1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <errno.h>
18 #include <malloc.h>
19 #include <stdio.h>
20 #include <string.h>
21
22 #include <algorithm>
23 #include <memory>
24
25 #include <openssl/ecdsa.h>
26 #include <openssl/obj_mac.h>
27
28 #include "asn1_decoder.h"
29 #include "common.h"
30 #include "print_sha1.h"
31 #include "ui.h"
32 #include "verifier.h"
33
34 extern RecoveryUI* ui;
35
36 static constexpr size_t MiB = 1024 * 1024;
37
38 /*
39 * Simple version of PKCS#7 SignedData extraction. This extracts the
40 * signature OCTET STRING to be used for signature verification.
41 *
42 * For full details, see http://www.ietf.org/rfc/rfc3852.txt
43 *
44 * The PKCS#7 structure looks like:
45 *
46 * SEQUENCE (ContentInfo)
47 * OID (ContentType)
48 * [0] (content)
49 * SEQUENCE (SignedData)
50 * INTEGER (version CMSVersion)
51 * SET (DigestAlgorithmIdentifiers)
52 * SEQUENCE (EncapsulatedContentInfo)
53 * [0] (CertificateSet OPTIONAL)
54 * [1] (RevocationInfoChoices OPTIONAL)
55 * SET (SignerInfos)
56 * SEQUENCE (SignerInfo)
57 * INTEGER (CMSVersion)
58 * SEQUENCE (SignerIdentifier)
59 * SEQUENCE (DigestAlgorithmIdentifier)
60 * SEQUENCE (SignatureAlgorithmIdentifier)
61 * OCTET STRING (SignatureValue)
62 */
read_pkcs7(uint8_t * pkcs7_der,size_t pkcs7_der_len,uint8_t ** sig_der,size_t * sig_der_length)63 static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der,
64 size_t* sig_der_length) {
65 asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len);
66 if (ctx == NULL) {
67 return false;
68 }
69
70 asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx);
71 if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) {
72 asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq);
73 if (signed_data_app != NULL) {
74 asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app);
75 if (signed_data_seq != NULL
76 && asn1_sequence_next(signed_data_seq)
77 && asn1_sequence_next(signed_data_seq)
78 && asn1_sequence_next(signed_data_seq)
79 && asn1_constructed_skip_all(signed_data_seq)) {
80 asn1_context_t *sig_set = asn1_set_get(signed_data_seq);
81 if (sig_set != NULL) {
82 asn1_context_t* sig_seq = asn1_sequence_get(sig_set);
83 if (sig_seq != NULL
84 && asn1_sequence_next(sig_seq)
85 && asn1_sequence_next(sig_seq)
86 && asn1_sequence_next(sig_seq)
87 && asn1_sequence_next(sig_seq)) {
88 uint8_t* sig_der_ptr;
89 if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) {
90 *sig_der = (uint8_t*) malloc(*sig_der_length);
91 if (*sig_der != NULL) {
92 memcpy(*sig_der, sig_der_ptr, *sig_der_length);
93 }
94 }
95 asn1_context_free(sig_seq);
96 }
97 asn1_context_free(sig_set);
98 }
99 asn1_context_free(signed_data_seq);
100 }
101 asn1_context_free(signed_data_app);
102 }
103 asn1_context_free(pkcs7_seq);
104 }
105 asn1_context_free(ctx);
106
107 return *sig_der != NULL;
108 }
109
110 // Look for an RSA signature embedded in the .ZIP file comment given
111 // the path to the zip. Verify it matches one of the given public
112 // keys.
113 //
114 // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered
115 // or no key matches the signature).
116
verify_file(unsigned char * addr,size_t length,const std::vector<Certificate> & keys)117 int verify_file(unsigned char* addr, size_t length,
118 const std::vector<Certificate>& keys) {
119 ui->SetProgress(0.0);
120
121 // An archive with a whole-file signature will end in six bytes:
122 //
123 // (2-byte signature start) $ff $ff (2-byte comment size)
124 //
125 // (As far as the ZIP format is concerned, these are part of the
126 // archive comment.) We start by reading this footer, this tells
127 // us how far back from the end we have to start reading to find
128 // the whole comment.
