1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2000.
3 */
4 /* ====================================================================
5 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com). */
55
56 #include <openssl/rsa.h>
57
58 #include <assert.h>
59 #include <limits.h>
60 #include <string.h>
61
62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/bn.h>
65 #include <openssl/bytestring.h>
66 #include <openssl/err.h>
67 #include <openssl/mem.h>
68
69 #include "internal.h"
70
71
parse_integer_buggy(CBS * cbs,BIGNUM ** out,int buggy)72 static int parse_integer_buggy(CBS *cbs, BIGNUM **out, int buggy) {
73 assert(*out == NULL);
74 *out = BN_new();
75 if (*out == NULL) {
76 return 0;
77 }
78 if (buggy) {
79 return BN_cbs2unsigned_buggy(cbs, *out);
80 }
81 return BN_cbs2unsigned(cbs, *out);
82 }
83
parse_integer(CBS * cbs,BIGNUM ** out)84 static int parse_integer(CBS *cbs, BIGNUM **out) {
85 return parse_integer_buggy(cbs, out, 0 /* not buggy */);
86 }
87
marshal_integer(CBB * cbb,BIGNUM * bn)88 static int marshal_integer(CBB *cbb, BIGNUM *bn) {
89 if (bn == NULL) {
90 /* An RSA object may be missing some components. */
91 OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
92 return 0;
93 }
94 return BN_bn2cbb(cbb, bn);
95 }
96
parse_public_key(CBS * cbs,int buggy)97 static RSA *parse_public_key(CBS *cbs, int buggy) {
98 RSA *ret = RSA_new();
99 if (ret == NULL) {
100 return NULL;
101 }
102 CBS child;
103 if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
104 !parse_integer_buggy(&child, &ret->n, buggy) ||
105 !parse_integer(&child, &ret->e) ||
106 CBS_len(&child) != 0) {
107 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
108 RSA_free(ret);
109 return NULL;
110 }
111
112 if (!BN_is_odd(ret->e) ||
113 BN_num_bits(ret->e) < 2) {
114 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
115 RSA_free(ret);
116 return NULL;
117 }
118
119 return ret;
120 }
121
RSA_parse_public_key(CBS * cbs)122 RSA *RSA_parse_public_key(CBS *cbs) {
123 return parse_public_key(cbs, 0 /* not buggy */);
124 }
125
RSA_parse_public_key_buggy(CBS * cbs)126 RSA *RSA_parse_public_key_buggy(CBS *cbs) {
127 /* Estonian IDs issued between September 2014 to September 2015 are
128 * broken. See https://crbug.com/532048 and https://crbug.com/534766.
129 *
130 * TODO(davidben): Remove this code and callers in March 2016. */
131 return parse_public_key(cbs, 1 /* buggy */);
132 }
133
RSA_public_key_from_bytes(const uint8_t * in,size_t in_len)134 RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len) {
135 CBS cbs;
136 CBS_init(&cbs, in, in_len);
137 RSA *ret = RSA_parse_public_key(&cbs);
138 if (ret == NULL || CBS_len(&cbs) != 0) {
139 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
140 RSA_free(ret);
141 return NULL;
142 }
143 return ret;
144 }
145
RSA_marshal_public_key(CBB * cbb,const RSA * rsa)146 int RSA_marshal_public_key(CBB *cbb, const RSA *rsa) {
147 CBB child;
148 if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
149 !marshal_integer(&child, rsa->n) ||
150 !marshal_integer(&child, rsa->e) ||
151 !CBB_flush(cbb)) {
152 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
153 return 0;
154 }
155 return 1;
156 }
157
RSA_public_key_to_bytes(uint8_t ** out_bytes,size_t * out_len,const RSA * rsa)158 int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
159 const RSA *rsa) {
160 CBB cbb;
161 CBB_zero(&cbb);
162 if (!CBB_init(&cbb, 0) ||
163 !RSA_marshal_public_key(&cbb, rsa) ||
164 !CBB_finish(&cbb, out_bytes, out_len)) {
165 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
166 CBB_cleanup(&cbb);
167 return 0;
168 }
169 return 1;
170 }
171
172 /* kVersionTwoPrime and kVersionMulti are the supported values of the version
173 * field of an RSAPrivateKey structure (RFC 3447). */
174 static const uint64_t kVersionTwoPrime = 0;
175 static const uint64_t kVersionMulti = 1;
176
177 /* rsa_parse_additional_prime parses a DER-encoded OtherPrimeInfo from |cbs| and
178 * advances |cbs|. It returns a newly-allocated |RSA_additional_prime| on
179 * success or NULL on error. The |r| and |mont| fields of the result are set to
180 * NULL. */
rsa_parse_additional_prime(CBS * cbs)181 static RSA_additional_prime *rsa_parse_additional_prime(CBS *cbs) {
182 RSA_additional_prime *ret = OPENSSL_malloc(sizeof(RSA_additional_prime));
