or empty .rel.dyn or .rela.dyn section";
239 return false;
240 }
241 if (!found_dynamic_section) {
242 LOG(ERROR) << "Missing .dynamic section";
243 return false;
244 }
245
246 // Loading failed if we could not identify the relocations type.
247 if (!has_rel_relocations && !has_rela_relocations) {
248 LOG(ERROR) << "No relocations sections found";
249 return false;
250 }
251 if (has_rel_relocations && has_rela_relocations) {
252 LOG(ERROR) << "Multiple relocations sections with different types found, "
253 << "not currently supported";
254 return false;
255 }
256
257 elf_ = elf;
258 relocations_section_ = found_relocations_section;
259 dynamic_section_ = found_dynamic_section;
260 relocations_type_ = has_rel_relocations ? REL : RELA;
261 has_android_relocations_ = has_android_relocations;
262 return true;
263 }
264
265 // Helper for ResizeSection(). Adjust the main ELF header for the hole.
266 template <typename ELF>
AdjustElfHeaderForHole(typename ELF::Ehdr * elf_header,typename ELF::Off hole_start,ssize_t hole_size)267 static void AdjustElfHeaderForHole(typename ELF::Ehdr* elf_header,
268 typename ELF::Off hole_start,
269 ssize_t hole_size) {
270 if (elf_header->e_phoff > hole_start) {
271 elf_header->e_phoff += hole_size;
272 VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff;
273 }
274 if (elf_header->e_shoff > hole_start) {
275 elf_header->e_shoff += hole_size;
276 VLOG(1) << "e_shoff adjusted to " << elf_header->e_shoff;
277 }
278 }
279
280 // Helper for ResizeSection(). Adjust all section headers for the hole.
281 template <typename ELF>
AdjustSectionHeadersForHole(Elf * elf,typename ELF::Off hole_start,ssize_t hole_size)282 static void AdjustSectionHeadersForHole(Elf* elf,
283 typename ELF::Off hole_start,
284 ssize_t hole_size) {
285 size_t string_index;
286 elf_getshdrstrndx(elf, &string_index);
287
288 Elf_Scn* section = NULL;
289 while ((section = elf_nextscn(elf, section)) != NULL) {
290 auto section_header = ELF::getshdr(section);
291 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
292
293 if (section_header->sh_offset > hole_start) {
294 section_header->sh_offset += hole_size;
295 VLOG(1) << "section " << name
296 << " sh_offset adjusted to " << section_header->sh_offset;
297 } else {
298 section_header->sh_addr -= hole_size;
299 VLOG(1) << "section " << name
300 << " sh_addr adjusted to " << section_header->sh_addr;
301 }
302 }
303 }
304
305 // Helpers for ResizeSection(). On packing, reduce p_align for LOAD segments
306 // to 4kb if larger. On unpacking, restore p_align for LOAD segments if
307 // packing reduced it to 4kb. Return true if p_align was changed.
308 template <typename ELF>
ClampLoadSegmentAlignment(typename ELF::Phdr * program_header)309 static bool ClampLoadSegmentAlignment(typename ELF::Phdr* program_header) {
310 CHECK(program_header->p_type == PT_LOAD);
311
312 // If large, reduce p_align for a LOAD segment to page size on packing.
313 if (program_header->p_align > kPageSize) {
314 program_header->p_align = kPageSize;
315 return true;
316 }
317 return false;
318 }
319
320 template <typename ELF>
RestoreLoadSegmentAlignment(typename ELF::Phdr * program_headers,size_t count,typename ELF::Phdr * program_header)321 static bool RestoreLoadSegmentAlignment(typename ELF::Phdr* program_headers,
322 size_t count,
323 typename ELF::Phdr* program_header) {
324 CHECK(program_header->p_type == PT_LOAD);
325
326 // If p_align was reduced on packing, restore it to its previous value
327 // on unpacking. We do this by searching for a different LOAD segment
328 // and setting p_align to that of the other LOAD segment found.
329 //
330 // Relies on the following observations:
331 // - a packable ELF executable has more than one LOAD segment;
332 // - before packing all LOAD segments have the same p_align;
333 // - on packing we reduce only one LOAD segment's p_align.