129
130 #define FOOTER_SIZE 6
131
132 if (length < FOOTER_SIZE) {
133 LOGE("not big enough to contain footer\n");
134 return VERIFY_FAILURE;
135 }
136
137 unsigned char* footer = addr + length - FOOTER_SIZE;
138
139 if (footer[2] != 0xff || footer[3] != 0xff) {
140 LOGE("footer is wrong\n");
141 return VERIFY_FAILURE;
142 }
143
144 size_t comment_size = footer[4] + (footer[5] << 8);
145 size_t signature_start = footer[0] + (footer[1] << 8);
146 LOGI("comment is %zu bytes; signature %zu bytes from end\n",
147 comment_size, signature_start);
148
149 if (signature_start <= FOOTER_SIZE) {
150 LOGE("Signature start is in the footer");
151 return VERIFY_FAILURE;
152 }
153
154 #define EOCD_HEADER_SIZE 22
155
156 // The end-of-central-directory record is 22 bytes plus any
157 // comment length.
158 size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
159
160 if (length < eocd_size) {
161 LOGE("not big enough to contain EOCD\n");
162 return VERIFY_FAILURE;
163 }
164
165 // Determine how much of the file is covered by the signature.
166 // This is everything except the signature data and length, which
167 // includes all of the EOCD except for the comment length field (2
168 // bytes) and the comment data.
169 size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
170
171 unsigned char* eocd = addr + length - eocd_size;
172
173 // If this is really is the EOCD record, it will begin with the
174 // magic number $50 $4b $05 $06.
175 if (eocd[0] != 0x50 || eocd[1] != 0x4b ||
176 eocd[2] != 0x05 || eocd[3] != 0x06) {
177 LOGE("signature length doesn't match EOCD marker\n");
178 return VERIFY_FAILURE;
179 }
180
181 for (size_t i = 4; i < eocd_size-3; ++i) {
182 if (eocd[i ] == 0x50 && eocd[i+1] == 0x4b &&
183 eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
184 // if the sequence $50 $4b $05 $06 appears anywhere after
185 // the real one, minzip will find the later (wrong) one,
186 // which could be exploitable. Fail verification if
187 // this sequence occurs anywhere after the real one.
188 LOGE("EOCD marker occurs after start of EOCD\n");
189 return VERIFY_FAILURE;
190 }
191 }
192
193 bool need_sha1 = false;
194 bool need_sha256 = false;
195 for (const auto& key : keys) {
196 switch (key.hash_len) {
197 case SHA_DIGEST_LENGTH: need_sha1 = true; break;
198 case SHA256_DIGEST_LENGTH: need_sha256 = true; break;
199 }
200 }
201
202 SHA_CTX sha1_ctx;
203 SHA256_CTX sha256_ctx;
204 SHA1_Init(&sha1_ctx);
205 SHA256_Init(&sha256_ctx);
206
207 double frac = -1.0;
208 size_t so_far = 0;
209 while (so_far < signed_len) {
210 // On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a
211 // 1196MiB full OTA and 60% for an 89MiB incremental OTA.
212 // http://b/28135231.
213 size_t size = std::min(signed_len - so_far, 16 * MiB);
214
215 if (need_sha1) SHA1_Update(&sha1_ctx, addr + so_far, size);
216 if (need_sha256) SHA256_Update(&sha256_ctx, addr + so_far, size);
217 so_far += size;
218
219 double f = so_far / (double)signed_len;
220 if (f > frac + 0.02 || size == so_far) {
221 ui->SetProgress(f);
222 frac = f;
223 }
224 }
225
226 uint8_t sha1[SHA_DIGEST_LENGTH];
227 SHA1_Final(sha1, &sha1_ctx);
228 uint8_t sha256[SHA256_DIGEST_LENGTH];
229 SHA256_Final(sha256, &sha256_ctx);
230
231 uint8_t* sig_der = nullptr;
232 size_t sig_der_length = 0;
233
234 uint8_t* signature = eocd + eocd_size - signature_start;
235 size_t signature_size = signature_start - FOOTER_SIZE;
236
237 LOGI("signature (offset: 0x%zx, length: %zu): %s\n",
238 length - signature_start, signature_size,
239 print_hex(signature, signature_size).c_str());
240
241 if (!read_pkcs7(signature, signature_size, &sig_der, &sig_der_length)) {
242 LOGE("Could not find signature DER block\n");
243 return VERIFY_FAILURE;
244 }
245
246 /*
247 * Check to make sure at least one of the keys matches the signature. Since
248 * any key can match, we need to try each before determining a verification
249 * failure has happened.
