1#!/usr/bin/env perl 2 3# ==================================================================== 4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL 5# project. The module is, however, dual licensed under OpenSSL and 6# CRYPTOGAMS licenses depending on where you obtain it. For further 7# details see http://www.openssl.org/~appro/cryptogams/. 8# ==================================================================== 9 10# At some point it became apparent that the original SSLeay RC4 11# assembler implementation performs suboptimally on latest IA-32 12# microarchitectures. After re-tuning performance has changed as 13# following: 14# 15# Pentium -10% 16# Pentium III +12% 17# AMD +50%(*) 18# P4 +250%(**) 19# 20# (*) This number is actually a trade-off:-) It's possible to 21# achieve +72%, but at the cost of -48% off PIII performance. 22# In other words code performing further 13% faster on AMD 23# would perform almost 2 times slower on Intel PIII... 24# For reference! This code delivers ~80% of rc4-amd64.pl 25# performance on the same Opteron machine. 26# (**) This number requires compressed key schedule set up by 27# RC4_set_key [see commentary below for further details]. 28# 29# <appro@fy.chalmers.se> 30 31# May 2011 32# 33# Optimize for Core2 and Westmere [and incidentally Opteron]. Current 34# performance in cycles per processed byte (less is better) and 35# improvement relative to previous version of this module is: 36# 37# Pentium 10.2 # original numbers 38# Pentium III 7.8(*) 39# Intel P4 7.5 40# 41# Opteron 6.1/+20% # new MMX numbers 42# Core2 5.3/+67%(**) 43# Westmere 5.1/+94%(**) 44# Sandy Bridge 5.0/+8% 45# Atom 12.6/+6% 46# 47# (*) PIII can actually deliver 6.6 cycles per byte with MMX code, 48# but this specific code performs poorly on Core2. And vice 49# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs 50# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU 51# [anymore], I chose to discard PIII-specific code path and opt 52# for original IALU-only code, which is why MMX/SSE code path 53# is guarded by SSE2 bit (see below), not MMX/SSE. 54# (**) Performance vs. block size on Core2 and Westmere had a maximum 55# at ... 64 bytes block size. And it was quite a maximum, 40-60% 56# in comparison to largest 8KB block size. Above improvement 57# coefficients are for the largest block size. 58 59$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 60push(@INC,"${dir}","${dir}../../perlasm"); 61require "x86asm.pl"; 62 63&asm_init($ARGV[0],"rc4-586.pl",$x86only = $ARGV[$#ARGV] eq "386"); 64 65$xx="eax"; 66$yy="ebx"; 67$tx="ecx"; 68$ty="edx"; 69$inp="esi"; 70$out="ebp"; 71$dat="edi"; 72 73sub RC4_loop { 74 my $i=shift; 75 my $func = ($i==0)?*mov:*or; 76 77 &add (&LB($yy),&LB($tx)); 78 &mov ($ty,&DWP(0,$dat,$yy,4)); 79 &mov (&DWP(0,$dat,$yy,4),$tx); 80 &mov (&DWP(0,$dat,$xx,4),$ty); 81 &add ($ty,$tx); 82 &inc (&LB($xx)); 83 &and ($ty,0xff); 84 &ror ($out,8) if ($i!=0); 85 if ($i<3) { 86 &mov ($tx,&DWP(0,$dat,$xx,4)); 87 } else { 88 &mov ($tx,&wparam(3)); # reload [re-biased] out 89 } 90 &$func ($out,&DWP(0,$dat,$ty,4)); 91} 92 93if ($alt=0) { 94 # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, 95 # but ~40% slower on Core2 and Westmere... Attempt to add movz 96 # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet 97 # on Core2 with movz it's almost 20% slower than below alternative 98 # code... Yes, it's a total mess... 99 my @XX=($xx,$out); 100 $RC4_loop_mmx = sub { # SSE actually... 