334 if (program_header->p_align == kPageSize) {
335 for (size_t i = 0; i < count; ++i) {
336 typename ELF::Phdr* other_header = &program_headers[i];
337 if (other_header->p_type == PT_LOAD && other_header != program_header) {
338 program_header->p_align = other_header->p_align;
339 return true;
340 }
341 }
342 LOG(WARNING) << "Cannot find a LOAD segment from which to restore p_align";
343 }
344 return false;
345 }
346
347 template <typename ELF>
AdjustLoadSegmentAlignment(typename ELF::Phdr * program_headers,size_t count,typename ELF::Phdr * program_header,ssize_t hole_size)348 static bool AdjustLoadSegmentAlignment(typename ELF::Phdr* program_headers,
349 size_t count,
350 typename ELF::Phdr* program_header,
351 ssize_t hole_size) {
352 CHECK(program_header->p_type == PT_LOAD);
353
354 bool status = false;
355 if (hole_size < 0) {
356 status = ClampLoadSegmentAlignment<ELF>(program_header);
357 } else if (hole_size > 0) {
358 status = RestoreLoadSegmentAlignment<ELF>(program_headers,
359 count,
360 program_header);
361 }
362 return status;
363 }
364
365 // Helper for ResizeSection(). Adjust the offsets of any program headers
366 // that have offsets currently beyond the hole start, and adjust the
367 // virtual and physical addrs (and perhaps alignment) of the others.
368 template <typename ELF>
AdjustProgramHeaderFields(typename ELF::Phdr * program_headers,size_t count,typename ELF::Off hole_start,ssize_t hole_size)369 static void AdjustProgramHeaderFields(typename ELF::Phdr* program_headers,
370 size_t count,
371 typename ELF::Off hole_start,
372 ssize_t hole_size) {
373 int alignment_changes = 0;
374 for (size_t i = 0; i < count; ++i) {
375 typename ELF::Phdr* program_header = &program_headers[i];
376
377 // Do not adjust PT_GNU_STACK - it confuses gdb and results
378 // in incorrect unwinding if the executable is stripped after
379 // packing.
380 if (program_header->p_type == PT_GNU_STACK) {
381 continue;
382 }
383
384 if (program_header->p_offset > hole_start) {
385 // The hole start is past this segment, so adjust offset.
386 program_header->p_offset += hole_size;
387 VLOG(1) << "phdr[" << i
388 << "] p_offset adjusted to "<< program_header->p_offset;
389 } else {
390 program_header->p_vaddr -= hole_size;
391 program_header->p_paddr -= hole_size;
392
393 // If packing, clamp LOAD segment alignment to 4kb to prevent strip
394 // from adjusting it unnecessarily if run on a packed file. If
395 // unpacking, attempt to restore a reduced alignment to its previous
396 // value. Ensure that we do this on at most one LOAD segment.
397 if (program_header->p_type == PT_LOAD) {
398 alignment_changes += AdjustLoadSegmentAlignment<ELF>(program_headers,
399 count,
400 program_header,
401 hole_size);
402 LOG_IF(FATAL, alignment_changes > 1)
403 << "Changed p_align on more than one LOAD segment";
404 }
405
406 VLOG(1) << "phdr[" << i
407 << "] p_vaddr adjusted to "<< program_header->p_vaddr
408 << "; p_paddr adjusted to "<< program_header->p_paddr
409 << "; p_align adjusted to "<< program_header->p_align;
410 }
411 }
412 }
413
414 // Helper for ResizeSection(). Find the first loadable segment in the
415 // file. We expect it to map from file offset zero.
416 template <typename ELF>
FindLoadSegmentForHole(typename ELF::Phdr * program_headers,size_t count,typename ELF::Off hole_start)417 static typename ELF::Phdr* FindLoadSegmentForHole(typename ELF::Phdr* program_headers,
418 size_t count,
419 typename ELF::Off hole_start) {
420 for (size_t i = 0; i < count; ++i) {
421 typename ELF::Phdr* program_header = &program_headers[i];
422
423 if (program_header->p_type == PT_LOAD &&
424 program_header->p_offset <= hole_start &&
425 (program_header->p_offset + program_header->p_filesz) >= hole_start ) {
426 return program_header;
427 }
428 }
429 LOG(FATAL) << "Cannot locate a LOAD segment with hole_start=0x" << std::hex << hole_start;
430 NOTREACHED();
431
432 return nullptr;
433 }
434
435 // Helper for ResizeSection(). Rewrite program headers.
