1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: strandmark@google.com (Petter Strandmark)
30 //
31 // Denoising using Fields of Experts and the Ceres minimizer.
32 //
33 // Note that for good denoising results the weighting between the data term
34 // and the Fields of Experts term needs to be adjusted. This is discussed
35 // in [1]. This program assumes Gaussian noise. The noise model can be changed
36 // by substituing another function for QuadraticCostFunction.
37 //
38 // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of
39 // Computer Vision, 82(2):205--229, 2009.
40
41 #include <algorithm>
42 #include <cmath>
43 #include <iostream>
44 #include <vector>
45 #include <sstream>
46 #include <string>
47
48 #include "ceres/ceres.h"
49 #include "gflags/gflags.h"
50 #include "glog/logging.h"
51
52 #include "fields_of_experts.h"
53 #include "pgm_image.h"
54
55 DEFINE_string(input, "", "File to which the output image should be written");
56 DEFINE_string(foe_file, "", "FoE file to use");
57 DEFINE_string(output, "", "File to which the output image should be written");
58 DEFINE_double(sigma, 20.0, "Standard deviation of noise");
59 DEFINE_bool(verbose, false, "Prints information about the solver progress.");
60 DEFINE_bool(line_search, false, "Use a line search instead of trust region "
61 "algorithm.");
62
63 namespace ceres {
64 namespace examples {
65
66 // This cost function is used to build the data term.
67 //
68 // f_i(x) = a * (x_i - b)^2
69 //
70 class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
71 public:
QuadraticCostFunction(double a,double b)72 QuadraticCostFunction(double a, double b)
73 : sqrta_(std::sqrt(a)), b_(b) {}
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const74 virtual bool Evaluate(double const* const* parameters,
75 double* residuals,
76 double** jacobians) const {
77 const double x = parameters[0][0];
78 residuals[0] = sqrta_ * (x - b_);
79 if (jacobians != NULL && jacobians[0] != NULL) {
80 jacobians[0][0] = sqrta_;
81 }
82 return true;
83 }
84 private:
85 double sqrta_, b_;
86 };
87
88 // Creates a Fields of Experts MAP inference problem.
CreateProblem(const FieldsOfExperts & foe,const PGMImage<double> & image,Problem * problem,PGMImage<double> * solution)89 void CreateProblem(const FieldsOfExperts& foe,
90 const PGMImage<double>& image,
91 Problem* problem,
92 PGMImage<double>* solution) {
93 // Create the data term
94 CHECK_GT(FLAGS_sigma, 0.0);
95 const double coefficient = 1 / (2.0 * FLAGS_sigma * FLAGS_sigma);
96 for (unsigned index = 0; index < image.NumPixels(); ++index) {
97 ceres::CostFunction* cost_function =
98 new QuadraticCostFunction(coefficient,
99 image.PixelFromLinearIndex(index));
100 problem->AddResidualBlock(cost_function,
101 NULL,
102 solution->MutablePixelFromLinearIndex(index));
103 }
104
105 // Create Ceres cost and loss functions for regularization. One is needed for
106 // each filter.
107 std::vector<ceres::LossFunction*> loss_function(foe.NumFilters());
108 std::vector<ceres::CostFunction*> cost_function(foe.NumFilters());
109 for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
110 loss_function[alpha_index] = foe.NewLossFunction(alpha_index);
111 cost_function[alpha_index] = foe.NewCostFunction(alpha_index);
112 }
113
114 // Add FoE regularization for each patch in the image.
115 for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) {
116 for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) {
117 // Build a vector with the pixel indices of this patch.
118 std::vector<double*> pixels;
119 const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices();
120 const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices();
121 for (int i = 0; i < foe.NumVariables(); ++i) {
122 double* pixel = solution->MutablePixel(x + x_delta_indices[i],
123 y + y_delta_indices[i]);
124 pixels.push_back(pixel);
125 }
126 // For this patch with coordinates (x, y), we will add foe.NumFilters()
127 // terms to the objective function.
128 for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
129 problem->AddResidualBlock(cost_function[alpha_index],
130 loss_function[alpha_index],
131 pixels);
132 }
133 }
134 }
135 }
136
137 // Solves the FoE problem using Ceres and post-processes it to make sure the
138 // solution stays within [0, 255].
SolveProblem(Problem * problem,PGMImage<double> * solution)139 void SolveProblem(Problem* problem, PGMImage<double>* solution) {
140 // These parameters may be experimented with. For example, ceres::DOGLEG tends
141 // to be faster for 2x2 filters, but gives solutions with slightly higher
142 // objective function value.
143 ceres::Solver::Options options;
144 options.max_num_iterations = 100;
145 if (FLAGS_verbose) {
146 options.minimizer_progress_to_stdout = true;
147 }
148
149 if (FLAGS_line_search) {
150 options.minimizer_type = ceres::LINE_SEARCH;
151 }
152
153 options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
154 options.function_tolerance = 1e-3; // Enough for denoising.
155
156 ceres::Solver::Summary summary;
157 ceres::Solve(options, problem, &summary);
158 if (FLAGS_verbose) {
159 std::cout << summary.FullReport() << "\n";
160 }
161
162 // Make the solution stay in [0, 255].
163 for (int x = 0; x < solution->width(); ++x) {
164 for (int y = 0; y < solution->height(); ++y) {
165 *solution->MutablePixel(x, y) =
166 std::min(255.0, std::max(0.0, solution->Pixel(x, y)));
167 }
168 }
169 }
170 } // namespace examples
171 } // namespace ceres
172
main(int argc,char ** argv)173 int main(int argc, char** argv) {
174 using namespace ceres::examples;
175 std::string
176 usage("This program denoises an image using Ceres. Sample usage:\n");
177 usage += argv[0];
178 usage += " --input=<noisy image PGM file> --foe_file=<FoE file name>";
179 google::SetUsageMessage(usage);
180 google::ParseCommandLineFlags(&argc, &argv, true);
181 google::InitGoogleLogging(argv[0]);
182
183 if (FLAGS_input.empty()) {
184 std::cerr << "Please provide an image file name.\n";
185 return 1;
186 }
187
188 if (FLAGS_foe_file.empty()) {
189 std::cerr << "Please provide a Fields of Experts file name.\n";
190 return 1;
191 }
192
193 // Load the Fields of Experts filters from file.
194 FieldsOfExperts foe;
195 if (!foe.LoadFromFile(FLAGS_foe_file)) {
196 std::cerr << "Loading \"" << FLAGS_foe_file << "\" failed.\n";
197 return 2;
198 }
199
200 // Read the images
201 PGMImage<double> image(FLAGS_input);
202 if (image.width() == 0) {
203 std::cerr << "Reading \"" << FLAGS_input << "\" failed.\n";
204 return 3;
205 }
206 PGMImage<double> solution(image.width(), image.height());
207 solution.Set(0.0);
208
209 ceres::Problem problem;
210 CreateProblem(foe, image, &problem, &solution);
211
212 SolveProblem(&problem, &solution);
213
214 if (!FLAGS_output.empty()) {
215 CHECK(solution.WriteToFile(FLAGS_output))
216 << "Writing \"" << FLAGS_output << "\" failed.";
217 }
218
219 return 0;
220 }
221