183 if (ret == NULL) {
184 OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
185 return 0;
186 }
187 memset(ret, 0, sizeof(RSA_additional_prime));
188
189 CBS child;
190 if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
191 !parse_integer(&child, &ret->prime) ||
192 !parse_integer(&child, &ret->exp) ||
193 !parse_integer(&child, &ret->coeff) ||
194 CBS_len(&child) != 0) {
195 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
196 RSA_additional_prime_free(ret);
197 return NULL;
198 }
199
200 return ret;
201 }
202
RSA_parse_private_key(CBS * cbs)203 RSA *RSA_parse_private_key(CBS *cbs) {
204 BN_CTX *ctx = NULL;
205 BIGNUM *product_of_primes_so_far = NULL;
206 RSA *ret = RSA_new();
207 if (ret == NULL) {
208 return NULL;
209 }
210
211 CBS child;
212 uint64_t version;
213 if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
214 !CBS_get_asn1_uint64(&child, &version)) {
215 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
216 goto err;
217 }
218
219 if (version != kVersionTwoPrime && version != kVersionMulti) {
220 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_VERSION);
221 goto err;
222 }
223
224 if (!parse_integer(&child, &ret->n) ||
225 !parse_integer(&child, &ret->e) ||
226 !parse_integer(&child, &ret->d) ||
227 !parse_integer(&child, &ret->p) ||
228 !parse_integer(&child, &ret->q) ||
229 !parse_integer(&child, &ret->dmp1) ||
230 !parse_integer(&child, &ret->dmq1) ||
231 !parse_integer(&child, &ret->iqmp)) {
232 goto err;
233 }
234
235 /* Multi-prime RSA requires a newer version. */
236 if (version == kVersionMulti &&
237 CBS_peek_asn1_tag(&child, CBS_ASN1_SEQUENCE)) {
238 CBS other_prime_infos;
239 if (!CBS_get_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE) ||
240 CBS_len(&other_prime_infos) == 0) {
241 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
242 goto err;
243 }
244 ret->additional_primes = sk_RSA_additional_prime_new_null();
245 if (ret->additional_primes == NULL) {
246 OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
247 goto err;
248 }
249
250 ctx = BN_CTX_new();
251 product_of_primes_so_far = BN_new();
252 if (ctx == NULL ||
253 product_of_primes_so_far == NULL ||
254 !BN_mul(product_of_primes_so_far, ret->p, ret->q, ctx)) {
255 goto err;
256 }
257
258 while (CBS_len(&other_prime_infos) > 0) {
259 RSA_additional_prime *ap = rsa_parse_additional_prime(&other_prime_infos);
260 if (ap == NULL) {
261 goto err;
262 }
263 if (!sk_RSA_additional_prime_push(ret->additional_primes, ap)) {
264 OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
265 RSA_additional_prime_free(ap);
266 goto err;
267 }
268 ap->r = BN_dup(product_of_primes_so_far);
269 if (ap->r == NULL ||
270 !BN_mul(product_of_primes_so_far, product_of_primes_so_far,
271 ap->prime, ctx)) {
272 goto err;
273 }
274 }
275 }
276
277 if (CBS_len(&child) != 0) {
278 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
279 goto err;
280 }
281
282 BN_CTX_free(ctx);
283 BN_free(product_of_primes_so_far);
284 return ret;
285
286 err:
287 BN_CTX_free(ctx);
288 BN_free(product_of_primes_so_far);
289 RSA_free(ret);
290 return NULL;
291 }
292
RSA_private_key_from_bytes(const uint8_t * in,size_t in_len)293 RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len) {
294 CBS cbs;
295 CBS_init(&cbs, in, in_len);
296 RSA *ret = RSA_parse_private_key(&cbs);
297 if (ret == NULL || CBS_len(&cbs) != 0) {
298 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
299 RSA_free(ret);
300 return NULL;
301 }
302 return ret;
303 }
304
RSA_marshal_private_key(CBB * cbb,const RSA * rsa)305 int RSA_marshal_private_key(CBB *cbb, const RSA *rsa) {
306 const int is_multiprime =
307 sk_RSA_additional_prime_num(rsa->additional_primes) > 0;
308
309 CBB child;
310 if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
311 !CBB_add_asn1_uint64(&child,
312 is_multiprime ? kVersionMulti : kVersionTwoPrime) ||
313 !marshal_integer(&child, rsa->n) ||
314 !marshal_integer(&child, rsa->e) ||
315 !marshal_integer(&child, rsa->d) ||
316 !marshal_integer(&child, rsa->p) ||
317 !marshal_integer(&child, rsa->q) ||
318 !marshal_integer(&child, rsa->dmp1) ||
319 !marshal_integer(&child, rsa->dmq1) ||
320 !marshal_integer(&child, rsa->iqmp)) {
321 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
322 return 0;
323 }
324
325 if (is_multiprime) {