436 template <typename ELF>
RewriteProgramHeadersForHole(Elf * elf,typename ELF::Off hole_start,ssize_t hole_size)437 static void RewriteProgramHeadersForHole(Elf* elf,
438 typename ELF::Off hole_start,
439 ssize_t hole_size) {
440 const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
441 CHECK(elf_header);
442
443 typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
444 CHECK(elf_program_header);
445
446 const size_t program_header_count = elf_header->e_phnum;
447
448 // Locate the segment that we can overwrite to form the new LOAD entry,
449 // and the segment that we are going to split into two parts.
450 typename ELF::Phdr* target_load_header =
451 FindLoadSegmentForHole<ELF>(elf_program_header, program_header_count, hole_start);
452
453 VLOG(1) << "phdr[" << target_load_header - elf_program_header << "] adjust";
454 // Adjust PT_LOAD program header memsz and filesz
455 target_load_header->p_filesz += hole_size;
456 target_load_header->p_memsz += hole_size;
457
458 // Adjust the offsets and p_vaddrs
459 AdjustProgramHeaderFields<ELF>(elf_program_header,
460 program_header_count,
461 hole_start,
462 hole_size);
463 }
464
465 // Helper for ResizeSection(). Locate and return the dynamic section.
466 template <typename ELF>
GetDynamicSection(Elf * elf)467 static Elf_Scn* GetDynamicSection(Elf* elf) {
468 const typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
469 CHECK(elf_header);
470
471 const typename ELF::Phdr* elf_program_header = ELF::getphdr(elf);
472 CHECK(elf_program_header);
473
474 // Find the program header that describes the dynamic section.
475 const typename ELF::Phdr* dynamic_program_header = NULL;
476 for (size_t i = 0; i < elf_header->e_phnum; ++i) {
477 const typename ELF::Phdr* program_header = &elf_program_header[i];
478
479 if (program_header->p_type == PT_DYNAMIC) {
480 dynamic_program_header = program_header;
481 }
482 }
483 CHECK(dynamic_program_header);
484
485 // Now find the section with the same offset as this program header.
486 Elf_Scn* dynamic_section = NULL;
487 Elf_Scn* section = NULL;
488 while ((section = elf_nextscn(elf, section)) != NULL) {
489 typename ELF::Shdr* section_header = ELF::getshdr(section);
490
491 if (section_header->sh_offset == dynamic_program_header->p_offset) {
492 dynamic_section = section;
493 }
494 }
495 CHECK(dynamic_section != NULL);
496
497 return dynamic_section;
498 }
499
500 // Helper for ResizeSection(). Adjust the .dynamic section for the hole.
501 template <typename ELF>
AdjustDynamicSectionForHole(Elf_Scn * dynamic_section,typename ELF::Off hole_start,ssize_t hole_size,relocations_type_t relocations_type)502 void ElfFile<ELF>::AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
503 typename ELF::Off hole_start,
504 ssize_t hole_size,
505 relocations_type_t relocations_type) {
506 CHECK(relocations_type != NONE);
507 Elf_Data* data = GetSectionData(dynamic_section);
508
509 auto dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
510 std::vector<typename ELF::Dyn> dynamics(
511 dynamic_base,
512 dynamic_base + data->d_size / sizeof(dynamics[0]));
513
514 if (hole_size > 0) { // expanding
515 hole_start += hole_size;
516 }
517
518 for (size_t i = 0; i < dynamics.size(); ++i) {
519 typename ELF::Dyn* dynamic = &dynamics[i];
520 const typename ELF::Sword tag = dynamic->d_tag;
521
522 // Any tags that hold offsets are adjustment candidates.
