1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // A simple implementation of N-dimensional dual numbers, for automatically
32 // computing exact derivatives of functions.
33 //
34 // While a complete treatment of the mechanics of automatic differentation is
35 // beyond the scope of this header (see
36 // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
37 // basic idea is to extend normal arithmetic with an extra element, "e," often
38 // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
39 // numbers are extensions of the real numbers analogous to complex numbers:
40 // whereas complex numbers augment the reals by introducing an imaginary unit i
41 // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
42 // that e^2 = 0. Dual numbers have two components: the "real" component and the
43 // "infinitesimal" component, generally written as x + y*e. Surprisingly, this
44 // leads to a convenient method for computing exact derivatives without needing
45 // to manipulate complicated symbolic expressions.
46 //
47 // For example, consider the function
48 //
49 // f(x) = x^2 ,
50 //
51 // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
52 // Next, augument 10 with an infinitesimal to get:
53 //
54 // f(10 + e) = (10 + e)^2
55 // = 100 + 2 * 10 * e + e^2
56 // = 100 + 20 * e -+-
57 // -- |
58 // | +--- This is zero, since e^2 = 0
59 // |
60 // +----------------- This is df/dx!
61 //
62 // Note that the derivative of f with respect to x is simply the infinitesimal
63 // component of the value of f(x + e). So, in order to take the derivative of
64 // any function, it is only necessary to replace the numeric "object" used in
65 // the function with one extended with infinitesimals. The class Jet, defined in
66 // this header, is one such example of this, where substitution is done with
67 // templates.
68 //
69 // To handle derivatives of functions taking multiple arguments, different
70 // infinitesimals are used, one for each variable to take the derivative of. For
71 // example, consider a scalar function of two scalar parameters x and y:
72 //
73 // f(x, y) = x^2 + x * y
74 //
75 // Following the technique above, to compute the derivatives df/dx and df/dy for
76 // f(1, 3) involves doing two evaluations of f, the first time replacing x with
77 // x + e, the second time replacing y with y + e.
78 //
79 // For df/dx:
80 //
81 // f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
82 // = 1 + 2 * e + 3 + 3 * e
83 // = 4 + 5 * e
84 //
85 // --> df/dx = 5
86 //
87 // For df/dy:
88 //
89 // f(1, 3 + e) = 1^2 + 1 * (3 + e)
90 // = 1 + 3 + e
91 // = 4 + e
92 //
93 // --> df/dy = 1
94 //
95 // To take the gradient of f with the implementation of dual numbers ("jets") in
96 // this file, it is necessary to create a single jet type which has components
97 // for the derivative in x and y, and passing them to a templated version of f:
98 //
99 // template<typename T>
100 // T f(const T &x, const T &y) {
101 // return x * x + x * y;
102 // }
103 //
104 // // The "2" means there should be 2 dual number components.
105 // Jet<double, 2> x(0); // Pick the 0th dual number for x.
106 // Jet<double, 2> y(1); // Pick the 1st dual number for y.
107 // Jet<double, 2> z = f(x, y);
108 //
109 // LOG(INFO) << "df/dx = " << z.a[0]
110 // << "df/dy = " << z.a[1];
111 //
112 // Most users should not use Jet objects directly; a wrapper around Jet objects,
113 // which makes computing the derivative, gradient, or jacobian of templated
114 // functors simple, is in autodiff.h. Even autodiff.h should not be used
115 // directly; instead autodiff_cost_function.h is typically the file of interest.
116 //
117 // For the more mathematically inclined, this file implements first-order
118 // "jets". A 1st order jet is an element of the ring
119 //
120 // T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
121 //
122 // which essentially means that each jet consists of a "scalar" value 'a' from T
123 // and a 1st order perturbation vector 'v' of length N:
124 //
125 // x = a + \sum_i v[i] t_i
126 //
127 // A shorthand is to write an element as x = a + u, where u is the pertubation.
128 // Then, the main point about the arithmetic of jets is that the product of
129 // perturbations is zero:
130 //
131 // (a + u) * (b + v) = ab + av + bu + uv
132 // = ab + (av + bu) + 0
133 //
134 // which is what operator* implements below. Addition is simpler:
135 //
136 // (a + u) + (b + v) = (a + b) + (u + v).
