1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/cipher.h>
58 
59 #include <assert.h>
60 #include <string.h>
61 
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64 #include <openssl/obj.h>
65 
66 #include "internal.h"
67 
68 
EVP_get_cipherbynid(int nid)69 const EVP_CIPHER *EVP_get_cipherbynid(int nid) {
70   switch (nid) {
71     case NID_rc2_cbc:
72       return EVP_rc2_cbc();
73     case NID_rc2_40_cbc:
74       return EVP_rc2_40_cbc();
75     case NID_des_ede3_cbc:
76       return EVP_des_ede3_cbc();
77     case NID_des_ede_cbc:
78       return EVP_des_cbc();
79     case NID_aes_128_cbc:
80       return EVP_aes_128_cbc();
81     case NID_aes_192_cbc:
82       return EVP_aes_192_cbc();
83     case NID_aes_256_cbc:
84       return EVP_aes_256_cbc();
85     default:
86       return NULL;
87   }
88 }
89 
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX * ctx)90 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) {
91   memset(ctx, 0, sizeof(EVP_CIPHER_CTX));
92 }
93 
EVP_CIPHER_CTX_new(void)94 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) {
95   EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX));
96   if (ctx) {
97     EVP_CIPHER_CTX_init(ctx);
98   }
99   return ctx;
100 }
101 
EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX * c)102 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) {
103   if (c->cipher != NULL) {
104     if (c->cipher->cleanup) {
105       c->cipher->cleanup(c);
106     }
107     OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size);
108   }
109   OPENSSL_free(c->cipher_data);
110 
111   memset(c, 0, sizeof(EVP_CIPHER_CTX));
112   return 1;
113 }
114 
EVP_CIPHER_CTX_free(EVP_CIPHER_CTX * ctx)115 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) {
116   if (ctx) {
117     EVP_CIPHER_CTX_cleanup(ctx);
118     OPENSSL_free(ctx);
119   }
120 }
121 
EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX * out,const EVP_CIPHER_CTX * in)122 int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) {
123   if (in == NULL || in->cipher == NULL) {
124     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED);
125     return 0;
126   }
127 
128   EVP_CIPHER_CTX_cleanup(out);
129   memcpy(out, in, sizeof(EVP_CIPHER_CTX));
130 
131   if (in->cipher_data && in->cipher->ctx_size) {
132     out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size);
133     if (!out->cipher_data) {
134       OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
135       return 0;
136     }
137     memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size);
138   }
139 
140   if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
141     return in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out);
142   }
143 
144   return 1;
145 }
146 
EVP_CipherInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * engine,const uint8_t * key,const uint8_t * iv,int enc)147 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
148                       ENGINE *engine, const uint8_t *key, const uint8_t *iv,
149                       int enc) {
150   if (enc == -1) {
151     enc = ctx->encrypt;
152   } else {
153     if (enc) {
154       enc = 1;
155     }
156     ctx->encrypt = enc;
157   }
158 
159   if (cipher) {
160     /* Ensure a context left from last time is cleared (the previous check
161      * attempted to avoid this if the same ENGINE and EVP_CIPHER could be
162      * used). */
163     if (ctx->cipher) {
164       EVP_CIPHER_CTX_cleanup(ctx);
165       /* Restore encrypt and flags */
166       ctx->encrypt = enc;
167     }
168 
169     ctx->cipher = cipher;
170     if (ctx->cipher->ctx_size) {
171       ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size);
172       if (!ctx->cipher_data) {
173         ctx->cipher = NULL;
174         OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE);
175         return 0;
176       }
177     } else {
178       ctx->cipher_data = NULL;
179     }
180 
181     ctx->key_len = cipher->key_len;
182     ctx->flags = 0;
183 
184     if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
185       if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
186         ctx->cipher = NULL;
187         OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR);
188         return 0;
189       }
190     }
191   } else if (!ctx->cipher) {
192     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
193     return 0;
194   }
195 
196   /* we assume block size is a power of 2 in *cryptUpdate */
197   assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 ||
198          ctx->cipher->block_size == 16);
199 
200   if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
201     switch (EVP_CIPHER_CTX_mode(ctx)) {
202       case EVP_CIPH_STREAM_CIPHER:
203       case EVP_CIPH_ECB_MODE:
204         break;
205 
206       case EVP_CIPH_CFB_MODE:
207         ctx->num = 0;
208         /* fall-through */
209 
210       case EVP_CIPH_CBC_MODE:
211         assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
212         if (iv) {
213           memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
214         }
215         memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
216         break;
217 
218       case EVP_CIPH_CTR_MODE:
219       case EVP_CIPH_OFB_MODE:
220         ctx->num = 0;
221         /* Don't reuse IV for CTR mode */
222         if (iv) {
223           memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
224         }
225         break;
226 
227       default:
228         return 0;
229     }
230   }
231 
232   if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
233     if (!ctx->cipher->init(ctx, key, iv, enc)) {
234       return 0;
235     }
236   }
237 
238   ctx->buf_len = 0;
239   ctx->final_used = 0;
240   ctx->block_mask = ctx->cipher->block_size - 1;
241   return 1;
242 }
243 
EVP_EncryptInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * impl,const uint8_t * key,const uint8_t * iv)244 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
245                        ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
246   return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
247 }
248 
EVP_DecryptInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * impl,const uint8_t * key,const uint8_t * iv)249 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
250                        ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
251   return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
252 }
253 
EVP_EncryptUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)254 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
255                       const uint8_t *in, int in_len) {
256   int i, j, bl;
257 
258   if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
259     i = ctx->cipher->cipher(ctx, out, in, in_len);
260     if (i < 0) {
261       return 0;
262     } else {
263       *out_len = i;
264     }
265     return 1;
266   }
267 
268   if (in_len <= 0) {
269     *out_len = 0;
270     return in_len == 0;
271   }
272 
273   if (ctx->buf_len == 0 && (in_len & ctx->block_mask) == 0) {
274     if (ctx->cipher->cipher(ctx, out, in, in_len)) {
275       *out_len = in_len;
276       return 1;
277     } else {
278       *out_len = 0;
279       return 0;
280     }
281   }
282 
283   i = ctx->buf_len;
284   bl = ctx->cipher->block_size;
285   assert(bl <= (int)sizeof(ctx->buf));
286   if (i != 0) {
287     if (i + in_len < bl) {
288       memcpy(&ctx->buf[i], in, in_len);
289       ctx->buf_len += in_len;
290       *out_len = 0;
291       return 1;
292     } else {
293       j = bl - i;
294       memcpy(&ctx->buf[i], in, j);
295       if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) {
296         return 0;
297       }
298       in_len -= j;
299       in += j;
300       out += bl;
301       *out_len = bl;
302     }
303   } else {
304     *out_len = 0;
305   }
306 
307   i = in_len & ctx->block_mask;
308   in_len -= i;
309   if (in_len > 0) {
310     if (!ctx->cipher->cipher(ctx, out, in, in_len)) {
311       return 0;
312     }
313     *out_len += in_len;
314   }
315 
316   if (i != 0) {
317     memcpy(ctx->buf, &in[in_len], i);
318   }
319   ctx->buf_len = i;
320   return 1;
321 }
322 
EVP_EncryptFinal_ex(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)323 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
324   int n, ret;
325   unsigned int i, b, bl;
326 
327   if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
328     ret = ctx->cipher->cipher(ctx, out, NULL, 0);
329     if (ret < 0) {
330       return 0;
331     } else {
332       *out_len = ret;
333     }
334     return 1;
335   }
336 
337   b = ctx->cipher->block_size;
338   assert(b <= sizeof(ctx->buf));
339   if (b == 1) {
340     *out_len = 0;
341     return 1;
342   }
343 
344   bl = ctx->buf_len;
345   if (ctx->flags & EVP_CIPH_NO_PADDING) {
346     if (bl) {
347       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
348       return 0;
349     }
350     *out_len = 0;
351     return 1;
352   }
353 
354   n = b - bl;
355   for (i = bl; i < b; i++) {
356     ctx->buf[i] = n;
357   }
358   ret = ctx->cipher->cipher(ctx, out, ctx->buf, b);
359 
360   if (ret) {
361     *out_len = b;
362   }
363 
364   return ret;
365 }
366 
EVP_DecryptUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)367 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
368                       const uint8_t *in, int in_len) {
369   int fix_len;
370   unsigned int b;
371 
372   if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