250 */
251 size_t i = 0;
252 for (const auto& key : keys) {
253 const uint8_t* hash;
254 int hash_nid;
255 switch (key.hash_len) {
256 case SHA_DIGEST_LENGTH:
257 hash = sha1;
258 hash_nid = NID_sha1;
259 break;
260 case SHA256_DIGEST_LENGTH:
261 hash = sha256;
262 hash_nid = NID_sha256;
263 break;
264 default:
265 continue;
266 }
267
268 // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that
269 // the signing tool appends after the signature itself.
270 if (key.key_type == Certificate::KEY_TYPE_RSA) {
271 if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der,
272 sig_der_length, key.rsa.get())) {
273 LOGI("failed to verify against RSA key %zu\n", i);
274 continue;
275 }
276
277 LOGI("whole-file signature verified against RSA key %zu\n", i);
278 free(sig_der);
279 return VERIFY_SUCCESS;
280 } else if (key.key_type == Certificate::KEY_TYPE_EC
281 && key.hash_len == SHA256_DIGEST_LENGTH) {
282 if (!ECDSA_verify(0, hash, key.hash_len, sig_der,
283 sig_der_length, key.ec.get())) {
284 LOGI("failed to verify against EC key %zu\n", i);
285 continue;
286 }
287
288 LOGI("whole-file signature verified against EC key %zu\n", i);
289 free(sig_der);
290 return VERIFY_SUCCESS;
291 } else {
292 LOGI("Unknown key type %d\n", key.key_type);
293 }
294 i++;
295 }
296
297 if (need_sha1) {
298 LOGI("SHA-1 digest: %s\n", print_hex(sha1, SHA_DIGEST_LENGTH).c_str());
299 }
300 if (need_sha256) {
301 LOGI("SHA-256 digest: %s\n", print_hex(sha256, SHA256_DIGEST_LENGTH).c_str());
302 }
303 free(sig_der);
304 LOGE("failed to verify whole-file signature\n");
305 return VERIFY_FAILURE;
306 }
307
parse_rsa_key(FILE * file,uint32_t exponent)308 std::unique_ptr<RSA, RSADeleter> parse_rsa_key(FILE* file, uint32_t exponent) {
309 // Read key length in words and n0inv. n0inv is a precomputed montgomery
310 // parameter derived from the modulus and can be used to speed up
311 // verification. n0inv is 32 bits wide here, assuming the verification logic
312 // uses 32 bit arithmetic. However, BoringSSL may use a word size of 64 bits
313 // internally, in which case we don't have a valid n0inv. Thus, we just
314 // ignore the montgomery parameters and have BoringSSL recompute them
315 // internally. If/When the speedup from using the montgomery parameters
316 // becomes relevant, we can add more sophisticated code here to obtain a
317 // 64-bit n0inv and initialize the montgomery parameters in the key object.
318 uint32_t key_len_words = 0;
319 uint32_t n0inv = 0;
320 if (fscanf(file, " %i , 0x%x", &key_len_words, &n0inv) != 2) {
321 return nullptr;
322 }
323
324 if (key_len_words > 8192 / 32) {
325 LOGE("key length (%d) too large\n", key_len_words);
326 return nullptr;
327 }
328
329 // Read the modulus.