137 //
138 // The only remaining question is how to evaluate the function of a jet, for
139 // which we use the chain rule:
140 //
141 // f(a + u) = f(a) + f'(a) u
142 //
143 // where f'(a) is the (scalar) derivative of f at a.
144 //
145 // By pushing these things through sufficiently and suitably templated
146 // functions, we can do automatic differentiation. Just be sure to turn on
147 // function inlining and common-subexpression elimination, or it will be very
148 // slow!
149 //
150 // WARNING: Most Ceres users should not directly include this file or know the
151 // details of how jets work. Instead the suggested method for automatic
152 // derivatives is to use autodiff_cost_function.h, which is a wrapper around
153 // both jets.h and autodiff.h to make taking derivatives of cost functions for
154 // use in Ceres easier.
155
156 #ifndef CERES_PUBLIC_JET_H_
157 #define CERES_PUBLIC_JET_H_
158
159 #include <cmath>
160 #include <iosfwd>
161 #include <iostream> // NOLINT
162 #include <string>
163
164 #include "Eigen/Core"
165 #include "ceres/fpclassify.h"
166
167 namespace ceres {
168
169 template <typename T, int N>
170 struct Jet {
171 enum { DIMENSION = N };
172
173 // Default-construct "a" because otherwise this can lead to false errors about
174 // uninitialized uses when other classes relying on default constructed T
175 // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
176 // the C++ standard mandates that e.g. default constructed doubles are
177 // initialized to 0.0; see sections 8.5 of the C++03 standard.
JetJet178 Jet() : a() {
179 v.setZero();
180 }
181
182 // Constructor from scalar: a + 0.
JetJet183 explicit Jet(const T& value) {
184 a = value;
185 v.setZero();
186 }
187
188 // Constructor from scalar plus variable: a + t_i.
JetJet189 Jet(const T& value, int k) {
190 a = value;
191 v.setZero();
192 v[k] = T(1.0);
193 }
194
195 // Constructor from scalar and vector part
196 // The use of Eigen::DenseBase allows Eigen expressions
197 // to be passed in without being fully evaluated until
198 // they are assigned to v
199 template<typename Derived>
JetJet200 Jet(const T& value, const Eigen::DenseBase<Derived> &vIn)
201 : a(value),
202 v(vIn)
203 {
204 }
205
206 // Compound operators
207 Jet<T, N>& operator+=(const Jet<T, N> &y) {
208 *this = *this + y;
209 return *this;
210 }
211
212 Jet<T, N>& operator-=(const Jet<T, N> &y) {
213 *this = *this - y;
214 return *this;
215 }
216
217 Jet<T, N>& operator*=(const Jet<T, N> &y) {
218 *this = *this * y;
219 return *this;
220 }
221
222 Jet<T, N>& operator/=(const Jet<T, N> &y) {
223 *this = *this / y;
224 return *this;
225 }
226
227 // The scalar part.
228 T a;
229
230 // The infinitesimal part.
231 //
232 // Note the Eigen::DontAlign bit is needed here because this object
233 // gets allocated on the stack and as part of other arrays and
234 // structs. Forcing the right alignment there is the source of much
235 // pain and suffering. Even if that works, passing Jets around to
236 // functions by value has problems because the C++ ABI does not
237 // guarantee alignment for function arguments.
238 //
239 // Setting the DontAlign bit prevents Eigen from using SSE for the
240 // various operations on Jets. This is a small performance penalty
241 // since the AutoDiff code will still expose much of the code as
242 // statically sized loops to the compiler. But given the subtle
243 // issues that arise due to alignment, especially when dealing with
244 // multiple platforms, it seems to be a trade off worth making.
245 Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
246 };
247
248 // Unary +
249 template<typename T, int N> inline
250 Jet<T, N> const& operator+(const Jet<T, N>& f) {
251 return f;
252 }
253
254 // TODO(keir): Try adding __attribute__((always_inline)) to these functions to
255 // see if it causes a performance increase.