523 const bool is_adjustable = (tag == DT_PLTGOT ||
524 tag == DT_HASH ||
525 tag == DT_GNU_HASH ||
526 tag == DT_STRTAB ||
527 tag == DT_SYMTAB ||
528 tag == DT_RELA ||
529 tag == DT_INIT ||
530 tag == DT_FINI ||
531 tag == DT_REL ||
532 tag == DT_JMPREL ||
533 tag == DT_INIT_ARRAY ||
534 tag == DT_FINI_ARRAY ||
535 tag == DT_VERSYM ||
536 tag == DT_VERNEED ||
537 tag == DT_VERDEF ||
538 tag == DT_ANDROID_REL||
539 tag == DT_ANDROID_RELA);
540
541 if (is_adjustable && dynamic->d_un.d_ptr <= hole_start) {
542 dynamic->d_un.d_ptr -= hole_size;
543 VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
544 << " d_ptr adjusted to " << dynamic->d_un.d_ptr;
545 }
546
547 // DT_RELSZ or DT_RELASZ indicate the overall size of relocations.
548 // Only one will be present. Adjust by hole size.
549 if (tag == DT_RELSZ || tag == DT_RELASZ || tag == DT_ANDROID_RELSZ || tag == DT_ANDROID_RELASZ) {
550 dynamic->d_un.d_val += hole_size;
551 VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
552 << " d_val adjusted to " << dynamic->d_un.d_val;
553 }
554
555 // Special case: DT_MIPS_RLD_MAP2 stores the difference between dynamic
556 // entry address and the address of the _r_debug (used by GDB)
557 // since the dynamic section and target address are on the
558 // different sides of the hole it needs to be adjusted accordingly
559 if (tag == DT_MIPS_RLD_MAP2) {
560 dynamic->d_un.d_val += hole_size;
561 VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
562 << " d_val adjusted to " << dynamic->d_un.d_val;
563 }
564
565 // Ignore DT_RELCOUNT and DT_RELACOUNT: (1) nobody uses them and
566 // technically (2) the relative relocation count is not changed.
567
568 // DT_RELENT and DT_RELAENT don't change, ignore them as well.
569 }
570
571 void* section_data = &dynamics[0];
572 size_t bytes = dynamics.size() * sizeof(dynamics[0]);
573 RewriteSectionData(dynamic_section, section_data, bytes);
574 }
575
576 // Resize a section. If the new size is larger than the current size, open
577 // up a hole by increasing file offsets that come after the hole. If smaller
578 // than the current size, remove the hole by decreasing those offsets.
579 template <typename ELF>
ResizeSection(Elf * elf,Elf_Scn * section,size_t new_size,typename ELF::Word new_sh_type,relocations_type_t relocations_type)580 void ElfFile<ELF>::ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size,
581 typename ELF::Word new_sh_type,
582 relocations_type_t relocations_type) {
583
584 size_t string_index;
585 elf_getshdrstrndx(elf, &string_index);
586 auto section_header = ELF::getshdr(section);
587 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
588
589 if (section_header->sh_size == new_size) {
590 return;
591 }
592
593 // Require that the section size and the data size are the same. True
594 // in practice for all sections we resize when packing or unpacking.
595 Elf_Data* data = GetSectionData(section);
596 CHECK(data->d_off == 0 && data->d_size == section_header->sh_size);
597
598 // Require that the section is not zero-length (that is, has allocated
599 // data that we can validly expand).
600 CHECK(data->d_size && data->d_buf);
601
602 const auto hole_start = section_header->sh_offset;
603 const ssize_t hole_size = new_size - data->d_size;
604
605 VLOG_IF(1, (hole_size > 0)) << "expand section (" << name << ") size: " <<
606 data->d_size << " -> " << (data->d_size + hole_size);
607 VLOG_IF(1, (hole_size < 0)) << "shrink section (" << name << ") size: " <<
608 data->d_size << " -> " << (data->d_size + hole_size);
609
610 // libelf overrides sh_entsize for known sh_types, so it does not matter what we set
611 // for SHT_REL/SHT_RELA.