330 std::unique_ptr<uint32_t[]> modulus(new uint32_t[key_len_words]);
331 if (fscanf(file, " , { %u", &modulus[0]) != 1) {
332 return nullptr;
333 }
334 for (uint32_t i = 1; i < key_len_words; ++i) {
335 if (fscanf(file, " , %u", &modulus[i]) != 1) {
336 return nullptr;
337 }
338 }
339
340 // Cconvert from little-endian array of little-endian words to big-endian
341 // byte array suitable as input for BN_bin2bn.
342 std::reverse((uint8_t*)modulus.get(),
343 (uint8_t*)(modulus.get() + key_len_words));
344
345 // The next sequence of values is the montgomery parameter R^2. Since we
346 // generally don't have a valid |n0inv|, we ignore this (see comment above).
347 uint32_t rr_value;
348 if (fscanf(file, " } , { %u", &rr_value) != 1) {
349 return nullptr;
350 }
351 for (uint32_t i = 1; i < key_len_words; ++i) {
352 if (fscanf(file, " , %u", &rr_value) != 1) {
353 return nullptr;
354 }
355 }
356 if (fscanf(file, " } } ") != 0) {
357 return nullptr;
358 }
359
360 // Initialize the key.
361 std::unique_ptr<RSA, RSADeleter> key(RSA_new());
362 if (!key) {
363 return nullptr;
364 }
365
366 key->n = BN_bin2bn((uint8_t*)modulus.get(),
367 key_len_words * sizeof(uint32_t), NULL);
368 if (!key->n) {
369 return nullptr;
370 }
371
372 key->e = BN_new();
373 if (!key->e || !BN_set_word(key->e, exponent)) {
374 return nullptr;
375 }
376
377 return key;
378 }
379
380 struct BNDeleter {
operator ()BNDeleter381 void operator()(BIGNUM* bn) {
382 BN_free(bn);
383 }
384 };
385
parse_ec_key(FILE * file)386 std::unique_ptr<EC_KEY, ECKEYDeleter> parse_ec_key(FILE* file) {
387 uint32_t key_len_bytes = 0;
388 if (fscanf(file, " %i", &key_len_bytes) != 1) {
389 return nullptr;
390 }
391
392 std::unique_ptr<EC_GROUP, void (*)(EC_GROUP*)> group(
393 EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1), EC_GROUP_free);
394 if (!group) {
395 return nullptr;
396 }
397
398 // Verify that |key_len| matches the group order.
399 if (key_len_bytes != BN_num_bytes(EC_GROUP_get0_order(group.get()))) {
400 return nullptr;
401 }
402
403 // Read the public key coordinates. Note that the byte order in the file is
404 // little-endian, so we convert to big-endian here.
405 std::unique_ptr<uint8_t[]> bytes(new uint8_t[key_len_bytes]);
406 std::unique_ptr<BIGNUM, BNDeleter> point[2];
407 for (int i = 0; i < 2; ++i) {
408 unsigned int byte = 0;
409 if (fscanf(file, " , { %u", &byte) != 1) {
410 return nullptr;
411 }
412 bytes[key_len_bytes - 1] = byte;
413
414 for (size_t i = 1; i < key_len_bytes; ++i) {
415 if (fscanf(file, " , %u", &byte) != 1) {
416 return nullptr;
417 }
418 bytes[key_len_bytes - i - 1] = byte;
419 }
420
421 point[i].reset(BN_bin2bn(bytes.get(), key_len_bytes, nullptr));
422 if (!point[i]) {
423 return nullptr;
424 }
425
426 if (fscanf(file, " }") != 0) {
427 return nullptr;
428 }
429 }
430
431 if (fscanf(file, " } ") != 0) {
432 return nullptr;
433 }
434
435 // Create and initialize the key.
436 std::unique_ptr<EC_KEY, ECKEYDeleter> key(EC_KEY_new());
437 if (!key || !EC_KEY_set_group(key.get(), group.get()) ||
438 !EC_KEY_set_public_key_affine_coordinates(key.get(), point[0].get(),
439 point[1].get())) {
440 return nullptr;
441 }
442
443 return key;
444 }
445
446 // Reads a file containing one or more public keys as produced by
447 // DumpPublicKey: this is an RSAPublicKey struct as it would appear
448 // as a C source literal, eg:
449 //
450 // "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
451 //
452 // For key versions newer than the original 2048-bit e=3 keys
453 // supported by Android, the string is preceded by a version
454 // identifier, eg:
455 //
456 // "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
457 //
458 // (Note that the braces and commas in this example are actual
459 // characters the parser expects to find in the file; the ellipses
460 // indicate more numbers omitted from this example.)