256
257 // Unary -
258 template<typename T, int N> inline
259 Jet<T, N> operator-(const Jet<T, N>&f) {
260 return Jet<T, N>(-f.a, -f.v);
261 }
262
263 // Binary +
264 template<typename T, int N> inline
265 Jet<T, N> operator+(const Jet<T, N>& f,
266 const Jet<T, N>& g) {
267 return Jet<T, N>(f.a + g.a, f.v + g.v);
268 }
269
270 // Binary + with a scalar: x + s
271 template<typename T, int N> inline
272 Jet<T, N> operator+(const Jet<T, N>& f, T s) {
273 return Jet<T, N>(f.a + s, f.v);
274 }
275
276 // Binary + with a scalar: s + x
277 template<typename T, int N> inline
278 Jet<T, N> operator+(T s, const Jet<T, N>& f) {
279 return Jet<T, N>(f.a + s, f.v);
280 }
281
282 // Binary -
283 template<typename T, int N> inline
284 Jet<T, N> operator-(const Jet<T, N>& f,
285 const Jet<T, N>& g) {
286 return Jet<T, N>(f.a - g.a, f.v - g.v);
287 }
288
289 // Binary - with a scalar: x - s
290 template<typename T, int N> inline
291 Jet<T, N> operator-(const Jet<T, N>& f, T s) {
292 return Jet<T, N>(f.a - s, f.v);
293 }
294
295 // Binary - with a scalar: s - x
296 template<typename T, int N> inline
297 Jet<T, N> operator-(T s, const Jet<T, N>& f) {
298 return Jet<T, N>(s - f.a, -f.v);
299 }
300
301 // Binary *
302 template<typename T, int N> inline
303 Jet<T, N> operator*(const Jet<T, N>& f,
304 const Jet<T, N>& g) {
305 return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
306 }
307
308 // Binary * with a scalar: x * s
309 template<typename T, int N> inline
310 Jet<T, N> operator*(const Jet<T, N>& f, T s) {
311 return Jet<T, N>(f.a * s, f.v * s);
312 }
313
314 // Binary * with a scalar: s * x
315 template<typename T, int N> inline
316 Jet<T, N> operator*(T s, const Jet<T, N>& f) {
317 return Jet<T, N>(f.a * s, f.v * s);
318 }
319
320 // Binary /
321 template<typename T, int N> inline
322 Jet<T, N> operator/(const Jet<T, N>& f,
323 const Jet<T, N>& g) {
324 // This uses:
325 //
326 // a + u (a + u)(b - v) (a + u)(b - v)
327 // ----- = -------------- = --------------
328 // b + v (b + v)(b - v) b^2
329 //
330 // which holds because v*v = 0.
331 const T g_a_inverse = T(1.0) / g.a;
332 const T f_a_by_g_a = f.a * g_a_inverse;
333 return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
334 }
335
336 // Binary / with a scalar: s / x
337 template<typename T, int N> inline
338 Jet<T, N> operator/(T s, const Jet<T, N>& g) {
339 const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
340 return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
341 }
342
343 // Binary / with a scalar: x / s
344 template<typename T, int N> inline
345 Jet<T, N> operator/(const Jet<T, N>& f, T s) {
346 const T s_inverse = 1.0 / s;
347 return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
348 }
349
350 // Binary comparison operators for both scalars and jets.
351 #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
352 template<typename T, int N> inline \
353 bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
354 return f.a op g.a; \
355 } \
356 template<typename T, int N> inline \
357 bool operator op(const T& s, const Jet<T, N>& g) { \
358 return s op g.a; \
359 } \
360 template<typename T, int N> inline \
361 bool operator op(const Jet<T, N>& f, const T& s) { \
362 return f.a op s; \
363 }
364 CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT
365 CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT
366 CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT
367 CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT
368 CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT
369 CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT
370 #undef CERES_DEFINE_JET_COMPARISON_OPERATOR
371
372 // Pull some functions from namespace std.
373 //
374 // This is necessary because we want to use the same name (e.g. 'sqrt') for
375 // double-valued and Jet-valued functions, but we are not allowed to put
376 // Jet-valued functions inside namespace std.
377 //
378 // TODO(keir): Switch to "using".