373     int r = ctx->cipher->cipher(ctx, out, in, in_len);
374     if (r < 0) {
375       *out_len = 0;
376       return 0;
377     } else {
378       *out_len = r;
379     }
380     return 1;
381   }
382 
383   if (in_len <= 0) {
384     *out_len = 0;
385     return in_len == 0;
386   }
387 
388   if (ctx->flags & EVP_CIPH_NO_PADDING) {
389     return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
390   }
391 
392   b = ctx->cipher->block_size;
393   assert(b <= sizeof(ctx->final));
394 
395   if (ctx->final_used) {
396     memcpy(out, ctx->final, b);
397     out += b;
398     fix_len = 1;
399   } else {
400     fix_len = 0;
401   }
402 
403   if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) {
404     return 0;
405   }
406 
407   /* if we have 'decrypted' a multiple of block size, make sure
408    * we have a copy of this last block */
409   if (b > 1 && !ctx->buf_len) {
410     *out_len -= b;
411     ctx->final_used = 1;
412     memcpy(ctx->final, &out[*out_len], b);
413   } else {
414     ctx->final_used = 0;
415   }
416 
417   if (fix_len) {
418     *out_len += b;
419   }
420 
421   return 1;
422 }
423 
EVP_DecryptFinal_ex(EVP_CIPHER_CTX * ctx,unsigned char * out,int * out_len)424 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) {
425   int i, n;
426   unsigned int b;
427   *out_len = 0;
428 
429   if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
430     i = ctx->cipher->cipher(ctx, out, NULL, 0);
431     if (i < 0) {
432       return 0;
433     } else {
434       *out_len = i;
435     }
436     return 1;
437   }
438 
439   b = ctx->cipher->block_size;
440   if (ctx->flags & EVP_CIPH_NO_PADDING) {
441     if (ctx->buf_len) {
442       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
443       return 0;
444     }
445     *out_len = 0;
446     return 1;
447   }
448 
449   if (b > 1) {
450     if (ctx->buf_len || !ctx->final_used) {
451       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH);
452       return 0;
453     }
454     assert(b <= sizeof(ctx->final));
455 
456     /* The following assumes that the ciphertext has been authenticated.
457      * Otherwise it provides a padding oracle. */
458     n = ctx->final[b - 1];
459     if (n == 0 || n > (int)b) {
460       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
461       return 0;
462     }
463 
464     for (i = 0; i < n; i++) {
465       if (ctx->final[--b] != n) {
466         OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
467         return 0;
468       }
469     }
470 
471     n = ctx->cipher->block_size - n;
472     for (i = 0; i < n; i++) {
473       out[i] = ctx->final[i];
474     }
475     *out_len = n;
476   } else {
477     *out_len = 0;
478   }
479 
480   return 1;
481 }
482 
EVP_Cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t in_len)483 int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
484                size_t in_len) {
485   return ctx->cipher->cipher(ctx, out, in, in_len);
486 }
487 
EVP_CipherUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)488 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
489                      const uint8_t *in, int in_len) {
490   if (ctx->encrypt) {
491     return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
492   } else {
493     return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
494   }
495 }
496 
EVP_CipherFinal_ex(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)497 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
498   if (ctx->encrypt) {
499     return EVP_EncryptFinal_ex(ctx, out, out_len);
500   } else {
501     return EVP_DecryptFinal_ex(ctx, out, out_len);
502   }
503 }
504 
EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX * ctx)505 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) {
506   return ctx->cipher;
507 }
508 
EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX * ctx)509 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) {
510   return ctx->cipher->nid;
511 }
512 
EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX * ctx)513 unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) {
514   return ctx->cipher->block_size;
515 }
516 
EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX * ctx)517 unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) {
518   return ctx->key_len;
519 }
520 
EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX * ctx)521 unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) {
522   return ctx->cipher->iv_len;
523 }
524 
EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX * ctx)525 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) {
526   return ctx->app_data;
527 }
528 
EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX * ctx,void * data)529 void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) {