461 //
462 // The file may contain multiple keys in this format, separated by
463 // commas. The last key must not be followed by a comma.
464 //
465 // A Certificate is a pair of an RSAPublicKey and a particular hash
466 // (we support SHA-1 and SHA-256; we store the hash length to signify
467 // which is being used). The hash used is implied by the version number.
468 //
469 // 1: 2048-bit RSA key with e=3 and SHA-1 hash
470 // 2: 2048-bit RSA key with e=65537 and SHA-1 hash
471 // 3: 2048-bit RSA key with e=3 and SHA-256 hash
472 // 4: 2048-bit RSA key with e=65537 and SHA-256 hash
473 // 5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
474 //
475 // Returns true on success, and appends the found keys (at least one) to certs.
476 // Otherwise returns false if the file failed to parse, or if it contains zero
477 // keys. The contents in certs would be unspecified on failure.
load_keys(const char * filename,std::vector<Certificate> & certs)478 bool load_keys(const char* filename, std::vector<Certificate>& certs) {
479 std::unique_ptr<FILE, decltype(&fclose)> f(fopen(filename, "r"), fclose);
480 if (!f) {
481 LOGE("opening %s: %s\n", filename, strerror(errno));
482 return false;
483 }
484
485 while (true) {
486 certs.emplace_back(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr);
487 Certificate& cert = certs.back();
488 uint32_t exponent = 0;
489
490 char start_char;
491 if (fscanf(f.get(), " %c", &start_char) != 1) return false;
492 if (start_char == '{') {
493 // a version 1 key has no version specifier.
494 cert.key_type = Certificate::KEY_TYPE_RSA;
495 exponent = 3;
496 cert.hash_len = SHA_DIGEST_LENGTH;
497 } else if (start_char == 'v') {
498 int version;
499 if (fscanf(f.get(), "%d {", &version) != 1) return false;
500 switch (version) {
501 case 2:
502 cert.key_type = Certificate::KEY_TYPE_RSA;
503 exponent = 65537;
504 cert.hash_len = SHA_DIGEST_LENGTH;
505 break;
506 case 3:
507 cert.key_type = Certificate::KEY_TYPE_RSA;
508 exponent = 3;
509 cert.hash_len = SHA256_DIGEST_LENGTH;
510 break;
511 case 4:
512 cert.key_type = Certificate::KEY_TYPE_RSA;
513 exponent = 65537;
514 cert.hash_len = SHA256_DIGEST_LENGTH;
515 break;
516 case 5:
517 cert.key_type = Certificate::KEY_TYPE_EC;
518 cert.hash_len = SHA256_DIGEST_LENGTH;
519 break;
520 default:
521 return false;
522 }
523 }
524
525 if (cert.key_type == Certificate::KEY_TYPE_RSA) {
526 cert.rsa = parse_rsa_key(f.get(), exponent);
527 if (!cert.rsa) {
528 return false;
529 }
530
531 LOGI("read key e=%d hash=%d\n", exponent, cert.hash_len);
532 } else if (cert.key_type == Certificate::KEY_TYPE_EC) {
533 cert.ec = parse_ec_key(f.get());
534 if (!cert.ec) {
535 return false;
536 }
537 } else {
538 LOGE("Unknown key type %d\n", cert.key_type);
539 return false;
540 }
541
542 // if the line ends in a comma, this file has more keys.
543 int ch = fgetc(f.get());
544 if (ch == ',') {
545 // more keys to come.
546 continue;
547 } else if (ch == EOF) {
548 break;
549 } else {
550 LOGE("unexpected character between keys\n");
551 return false;
552 }
553 }
554
555 return true;
556 }
557