abs(double x)379 inline double abs (double x) { return std::abs(x); }
log(double x)380 inline double log (double x) { return std::log(x); }
exp(double x)381 inline double exp (double x) { return std::exp(x); }
sqrt(double x)382 inline double sqrt (double x) { return std::sqrt(x); }
cos(double x)383 inline double cos (double x) { return std::cos(x); }
acos(double x)384 inline double acos (double x) { return std::acos(x); }
sin(double x)385 inline double sin (double x) { return std::sin(x); }
asin(double x)386 inline double asin (double x) { return std::asin(x); }
tan(double x)387 inline double tan (double x) { return std::tan(x); }
atan(double x)388 inline double atan (double x) { return std::atan(x); }
sinh(double x)389 inline double sinh (double x) { return std::sinh(x); }
cosh(double x)390 inline double cosh (double x) { return std::cosh(x); }
tanh(double x)391 inline double tanh (double x) { return std::tanh(x); }
pow(double x,double y)392 inline double pow (double x, double y) { return std::pow(x, y); }
atan2(double y,double x)393 inline double atan2(double y, double x) { return std::atan2(y, x); }
394
395 // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
396
397 // abs(x + h) ~= x + h or -(x + h)
398 template <typename T, int N> inline
abs(const Jet<T,N> & f)399 Jet<T, N> abs(const Jet<T, N>& f) {
400 return f.a < T(0.0) ? -f : f;
401 }
402
403 // log(a + h) ~= log(a) + h / a
404 template <typename T, int N> inline
log(const Jet<T,N> & f)405 Jet<T, N> log(const Jet<T, N>& f) {
406 const T a_inverse = T(1.0) / f.a;
407 return Jet<T, N>(log(f.a), f.v * a_inverse);
408 }
409
410 // exp(a + h) ~= exp(a) + exp(a) h
411 template <typename T, int N> inline
exp(const Jet<T,N> & f)412 Jet<T, N> exp(const Jet<T, N>& f) {
413 const T tmp = exp(f.a);
414 return Jet<T, N>(tmp, tmp * f.v);
415 }
416
417 // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
418 template <typename T, int N> inline
sqrt(const Jet<T,N> & f)419 Jet<T, N> sqrt(const Jet<T, N>& f) {
420 const T tmp = sqrt(f.a);
421 const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
422 return Jet<T, N>(tmp, f.v * two_a_inverse);
423 }
424
425 // cos(a + h) ~= cos(a) - sin(a) h
426 template <typename T, int N> inline
cos(const Jet<T,N> & f)427 Jet<T, N> cos(const Jet<T, N>& f) {
428 return Jet<T, N>(cos(f.a), - sin(f.a) * f.v);
429 }
430
431 // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
432 template <typename T, int N> inline
acos(const Jet<T,N> & f)433 Jet<T, N> acos(const Jet<T, N>& f) {
434 const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a);
435 return Jet<T, N>(acos(f.a), tmp * f.v);
436 }
437
438 // sin(a + h) ~= sin(a) + cos(a) h
439 template <typename T, int N> inline
sin(const Jet<T,N> & f)440 Jet<T, N> sin(const Jet<T, N>& f) {
441 return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
442 }
443
444 // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
445 template <typename T, int N> inline
asin(const Jet<T,N> & f)446 Jet<T, N> asin(const Jet<T, N>& f) {
447 const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
448 return Jet<T, N>(asin(f.a), tmp * f.v);
449 }
450
451 // tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
452 template <typename T, int N> inline
tan(const Jet<T,N> & f)453 Jet<T, N> tan(const Jet<T, N>& f) {
454 const T tan_a = tan(f.a);
455 const T tmp = T(1.0) + tan_a * tan_a;
456 return Jet<T, N>(tan_a, tmp * f.v);
457 }
458
459 // atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
460 template <typename T, int N> inline
atan(const Jet<T,N> & f)461 Jet<T, N> atan(const Jet<T, N>& f) {
462 const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
463 return Jet<T, N>(atan(f.a), tmp * f.v);
464 }
465
466 // sinh(a + h) ~= sinh(a) + cosh(a) h
467 template <typename T, int N> inline
sinh(const Jet<T,N> & f)468 Jet<T, N> sinh(const Jet<T, N>& f) {
469 return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
470 }
471
472 // cosh(a + h) ~= cosh(a) + sinh(a) h
473 template <typename T, int N> inline
cosh(const Jet<T,N> & f)474 Jet<T, N> cosh(const Jet<T, N>& f) {
475 return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
476 }
477
478 // tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
479 template <typename T, int N> inline
tanh(const Jet<T,N> & f)480 Jet<T, N> tanh(const Jet<T, N>& f) {
481 const T tanh_a = tanh(f.a);
482 const T tmp = T(1.0) - tanh_a * tanh_a;
483 return Jet<T, N>(tanh_a, tmp * f.v);
484 }
485
486 // Jet Classification. It is not clear what the appropriate semantics are for
487 // these classifications. This picks that IsFinite and isnormal are "all"
488 // operations, i.e. all elements of the jet must be finite for the jet itself
489 // to be finite (or normal). For IsNaN and IsInfinite, the answer is less
490 // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
491 // part of a jet is nan or inf, then the entire jet is nan or inf. This leads
492 // to strange situations like a jet can be both IsInfinite and IsNaN, but in
493 // practice the "any" semantics are the most useful for e.g. checking that
494 // derivatives are sane.