530   ctx->app_data = data;
531 }
532 
EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX * ctx)533 uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) {
534   return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK;
535 }
536 
EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX * ctx)537 uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) {
538   return ctx->cipher->flags & EVP_CIPH_MODE_MASK;
539 }
540 
EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX * ctx,int command,int arg,void * ptr)541 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) {
542   int ret;
543   if (!ctx->cipher) {
544     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
545     return 0;
546   }
547 
548   if (!ctx->cipher->ctrl) {
549     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
550     return 0;
551   }
552 
553   ret = ctx->cipher->ctrl(ctx, command, arg, ptr);
554   if (ret == -1) {
555     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED);
556     return 0;
557   }
558 
559   return ret;
560 }
561 
EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX * ctx,int pad)562 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) {
563   if (pad) {
564     ctx->flags &= ~EVP_CIPH_NO_PADDING;
565   } else {
566     ctx->flags |= EVP_CIPH_NO_PADDING;
567   }
568   return 1;
569 }
570 
EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX * c,unsigned key_len)571 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) {
572   if (c->key_len == key_len) {
573     return 1;
574   }
575 
576   if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
577     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH);
578     return 0;
579   }
580 
581   c->key_len = key_len;
582   return 1;
583 }
584 
EVP_CIPHER_nid(const EVP_CIPHER * cipher)585 int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; }
586 
EVP_CIPHER_block_size(const EVP_CIPHER * cipher)587 unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) {
588   return cipher->block_size;
589 }
590 
EVP_CIPHER_key_length(const EVP_CIPHER * cipher)591 unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) {
592   return cipher->key_len;
593 }
594 
EVP_CIPHER_iv_length(const EVP_CIPHER * cipher)595 unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) {
596   return cipher->iv_len;
597 }
598 
EVP_CIPHER_flags(const EVP_CIPHER * cipher)599 uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) {
600   return cipher->flags & ~EVP_CIPH_MODE_MASK;
601 }
602 
EVP_CIPHER_mode(const EVP_CIPHER * cipher)603 uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) {
604   return cipher->flags & EVP_CIPH_MODE_MASK;
605 }
606 
EVP_CipherInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv,int enc)607 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
608                    const uint8_t *key, const uint8_t *iv, int enc) {
609   if (cipher) {
610     EVP_CIPHER_CTX_init(ctx);
611   }
612   return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
613 }
614 
EVP_EncryptInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv)615 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
616                     const uint8_t *key, const uint8_t *iv) {
617   return EVP_CipherInit(ctx, cipher, key, iv, 1);
618 }
619 
EVP_DecryptInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv)620 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
621                     const uint8_t *key, const uint8_t *iv) {
622   return EVP_CipherInit(ctx, cipher, key, iv, 0);
623 }
624 
EVP_add_cipher_alias(const char * a,const char * b)625 int EVP_add_cipher_alias(const char *a, const char *b) {
626   return 1;
627 }
628 
EVP_get_cipherbyname(const char * name)629 const EVP_CIPHER *EVP_get_cipherbyname(const char *name) {
630   if (OPENSSL_strcasecmp(name, "rc4") == 0) {
631     return EVP_rc4();
632   } else if (OPENSSL_strcasecmp(name, "des-cbc") == 0) {
633     return EVP_des_cbc();
634   } else if (OPENSSL_strcasecmp(name, "des-ede3-cbc") == 0 ||
635              OPENSSL_strcasecmp(name, "3des") == 0) {
636     return EVP_des_ede3_cbc();
637   } else if (OPENSSL_strcasecmp(name, "aes-128-cbc") == 0) {
638     return EVP_aes_128_cbc();
639   } else if (OPENSSL_strcasecmp(name, "aes-256-cbc") == 0) {
640     return EVP_aes_256_cbc();
641   } else if (OPENSSL_strcasecmp(name, "aes-128-ctr") == 0) {
642     return EVP_aes_128_ctr();
643   } else if (OPENSSL_strcasecmp(name, "aes-256-ctr") == 0) {
644     return EVP_aes_256_ctr();
645   } else if (OPENSSL_strcasecmp(name, "aes-128-ecb") == 0) {
646     return EVP_aes_128_ecb();
647   } else if (OPENSSL_strcasecmp(name, "aes-256-ecb") == 0) {
648     return EVP_aes_256_ecb();
649   }
650 
651   return NULL;
652 }
653