326 CBB other_prime_infos;
327 if (!CBB_add_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE)) {
328 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
329 return 0;
330 }
331 size_t i;
332 for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) {
333 RSA_additional_prime *ap =
334 sk_RSA_additional_prime_value(rsa->additional_primes, i);
335 CBB other_prime_info;
336 if (!CBB_add_asn1(&other_prime_infos, &other_prime_info,
337 CBS_ASN1_SEQUENCE) ||
338 !marshal_integer(&other_prime_info, ap->prime) ||
339 !marshal_integer(&other_prime_info, ap->exp) ||
340 !marshal_integer(&other_prime_info, ap->coeff)) {
341 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
342 return 0;
343 }
344 }
345 }
346
347 if (!CBB_flush(cbb)) {
348 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
349 return 0;
350 }
351 return 1;
352 }
353
RSA_private_key_to_bytes(uint8_t ** out_bytes,size_t * out_len,const RSA * rsa)354 int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
355 const RSA *rsa) {
356 CBB cbb;
357 CBB_zero(&cbb);
358 if (!CBB_init(&cbb, 0) ||
359 !RSA_marshal_private_key(&cbb, rsa) ||
360 !CBB_finish(&cbb, out_bytes, out_len)) {
361 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
362 CBB_cleanup(&cbb);
363 return 0;
364 }
365 return 1;
366 }
367
d2i_RSAPublicKey(RSA ** out,const uint8_t ** inp,long len)368 RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len) {
369 if (len < 0) {
370 return NULL;
371 }
372 CBS cbs;
373 CBS_init(&cbs, *inp, (size_t)len);
374 RSA *ret = RSA_parse_public_key(&cbs);
375 if (ret == NULL) {
376 return NULL;
377 }
378 if (out != NULL) {
379 RSA_free(*out);
380 *out = ret;
381 }
382 *inp += (size_t)len - CBS_len(&cbs);
383 return ret;
384 }
385
i2d_RSAPublicKey(const RSA * in,uint8_t ** outp)386 int i2d_RSAPublicKey(const RSA *in, uint8_t **outp) {
387 uint8_t *der;
388 size_t der_len;
389 if (!RSA_public_key_to_bytes(&der, &der_len, in)) {
390 return -1;
391 }
392 if (der_len > INT_MAX) {
393 OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
394 OPENSSL_free(der);
395 return -1;
396 }
397 if (outp != NULL) {
398 if (*outp == NULL) {
399 *outp = der;
400 der = NULL;
401 } else {
402 memcpy(*outp, der, der_len);
403 *outp += der_len;
404 }
405 }
406 OPENSSL_free(der);
407 return (int)der_len;
408 }
409
d2i_RSAPrivateKey(RSA ** out,const uint8_t ** inp,long len)410 RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len) {
411 if (len < 0) {
412 return NULL;
413 }
414 CBS cbs;
415 CBS_init(&cbs, *inp, (size_t)len);
416 RSA *ret = RSA_parse_private_key(&cbs);
417 if (ret == NULL) {
418 return NULL;
419 }
420 if (out != NULL) {
421 RSA_free(*out);
422 *out = ret;
423 }
424 *inp += (size_t)len - CBS_len(&cbs);
425 return ret;
426 }
427
i2d_RSAPrivateKey(const RSA * in,uint8_t ** outp)428 int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp) {
429 uint8_t *der;
430 size_t der_len;
431 if (!RSA_private_key_to_bytes(&der, &der_len, in)) {
432 return -1;
433 }
434 if (der_len > INT_MAX) {
435 OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
436 OPENSSL_free(der);
437 return -1;
438 }
439 if (outp != NULL) {
440 if (*outp == NULL) {
441 *outp = der;
442 der = NULL;
443 } else {
444 memcpy(*outp, der, der_len);
445 *outp += der_len;
446 }
447 }
448 OPENSSL_free(der);
449 return (int)der_len;
450 }
451
452 ASN1_SEQUENCE(RSA_PSS_PARAMS) = {
453 ASN1_EXP_OPT(RSA_PSS_PARAMS, hashAlgorithm, X509_ALGOR,0),
454 ASN1_EXP_OPT(RSA_PSS_PARAMS, maskGenAlgorithm, X509_ALGOR,1),
455 ASN1_EXP_OPT(RSA_PSS_PARAMS, saltLength, ASN1_INTEGER,2),
456 ASN1_EXP_OPT(RSA_PSS_PARAMS, trailerField, ASN1_INTEGER,3),
457 } ASN1_SEQUENCE_END(RSA_PSS_PARAMS);
458
459 IMPLEMENT_ASN1_FUNCTIONS(RSA_PSS_PARAMS);
460
RSAPublicKey_dup(const RSA * rsa)461 RSA *RSAPublicKey_dup(const RSA *rsa) {
462 uint8_t *der;
463 size_t der_len;
464 if (!RSA_public_key_to_bytes(&der, &der_len, rsa)) {
465 return NULL;
466 }
467 RSA *ret = RSA_public_key_from_bytes(der, der_len);
468 OPENSSL_free(der);
469 return ret;
470 }
471
RSAPrivateKey_dup(const RSA * rsa)472 RSA *RSAPrivateKey_dup(const RSA *rsa) {
473 uint8_t *der;
474 size_t der_len;
475 if (!RSA_private_key_to_bytes(&der, &der_len, rsa)) {
476 return NULL;
477 }
478 RSA *ret = RSA_private_key_from_bytes(der, der_len);
479 OPENSSL_free(der);
480 return ret;
481 }
482