495
496 // The jet is finite if all parts of the jet are finite.
497 template <typename T, int N> inline
IsFinite(const Jet<T,N> & f)498 bool IsFinite(const Jet<T, N>& f) {
499 if (!IsFinite(f.a)) {
500 return false;
501 }
502 for (int i = 0; i < N; ++i) {
503 if (!IsFinite(f.v[i])) {
504 return false;
505 }
506 }
507 return true;
508 }
509
510 // The jet is infinite if any part of the jet is infinite.
511 template <typename T, int N> inline
IsInfinite(const Jet<T,N> & f)512 bool IsInfinite(const Jet<T, N>& f) {
513 if (IsInfinite(f.a)) {
514 return true;
515 }
516 for (int i = 0; i < N; i++) {
517 if (IsInfinite(f.v[i])) {
518 return true;
519 }
520 }
521 return false;
522 }
523
524 // The jet is NaN if any part of the jet is NaN.
525 template <typename T, int N> inline
IsNaN(const Jet<T,N> & f)526 bool IsNaN(const Jet<T, N>& f) {
527 if (IsNaN(f.a)) {
528 return true;
529 }
530 for (int i = 0; i < N; ++i) {
531 if (IsNaN(f.v[i])) {
532 return true;
533 }
534 }
535 return false;
536 }
537
538 // The jet is normal if all parts of the jet are normal.
539 template <typename T, int N> inline
IsNormal(const Jet<T,N> & f)540 bool IsNormal(const Jet<T, N>& f) {
541 if (!IsNormal(f.a)) {
542 return false;
543 }
544 for (int i = 0; i < N; ++i) {
545 if (!IsNormal(f.v[i])) {
546 return false;
547 }
548 }
549 return true;
550 }
551
552 // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
553 //
554 // In words: the rate of change of theta is 1/r times the rate of
555 // change of (x, y) in the positive angular direction.
556 template <typename T, int N> inline
atan2(const Jet<T,N> & g,const Jet<T,N> & f)557 Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
558 // Note order of arguments:
559 //
560 // f = a + da
561 // g = b + db
562
563 T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
564 return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v));
565 }
566
567
568 // pow -- base is a differentiable function, exponent is a constant.
569 // (a+da)^p ~= a^p + p*a^(p-1) da
570 template <typename T, int N> inline
pow(const Jet<T,N> & f,double g)571 Jet<T, N> pow(const Jet<T, N>& f, double g) {
572 T const tmp = g * pow(f.a, g - T(1.0));
573 return Jet<T, N>(pow(f.a, g), tmp * f.v);
574 }
575
576 // pow -- base is a constant, exponent is a differentiable function.
577 // (a)^(p+dp) ~= a^p + a^p log(a) dp
578 template <typename T, int N> inline
pow(double f,const Jet<T,N> & g)579 Jet<T, N> pow(double f, const Jet<T, N>& g) {
580 T const tmp = pow(f, g.a);
581 return Jet<T, N>(tmp, log(f) * tmp * g.v);
582 }
583
584
585 // pow -- both base and exponent are differentiable functions.
586 // (a+da)^(b+db) ~= a^b + b * a^(b-1) da + a^b log(a) * db
587 template <typename T, int N> inline
pow(const Jet<T,N> & f,const Jet<T,N> & g)588 Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
589 T const tmp1 = pow(f.a, g.a);
590 T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
591 T const tmp3 = tmp1 * log(f.a);
592
593 return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
594 }
595
596 // Define the helper functions Eigen needs to embed Jet types.
597 //
598 // NOTE(keir): machine_epsilon() and precision() are missing, because they don't
599 // work with nested template types (e.g. where the scalar is itself templated).
600 // Among other things, this means that decompositions of Jet's does not work,
601 // for example
602 //
603 // Matrix<Jet<T, N> ... > A, x, b;
604 // ...