101 my $i=shift; 102 my $j=$i<=0?0:$i>>1; 103 my $mm=$i<=0?"mm0":"mm".($i&1); 104 105 &add (&LB($yy),&LB($tx)); 106 &lea (@XX[1],&DWP(1,@XX[0])); 107 &pxor ("mm2","mm0") if ($i==0); 108 &psllq ("mm1",8) if ($i==0); 109 &and (@XX[1],0xff); 110 &pxor ("mm0","mm0") if ($i<=0); 111 &mov ($ty,&DWP(0,$dat,$yy,4)); 112 &mov (&DWP(0,$dat,$yy,4),$tx); 113 &pxor ("mm1","mm2") if ($i==0); 114 &mov (&DWP(0,$dat,$XX[0],4),$ty); 115 &add (&LB($ty),&LB($tx)); 116 &movd (@XX[0],"mm7") if ($i==0); 117 &mov ($tx,&DWP(0,$dat,@XX[1],4)); 118 &pxor ("mm1","mm1") if ($i==1); 119 &movq ("mm2",&QWP(0,$inp)) if ($i==1); 120 &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); 121 &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); 122 123 push (@XX,shift(@XX)) if ($i>=0); 124 } 125} else { 126 # Using pinsrw here improves performane on Intel CPUs by 2-3%, but 127 # brings down AMD by 7%... 128 $RC4_loop_mmx = sub { 129 my $i=shift; 130 131 &add (&LB($yy),&LB($tx)); 132 &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); 133 &mov ($ty,&DWP(0,$dat,$yy,4)); 134 &mov (&DWP(0,$dat,$yy,4),$tx); 135 &mov (&DWP(0,$dat,$xx,4),$ty); 136 &inc ($xx); 137 &add ($ty,$tx); 138 &movz ($xx,&LB($xx)); # (*) 139 &movz ($ty,&LB($ty)); # (*) 140 &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); 141 &movq ("mm0",&QWP(0,$inp)) if ($i<=0); 142 &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); 143 &mov ($tx,&DWP(0,$dat,$xx,4)); 144 &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); 145 146 # (*) This is the key to Core2 and Westmere performance. 147 # Whithout movz out-of-order execution logic confuses 148 # itself and fails to reorder loads and stores. Problem 149 # appears to be fixed in Sandy Bridge... 150 } 151} 152 153&external_label("OPENSSL_ia32cap_P"); 154 155# void asm_RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); 156&function_begin("asm_RC4"); 157 &mov ($dat,&wparam(0)); # load key schedule pointer 158 &mov ($ty, &wparam(1)); # load len 159 &mov ($inp,&wparam(2)); # load inp 160 &mov ($out,&wparam(3)); # load out 161 162 &xor ($xx,$xx); # avoid partial register stalls 163 &xor ($yy,$yy); 164 165 &cmp ($ty,0); # safety net 166 &je (&label("abort")); 167 168 &mov (&LB($xx),&BP(0,$dat)); # load key->x 169 &mov (&LB($yy),&BP(4,$dat)); # load key->y 170 &add ($dat,8); 171 172 &lea ($tx,&DWP(0,$inp,$ty)); 173 &sub ($out,$inp); # re-bias out 174 &mov (&wparam(1),$tx); # save input+len 175 176 &inc (&LB($xx)); 177 178 # detect compressed key schedule... 179 &cmp (&DWP(256,$dat),-1); 180 &je (&label("RC4_CHAR")); 181 182 &mov ($tx,&DWP(0,$dat,$xx,4)); 183 184 &and ($ty,-4); # how many 4-byte chunks? 185 &jz (&label("loop1")); 186 187 &mov (&wparam(3),$out); # $out as accumulator in these loops 188 if ($x86only) { 189 &jmp (&label("go4loop4")); 190 } else { 191 &test ($ty,-8); 192 &jz (&label("go4loop4")); 193 194 &picmeup($out,"OPENSSL_ia32cap_P"); 195 &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX] 196 &jnc (&label("go4loop4")); 197 198 &mov ($out,&wparam(3)) if (!