612 typename ELF::Xword new_entsize =
613 (new_sh_type == SHT_ANDROID_REL || new_sh_type == SHT_ANDROID_RELA) ? 1 : 0;
614
615 VLOG(1) << "Update section (" << name << ") entry size: " <<
616 section_header->sh_entsize << " -> " << new_entsize;
617
618 // Resize the data and the section header.
619 data->d_size += hole_size;
620 section_header->sh_size += hole_size;
621 section_header->sh_entsize = new_entsize;
622 section_header->sh_type = new_sh_type;
623
624 // Add the hole size to all offsets in the ELF file that are after the
625 // start of the hole. If the hole size is positive we are expanding the
626 // section to create a new hole; if negative, we are closing up a hole.
627
628 // Start with the main ELF header.
629 typename ELF::Ehdr* elf_header = ELF::getehdr(elf);
630 AdjustElfHeaderForHole<ELF>(elf_header, hole_start, hole_size);
631
632 // Adjust all section headers.
633 AdjustSectionHeadersForHole<ELF>(elf, hole_start, hole_size);
634
635 // Rewrite the program headers to either split or coalesce segments,
636 // and adjust dynamic entries to match.
637 RewriteProgramHeadersForHole<ELF>(elf, hole_start, hole_size);
638
639 Elf_Scn* dynamic_section = GetDynamicSection<ELF>(elf);
640 AdjustDynamicSectionForHole(dynamic_section, hole_start, hole_size, relocations_type);
641 }
642
643 // Find the first slot in a dynamics array with the given tag. The array
644 // always ends with a free (unused) element, and which we exclude from the
645 // search. Returns dynamics->size() if not found.
646 template <typename ELF>
FindDynamicEntry(typename ELF::Sword tag,std::vector<typename ELF::Dyn> * dynamics)647 static size_t FindDynamicEntry(typename ELF::Sword tag,
648 std::vector<typename ELF::Dyn>* dynamics) {
649 // Loop until the penultimate entry. We exclude the end sentinel.
650 for (size_t i = 0; i < dynamics->size() - 1; ++i) {
651 if (dynamics->at(i).d_tag == tag) {
652 return i;
653 }
654 }
655
656 // The tag was not found.
657 return dynamics->size();
658 }
659
660 // Replace dynamic entry.
661 template <typename ELF>
ReplaceDynamicEntry(typename ELF::Sword tag,const typename ELF::Dyn & dyn,std::vector<typename ELF::Dyn> * dynamics)662 static void ReplaceDynamicEntry(typename ELF::Sword tag,
663 const typename ELF::Dyn& dyn,
664 std::vector<typename ELF::Dyn>* dynamics) {
665 const size_t slot = FindDynamicEntry<ELF>(tag, dynamics);
666 if (slot == dynamics->size()) {
667 LOG(FATAL) << "Dynamic slot is not found for tag=" << tag;
668 }
669
670 // Replace this entry with the one supplied.
671 dynamics->at(slot) = dyn;
672 VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag;
673 }
674
675 // Remove relative entries from dynamic relocations and write as packed
676 // data into android packed relocations.
677 template <typename ELF>
PackRelocations()678 bool ElfFile<ELF>::PackRelocations() {
679 // Load the ELF file into libelf.
680 if (!Load()) {
681 LOG(ERROR) << "Failed to load as ELF";
682 return false;
683 }
684
685 // Retrieve the current dynamic relocations section data.
686 Elf_Data* data = GetSectionData(relocations_section_);
687 // we always pack rela, because packed format is pretty much the same
688 std::vector<typename ELF::Rela> relocations;
689
690 if (relocations_type_ == REL) {
691 // Convert data to a vector of relocations.
692 const typename ELF::Rel* relocations_base = reinterpret_cast<typename ELF::Rel*>(data->d_buf);
693 ConvertRelArrayToRelaVector(relocations_base,
694 data->d_size / sizeof(typename ELF::Rel), &relocations);
695 VLOG(1) << "Relocations : REL";
696 } else if (relocations_type_ == RELA) {
697 // Convert data to a vector of relocations with addends.