605 // A.solve(b, &x)
606 //
607 // does not work and will fail with a strange compiler error.
608 //
609 // TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
610 // switch to 3.0, also add the rest of the specialization functionality.
ei_conj(const Jet<T,N> & x)611 template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x; } // NOLINT
ei_real(const Jet<T,N> & x)612 template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x; } // NOLINT
ei_imag(const Jet<T,N> &)613 template<typename T, int N> inline Jet<T, N> ei_imag(const Jet<T, N>& ) { return Jet<T, N>(0.0); } // NOLINT
ei_abs(const Jet<T,N> & x)614 template<typename T, int N> inline Jet<T, N> ei_abs (const Jet<T, N>& x) { return fabs(x); } // NOLINT
ei_abs2(const Jet<T,N> & x)615 template<typename T, int N> inline Jet<T, N> ei_abs2(const Jet<T, N>& x) { return x * x; } // NOLINT
ei_sqrt(const Jet<T,N> & x)616 template<typename T, int N> inline Jet<T, N> ei_sqrt(const Jet<T, N>& x) { return sqrt(x); } // NOLINT
ei_exp(const Jet<T,N> & x)617 template<typename T, int N> inline Jet<T, N> ei_exp (const Jet<T, N>& x) { return exp(x); } // NOLINT
ei_log(const Jet<T,N> & x)618 template<typename T, int N> inline Jet<T, N> ei_log (const Jet<T, N>& x) { return log(x); } // NOLINT
ei_sin(const Jet<T,N> & x)619 template<typename T, int N> inline Jet<T, N> ei_sin (const Jet<T, N>& x) { return sin(x); } // NOLINT
ei_cos(const Jet<T,N> & x)620 template<typename T, int N> inline Jet<T, N> ei_cos (const Jet<T, N>& x) { return cos(x); } // NOLINT
ei_tan(const Jet<T,N> & x)621 template<typename T, int N> inline Jet<T, N> ei_tan (const Jet<T, N>& x) { return tan(x); } // NOLINT
ei_atan(const Jet<T,N> & x)622 template<typename T, int N> inline Jet<T, N> ei_atan(const Jet<T, N>& x) { return atan(x); } // NOLINT
ei_sinh(const Jet<T,N> & x)623 template<typename T, int N> inline Jet<T, N> ei_sinh(const Jet<T, N>& x) { return sinh(x); } // NOLINT
ei_cosh(const Jet<T,N> & x)624 template<typename T, int N> inline Jet<T, N> ei_cosh(const Jet<T, N>& x) { return cosh(x); } // NOLINT
ei_tanh(const Jet<T,N> & x)625 template<typename T, int N> inline Jet<T, N> ei_tanh(const Jet<T, N>& x) { return tanh(x); } // NOLINT
ei_pow(const Jet<T,N> & x,Jet<T,N> y)626 template<typename T, int N> inline Jet<T, N> ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); } // NOLINT
627
628 // Note: This has to be in the ceres namespace for argument dependent lookup to
629 // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
630 // strange compile errors.
631 template <typename T, int N>
632 inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
633 return s << "[" << z.a << " ; " << z.v.transpose() << "]";
634 }
635
636 } // namespace ceres
637
638 namespace Eigen {
639
640 // Creating a specialization of NumTraits enables placing Jet objects inside
641 // Eigen arrays, getting all the goodness of Eigen combined with autodiff.
642 template<typename T, int N>
643 struct NumTraits<ceres::Jet<T, N> > {
644 typedef ceres::Jet<T, N> Real;
645 typedef ceres::Jet<T, N> NonInteger;
646 typedef ceres::Jet<T, N> Nested;
647
648 static typename ceres::Jet<T, N> dummy_precision() {
649 return ceres::Jet<T, N>(1e-12);
650 }
651
652 static inline Real epsilon() { return Real(std::numeric_limits<T>::epsilon()); }
653
654 enum {
655 IsComplex = 0,
656 IsInteger = 0,
657 IsSigned,
658 ReadCost = 1,
659 AddCost = 1,
660 // For Jet types, multiplication is more expensive than addition.
661 MulCost = 3,
662 HasFloatingPoint = 1,
663 RequireInitialization = 1
664 };
665 };
666
667 } // namespace Eigen
668
669 #endif // CERES_PUBLIC_JET_H_
670