$alt); 199 &movd ("mm7",&wparam(3)) if ($alt); 200 &and ($ty,-8); 201 &lea ($ty,&DWP(-8,$inp,$ty)); 202 &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 203 204 &$RC4_loop_mmx(-1); 205 &jmp(&label("loop_mmx_enter")); 206 207 &set_label("loop_mmx",16); 208 &$RC4_loop_mmx(0); 209 &set_label("loop_mmx_enter"); 210 for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } 211 &mov ($ty,$yy); 212 &xor ($yy,$yy); # this is second key to Core2 213 &mov (&LB($yy),&LB($ty)); # and Westmere performance... 214 &cmp ($inp,&DWP(-4,$dat)); 215 &lea ($inp,&DWP(8,$inp)); 216 &jb (&label("loop_mmx")); 217 218 if ($alt) { 219 &movd ($out,"mm7"); 220 &pxor ("mm2","mm0"); 221 &psllq ("mm1",8); 222 &pxor ("mm1","mm2"); 223 &movq (&QWP(-8,$out,$inp),"mm1"); 224 } else { 225 &psllq ("mm1",56); 226 &pxor ("mm2","mm1"); 227 &movq (&QWP(-8,$out,$inp),"mm2"); 228 } 229 &emms (); 230 231 &cmp ($inp,&wparam(1)); # compare to input+len 232 &je (&label("done")); 233 &jmp (&label("loop1")); 234 } 235 236&set_label("go4loop4",16); 237 &lea ($ty,&DWP(-4,$inp,$ty)); 238 &mov (&wparam(2),$ty); # save input+(len/4)*4-4 239 240 &set_label("loop4"); 241 for ($i=0;$i<4;$i++) { RC4_loop($i); } 242 &ror ($out,8); 243 &xor ($out,&DWP(0,$inp)); 244 &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 245 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here 246 &lea ($inp,&DWP(4,$inp)); 247 &mov ($tx,&DWP(0,$dat,$xx,4)); 248 &jb (&label("loop4")); 249 250 &cmp ($inp,&wparam(1)); # compare to input+len 251 &je (&label("done")); 252 &mov ($out,&wparam(3)); # restore $out 253 254 &set_label("loop1",16); 255 &add (&LB($yy),&LB($tx)); 256 &mov ($ty,&DWP(0,$dat,$yy,4)); 257 &mov (&DWP(0,$dat,$yy,4),$tx); 258 &mov (&DWP(0,$dat,$xx,4),$ty); 259 &add ($ty,$tx); 260 &inc (&LB($xx)); 261 &and ($ty,0xff); 262 &mov ($ty,&DWP(0,$dat,$ty,4)); 263 &xor (&LB($ty),&BP(0,$inp)); 264 &lea ($inp,&DWP(1,$inp)); 265 &mov ($tx,&DWP(0,$dat,$xx,4)); 266 &cmp ($inp,&wparam(1)); # compare to input+len 267 &mov (&BP(-1,$out,$inp),&LB($ty)); 268 &jb (&label("loop1")); 269 270 &jmp (&label("done")); 271 272# this is essentially Intel P4 specific codepath... 273&set_label("RC4_CHAR",16); 274 &movz ($tx,&BP(0,$dat,$xx)); 275 # strangely enough unrolled loop performs over 20% slower... 276 &set_label("cloop1"); 277 &add (&LB($yy),&LB($tx)); 278 &movz ($ty,&BP(0,$dat,$yy)); 279 &mov (&BP(0,$dat,$yy),&LB($tx)); 280 &mov (&BP(0,$dat,$xx),&LB($ty)); 281 &add (&LB($ty),&LB($tx)); 282 &movz ($ty,&BP(0,$dat,$ty)); 283 &add (&LB($xx),1); 284 &xor (&LB($ty),&BP(0,$inp)); 285 &lea ($inp,&DWP(1,$inp)); 286 &movz ($tx,&BP(0,$dat,$xx)); 287 &cmp ($inp,&wparam(1)); 288 &mov (&BP(-1,$out,$inp),&LB($ty)); 289 &jb (&label("cloop1")); 290 291&set_label("done"); 292 &dec (&LB($xx)); 293 &mov (&DWP(-4,$dat),$yy); # save key->y 294 &mov (&BP(-8,$dat),&LB($xx)); # save key->x 295&set_label("abort"); 296&function_end("asm_RC4"); 297 298######################################################################## 299 300$inp="esi"; 301$out="edi"; 302$idi="ebp"; 303$ido="ecx"; 304$idx="edx"; 305 306# void asm_RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); 307&function_begin("asm_RC4_set_key"); 308 &mov ($out,&wparam(0)); # load key 309 &mov ($idi,&wparam(1)); # load len 310 &mov ($inp,&wparam(2)); # load data 311 &picmeup($idx,"OPENSSL_ia32cap_P"); 