698 const typename ELF::Rela* relocations_base = reinterpret_cast<typename ELF::Rela*>(data->d_buf);
699 relocations = std::vector<typename ELF::Rela>(
700 relocations_base,
701 relocations_base + data->d_size / sizeof(relocations[0]));
702
703 VLOG(1) << "Relocations : RELA";
704 } else {
705 NOTREACHED();
706 }
707
708 return PackTypedRelocations(&relocations);
709 }
710
711 // Helper for PackRelocations(). Rel type is one of ELF::Rel or ELF::Rela.
712 template <typename ELF>
PackTypedRelocations(std::vector<typename ELF::Rela> * relocations)713 bool ElfFile<ELF>::PackTypedRelocations(std::vector<typename ELF::Rela>* relocations) {
714 typedef typename ELF::Rela Rela;
715
716 if (has_android_relocations_) {
717 LOG(INFO) << "Relocation table is already packed";
718 return true;
719 }
720
721 // If no relocations then we have nothing packable. Perhaps
722 // the shared object has already been packed?
723 if (relocations->empty()) {
724 LOG(ERROR) << "No relocations found";
725 return false;
726 }
727
728 const size_t rel_size =
729 relocations_type_ == RELA ? sizeof(typename ELF::Rela) : sizeof(typename ELF::Rel);
730 const size_t initial_bytes = relocations->size() * rel_size;
731
732 VLOG(1) << "Unpacked : " << initial_bytes << " bytes";
733 std::vector<uint8_t> packed;
734 RelocationPacker<ELF> packer;
735
736 // Pack relocations: dry run to estimate memory savings.
737 packer.PackRelocations(*relocations, &packed);
738 const size_t packed_bytes_estimate = packed.size() * sizeof(packed[0]);
739 VLOG(1) << "Packed (no padding): " << packed_bytes_estimate << " bytes";
740
741 if (packed.empty()) {
742 VLOG(1) << "Too few relocations to pack";
743 return true;
744 }
745
746 // Pre-calculate the size of the hole we will close up when we rewrite
747 // dynamic relocations. We have to adjust relocation addresses to
748 // account for this.
749 typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
750 ssize_t hole_size = initial_bytes - packed_bytes_estimate;
751
752 // hole_size needs to be page_aligned.
753 hole_size -= hole_size % kPreserveAlignment;
754
755 VLOG(1) << "Compaction : " << hole_size << " bytes";
756
757 // Adjusting for alignment may have removed any packing benefit.
758 if (hole_size == 0) {
759 VLOG(1) << "Too few relocations to pack after alignment";
760 return true;
761 }
762
763 if (hole_size <= 0) {
764 VLOG(1) << "Packing relocations saves no space";
765 return true;
766 }
767
768 size_t data_padding_bytes = is_padding_relocations_ ?
769 initial_bytes - packed_bytes_estimate :
770 initial_bytes - hole_size - packed_bytes_estimate;
771
772 // pad data
773 std::vector<uint8_t> padding(data_padding_bytes, 0);
774 packed.insert(packed.end(), padding.begin(), padding.end());
775
776 const void* packed_data = &packed[0];
777
778 // Run a loopback self-test as a check that packing is lossless.
779 std::vector<Rela> unpacked;
780 packer.UnpackRelocations(packed, &unpacked);
781 CHECK(unpacked.size() == relocations->size());
782 CHECK(!memcmp(&unpacked[0],
783 &relocations->at(0),
784 unpacked.size() * sizeof(unpacked[0])));
785
786 // Rewrite the current dynamic relocations section with packed one then shrink it to size.
787 const size_t bytes = packed.size() * sizeof(packed[0]);
788 ResizeSection(elf_, relocations_section_, bytes,
789 relocations_type_ == REL ? SHT_ANDROID_REL : SHT_ANDROID_RELA, relocations_type_);
790 RewriteSectionData(relocations_section_, packed_data, bytes);
791
792 // TODO (dimitry): fix string table and replace .rel.dyn/plt with .android.rel.dyn/plt
793
794 // Rewrite .dynamic and rename relocation tags describing the packed android
795 // relocations.
