1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // A minimal, self-contained bundle adjuster using Ceres, that reads
32 // files from University of Washington' Bundle Adjustment in the Large dataset:
33 // http://grail.cs.washington.edu/projects/bal
34 //
35 // This does not use the best configuration for solving; see the more involved
36 // bundle_adjuster.cc file for details.
37
38 #include <cmath>
39 #include <cstdio>
40 #include <iostream>
41
42 #include "ceres/ceres.h"
43 #include "ceres/rotation.h"
44
45 // Read a Bundle Adjustment in the Large dataset.
46 class BALProblem {
47 public:
~BALProblem()48 ~BALProblem() {
49 delete[] point_index_;
50 delete[] camera_index_;
51 delete[] observations_;
52 delete[] parameters_;
53 }
54
num_observations() const55 int num_observations() const { return num_observations_; }
observations() const56 const double* observations() const { return observations_; }
mutable_cameras()57 double* mutable_cameras() { return parameters_; }
mutable_points()58 double* mutable_points() { return parameters_ + 9 * num_cameras_; }
59
mutable_camera_for_observation(int i)60 double* mutable_camera_for_observation(int i) {
61 return mutable_cameras() + camera_index_[i] * 9;
62 }
mutable_point_for_observation(int i)63 double* mutable_point_for_observation(int i) {
64 return mutable_points() + point_index_[i] * 3;
65 }
66
LoadFile(const char * filename)67 bool LoadFile(const char* filename) {
68 FILE* fptr = fopen(filename, "r");
69 if (fptr == NULL) {
70 return false;
71 };
72
73 FscanfOrDie(fptr, "%d", &num_cameras_);
74 FscanfOrDie(fptr, "%d", &num_points_);
75 FscanfOrDie(fptr, "%d", &num_observations_);
76
77 point_index_ = new int[num_observations_];
78 camera_index_ = new int[num_observations_];
79 observations_ = new double[2 * num_observations_];
80
81 num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
82 parameters_ = new double[num_parameters_];
83
84 for (int i = 0; i < num_observations_; ++i) {
85 FscanfOrDie(fptr, "%d", camera_index_ + i);
86 FscanfOrDie(fptr, "%d", point_index_ + i);
87 for (int j = 0; j < 2; ++j) {
88 FscanfOrDie(fptr, "%lf", observations_ + 2*i + j);
89 }
90 }
91
92 for (int i = 0; i < num_parameters_; ++i) {
93 FscanfOrDie(fptr, "%lf", parameters_ + i);
94 }
95 return true;
96 }
97
98 private:
99 template<typename T>
FscanfOrDie(FILE * fptr,const char * format,T * value)100 void FscanfOrDie(FILE *fptr, const char *format, T *value) {
101 int num_scanned = fscanf(fptr, format, value);
102 if (num_scanned != 1) {
103 LOG(FATAL) << "Invalid UW data file.";
104 }
105 }
106
107 int num_cameras_;
108 int num_points_;
109 int num_observations_;
110 int num_parameters_;
111
112 int* point_index_;
113 int* camera_index_;
114 double* observations_;
115 double* parameters_;
116 };
117
118 // Templated pinhole camera model for used with Ceres. The camera is
119 // parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
120 // focal length and 2 for radial distortion. The principal point is not modeled
121 // (i.e. it is assumed be located at the image center).
122 struct SnavelyReprojectionError {
SnavelyReprojectionErrorSnavelyReprojectionError123 SnavelyReprojectionError(double observed_x, double observed_y)
124 : observed_x(observed_x), observed_y(observed_y) {}
125
126 template <typename T>
operator ()SnavelyReprojectionError127 bool operator()(const T* const camera,
128 const T* const point,
129 T* residuals) const {
130 // camera[0,1,2] are the angle-axis rotation.
131 T p[3];
132 ceres::AngleAxisRotatePoint(camera, point, p);
133
134 // camera[3,4,5] are the translation.
135 p[0] += camera[3];
136 p[1] += camera[4];
137 p[2] += camera[5];
138
139 // Compute the center of distortion. The sign change comes from
140 // the camera model that Noah Snavely's Bundler assumes, whereby
141 // the camera coordinate system has a negative z axis.
142 T xp = - p[0] / p[2];
143 T yp = - p[1] / p[2];
144
145 // Apply second and fourth order radial distortion.
146 const T& l1 = camera[7];
147 const T& l2 = camera[8];
148 T r2 = xp*xp + yp*yp;
149 T distortion = T(1.0) + r2 * (l1 + l2 * r2);
150
151 // Compute final projected point position.
152 const T& focal = camera[6];
153 T predicted_x = focal * distortion * xp;
154 T predicted_y = focal * distortion * yp;
155
156 // The error is the difference between the predicted and observed position.
157 residuals[0] = predicted_x - T(observed_x);
158 residuals[1] = predicted_y - T(observed_y);
159
160 return true;
161 }
162
163 // Factory to hide the construction of the CostFunction object from
164 // the client code.
CreateSnavelyReprojectionError165 static ceres::CostFunction* Create(const double observed_x,
166 const double observed_y) {
167 return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
168 new SnavelyReprojectionError(observed_x, observed_y)));
169 }
170
171 double observed_x;
172 double observed_y;
173 };
174
main(int argc,char ** argv)175 int main(int argc, char** argv) {
176 google::InitGoogleLogging(argv[0]);
177 if (argc != 2) {
178 std::cerr << "usage: simple_bundle_adjuster <bal_problem>\n";
179 return 1;
180 }
181
182 BALProblem bal_problem;
183 if (!bal_problem.LoadFile(argv[1])) {
184 std::cerr << "ERROR: unable to open file " << argv[1] << "\n";
185 return 1;
186 }
187
188 const double* observations = bal_problem.observations();
189
190 // Create residuals for each observation in the bundle adjustment problem. The
191 // parameters for cameras and points are added automatically.
192 ceres::Problem problem;
193 for (int i = 0; i < bal_problem.num_observations(); ++i) {
194 // Each Residual block takes a point and a camera as input and outputs a 2
195 // dimensional residual. Internally, the cost function stores the observed
196 // image location and compares the reprojection against the observation.
197
198 ceres::CostFunction* cost_function =
199 SnavelyReprojectionError::Create(observations[2 * i + 0],
200 observations[2 * i + 1]);
201 problem.AddResidualBlock(cost_function,
202 NULL /* squared loss */,
203 bal_problem.mutable_camera_for_observation(i),
204 bal_problem.mutable_point_for_observation(i));
205 }
206
207 // Make Ceres automatically detect the bundle structure. Note that the
208 // standard solver, SPARSE_NORMAL_CHOLESKY, also works fine but it is slower
209 // for standard bundle adjustment problems.
210 ceres::Solver::Options options;
211 options.linear_solver_type = ceres::DENSE_SCHUR;
212 options.minimizer_progress_to_stdout = true;
213
214 ceres::Solver::Summary summary;
215 ceres::Solve(options, &problem, &summary);
216 std::cout << summary.FullReport() << "\n";
217 return 0;
218 }
219