312 313 &lea ($out,&DWP(2*4,$out)); # &key->data 314 &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end 315 &neg ($idi); 316 &xor ("eax","eax"); 317 &mov (&DWP(-4,$out),$idi); # borrow key->y 318 319 &bt (&DWP(0,$idx),20); # check for bit#20 320 &jc (&label("c1stloop")); 321 322&set_label("w1stloop",16); 323 &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; 324 &add (&LB("eax"),1); # i++; 325 &jnc (&label("w1stloop")); 326 327 &xor ($ido,$ido); 328 &xor ($idx,$idx); 329 330&set_label("w2ndloop",16); 331 &mov ("eax",&DWP(0,$out,$ido,4)); 332 &add (&LB($idx),&BP(0,$inp,$idi)); 333 &add (&LB($idx),&LB("eax")); 334 &add ($idi,1); 335 &mov ("ebx",&DWP(0,$out,$idx,4)); 336 &jnz (&label("wnowrap")); 337 &mov ($idi,&DWP(-4,$out)); 338 &set_label("wnowrap"); 339 &mov (&DWP(0,$out,$idx,4),"eax"); 340 &mov (&DWP(0,$out,$ido,4),"ebx"); 341 &add (&LB($ido),1); 342 &jnc (&label("w2ndloop")); 343&jmp (&label("exit")); 344 345# Unlike all other x86 [and x86_64] implementations, Intel P4 core 346# [including EM64T] was found to perform poorly with above "32-bit" key 347# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded 348# assembler turned out to be 3.5x if re-coded for compressed 8-bit one, 349# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit 350# schedule for x86[_64], because non-P4 implementations suffer from 351# significant performance losses then, e.g. PIII exhibits >2x 352# deterioration, and so does Opteron. In order to assure optimal 353# all-round performance, we detect P4 at run-time and set up compressed 354# key schedule, which is recognized by RC4 procedure. 355 356&set_label("c1stloop",16); 357 &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; 358 &add (&LB("eax"),1); # i++; 359 &jnc (&label("c1stloop")); 360 361 &xor ($ido,$ido); 362 &xor ($idx,$idx); 363 &xor ("ebx","ebx"); 364 365&set_label("c2ndloop",16); 366 &mov (&LB("eax"),&BP(0,$out,$ido)); 367 &add (&LB($idx),&BP(0,$inp,$idi)); 368 &add (&LB($idx),&LB("eax")); 369 &add ($idi,1); 370 &mov (&LB("ebx"),&BP(0,$out,$idx)); 371 &jnz (&label("cnowrap")); 372 &mov ($idi,&DWP(-4,$out)); 373 &set_label("cnowrap"); 374 &mov (&BP(0,$out,$idx),&LB("eax")); 375 &mov (&BP(0,$out,$ido),&LB("ebx")); 376 &add (&LB($ido),1); 377 &jnc (&label("c2ndloop")); 378 379 &mov (&DWP(256,$out),-1); # mark schedule as compressed 380 381&set_label("exit"); 382 &xor ("eax","eax"); 383 &mov (&DWP(-8,$out),"eax"); # key->x=0; 384 &mov (&DWP(-4,$out),"eax"); # key->y=0; 385&function_end("asm_RC4_set_key"); 386 387# const char *RC4_options(void); 388&function_begin_B("RC4_options"); 389 &call (&label("pic_point")); 390&set_label("pic_point"); 391 &blindpop("eax"); 392 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); 393 &picmeup("edx","OPENSSL_ia32cap_P"); 394 &mov ("edx",&DWP(0,"edx")); 395 &bt ("edx",20); 396 &jc (&label("1xchar")); 397 &bt ("edx",26); 398 &jnc (&label("ret")); 399 &add ("eax",25); 400 &ret (); 401&set_label("1xchar"); 402 &add ("eax",12); 403&set_label("ret"); 404 &ret (); 405&set_label("opts",64); 406&asciz ("rc4(4x,int)"); 407&asciz ("rc4(1x,char)"); 408&asciz ("rc4(8x,mmx)"); 409&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); 410&align (64); 411&function_end_B("RC4_options"); 412 413&asm_finish(); 414 415