796 Elf_Data* data = GetSectionData(dynamic_section_);
797 const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
798 std::vector<typename ELF::Dyn> dynamics(
799 dynamic_base,
800 dynamic_base + data->d_size / sizeof(dynamics[0]));
801 section_header = ELF::getshdr(relocations_section_);
802 {
803 typename ELF::Dyn dyn;
804 dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA;
805 dyn.d_un.d_ptr = section_header->sh_addr;
806 ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_REL : DT_RELA, dyn, &dynamics);
807 }
808 {
809 typename ELF::Dyn dyn;
810 dyn.d_tag = relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ;
811 dyn.d_un.d_val = section_header->sh_size;
812 ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_RELSZ : DT_RELASZ, dyn, &dynamics);
813 }
814
815 const void* dynamics_data = &dynamics[0];
816 const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
817 RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
818
819 Flush();
820 return true;
821 }
822
823 // Find packed relative relocations in the packed android relocations
824 // section, unpack them, and rewrite the dynamic relocations section to
825 // contain unpacked data.
826 template <typename ELF>
UnpackRelocations()827 bool ElfFile<ELF>::UnpackRelocations() {
828 // Load the ELF file into libelf.
829 if (!Load()) {
830 LOG(ERROR) << "Failed to load as ELF";
831 return false;
832 }
833
834 typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
835 // Retrieve the current packed android relocations section data.
836 Elf_Data* data = GetSectionData(relocations_section_);
837
838 // Convert data to a vector of bytes.
839 const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf);
840 std::vector<uint8_t> packed(
841 packed_base,
842 packed_base + data->d_size / sizeof(packed[0]));
843
844 if ((section_header->sh_type == SHT_ANDROID_RELA || section_header->sh_type == SHT_ANDROID_REL) &&
845 packed.size() > 3 &&
846 packed[0] == 'A' &&
847 packed[1] == 'P' &&
848 packed[2] == 'S' &&
849 packed[3] == '2') {
850 LOG(INFO) << "Relocations : " << (relocations_type_ == REL ? "REL" : "RELA");
851 } else {
852 LOG(ERROR) << "Packed relocations not found (not packed?)";
853 return false;
854 }
855
856 return UnpackTypedRelocations(packed);
857 }
858
859 // Helper for UnpackRelocations(). Rel type is one of ELF::Rel or ELF::Rela.
860 template <typename ELF>
UnpackTypedRelocations(const std::vector<uint8_t> & packed)861 bool ElfFile<ELF>::UnpackTypedRelocations(const std::vector<uint8_t>& packed) {
862 // Unpack the data to re-materialize the relative relocations.
863 const size_t packed_bytes = packed.size() * sizeof(packed[0]);
864 LOG(INFO) << "Packed : " << packed_bytes << " bytes";
865 std::vector<typename ELF::Rela> unpacked_relocations;
866 RelocationPacker<ELF> packer;
867 packer.UnpackRelocations(packed, &unpacked_relocations);
868
869 const size_t relocation_entry_size =
870 relocations_type_ == REL ? sizeof(typename ELF::Rel) : sizeof(typename ELF::Rela);
871 const size_t unpacked_bytes = unpacked_relocations.size() * relocation_entry_size;
872 LOG(INFO) << "Unpacked : " << unpacked_bytes << " bytes";
873
874 // Retrieve the current dynamic relocations section data.
875 Elf_Data* data = GetSectionData(relocations_section_);
876
877 LOG(INFO) << "Relocations : " << unpacked_relocations.size() << " entries";
878
879 // If we found the same number of null relocation entries in the dynamic
880 // relocations section as we hold as unpacked relative relocations, then
881 // this is a padded file.
882
883 const bool is_padded = packed_bytes == unpacked_bytes;
884
885 // Unless padded, pre-apply relative relocations to account for the
886 // hole, and pre-adjust all relocation offsets accordingly.
887 typename ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
888
889 if (!is_padded) {
890 LOG(INFO) << "Expansion : " << unpacked_bytes - packed_bytes << " bytes";
891 }
892
893 // Rewrite the current dynamic relocations section with unpacked version of
894 // relocations.
895 const void* section_data = nullptr;
896 std::vector<typename ELF::Rel> unpacked_rel_relocations;
897 if (relocations_type_ == RELA) {
898 section_data = &unpacked_relocations[0];
899 } else if (relocations_type_ == REL) {
900 ConvertRelaVectorToRelVector(unpacked_relocations, &unpacked_rel_relocations);
901 section_data = &unpacked_rel_relocations[0];
902 } else {
903 NOTREACHED();
904 }
905
906 ResizeSection(elf_, relocations_section_, unpacked_bytes,
907 relocations_type_ == REL ? SHT_REL : SHT_RELA, relocations_type_);
908 RewriteSectionData(relocations_section_, section_data, unpacked_bytes);
909
910 // Rewrite .dynamic to remove two tags describing packed android relocations.
911 data = GetSectionData(dynamic_section_);
912 const typename ELF::Dyn* dynamic_base = reinterpret_cast<typename ELF::Dyn*>(data->d_buf);
913 std::vector<typename ELF::Dyn> dynamics(
914 dynamic_base,
915 dynamic_base + data->d_size / sizeof(dynamics[0]));
916 {
917 typename ELF::Dyn dyn;
918 dyn.d_tag = relocations_type_ == REL ? DT_REL : DT_RELA;
919 dyn.d_un.d_ptr = section_header->sh_addr;
920 ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_REL : DT_ANDROID_RELA,
921 dyn, &dynamics);
922 }
923
924 {
925 typename ELF::Dyn dyn;
926 dyn.d_tag = relocations_type_ == REL ? DT_RELSZ : DT_RELASZ;
927 dyn.d_un.d_val = section_header->sh_size;
928 ReplaceDynamicEntry<ELF>(relocations_type_ == REL ? DT_ANDROID_RELSZ : DT_ANDROID_RELASZ,
929 dyn, &dynamics);
930 }
931
932 const void* dynamics_data = &dynamics[0];
933 const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
934 RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
935
936 Flush();
937 return true;
938 }
939
940 // Flush rewritten shared object file data.
941 template <typename ELF>
Flush()942 void ElfFile<ELF>::Flush() {
943 // Flag all ELF data held in memory as needing to be written back to the
944 // file, and tell libelf that we have controlled the file layout.
945 elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY);
946 elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT);
947
948 // Write ELF data back to disk.
949 const off_t file_bytes = elf_update(elf_, ELF_C_WRITE);
950 if (file_bytes == -1) {
951 LOG(ERROR) << "elf_update failed: " << elf_errmsg(elf_errno());
952 }
953
954 CHECK(file_bytes > 0);
955 VLOG(1) << "elf_update returned: " << file_bytes;
956
957 // Clean up libelf, and truncate the output file to the number of bytes
958 // written by elf_update().
959 elf_end(elf_);
960 elf_ = NULL;
961 const int truncate = ftruncate(fd_, file_bytes);
962 CHECK(truncate == 0);
963 }
964
965 template <typename ELF>
ConvertRelArrayToRelaVector(const typename ELF::Rel * rel_array,size_t rel_array_size,std::vector<typename ELF::Rela> * rela_vector)966 void ElfFile<ELF>::ConvertRelArrayToRelaVector(const typename ELF::Rel* rel_array,
967 size_t rel_array_size,
968 std::vector<typename ELF::Rela>* rela_vector) {
969 for (size_t i = 0; i<rel_array_size; ++i) {
970 typename ELF::Rela rela;
971 rela.r_offset = rel_array[i].r_offset;
972 rela.r_info = rel_array[i].r_info;
973 rela.r_addend = 0;
974 rela_vector->push_back(rela);
975 }
976 }
977
978 template <typename ELF>
ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela> & rela_vector,std::vector<typename ELF::Rel> * rel_vector)979 void ElfFile<ELF>::ConvertRelaVectorToRelVector(const std::vector<typename ELF::Rela>& rela_vector,
980 std::vector<typename ELF::Rel>* rel_vector) {
981 for (auto rela : rela_vector) {
982 typename ELF::Rel rel;
983 rel.r_offset = rela.r_offset;
984 rel.r_info = rela.r_info;
985 CHECK(rela.r_addend == 0);
986 rel_vector->push_back(rel);
987 }
988 }
989
990 template class ElfFile<ELF32_traits>;
991 template class ElfFile<ELF64_traits>;
992
993 } // namespace relocation_packer
994