1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/block_sparse_matrix.h"
32 
33 #include <string>
34 #include "ceres/casts.h"
35 #include "ceres/internal/eigen.h"
36 #include "ceres/internal/scoped_ptr.h"
37 #include "ceres/linear_least_squares_problems.h"
38 #include "ceres/triplet_sparse_matrix.h"
39 #include "glog/logging.h"
40 #include "gtest/gtest.h"
41 
42 namespace ceres {
43 namespace internal {
44 
45 class BlockSparseMatrixTest : public ::testing::Test {
46  protected :
SetUp()47   virtual void SetUp() {
48     scoped_ptr<LinearLeastSquaresProblem> problem(
49         CreateLinearLeastSquaresProblemFromId(2));
50     CHECK_NOTNULL(problem.get());
51     A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
52 
53     problem.reset(CreateLinearLeastSquaresProblemFromId(1));
54     CHECK_NOTNULL(problem.get());
55     B_.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
56 
57     CHECK_EQ(A_->num_rows(), B_->num_rows());
58     CHECK_EQ(A_->num_cols(), B_->num_cols());
59     CHECK_EQ(A_->num_nonzeros(), B_->num_nonzeros());
60   }
61 
62   scoped_ptr<BlockSparseMatrix> A_;
63   scoped_ptr<TripletSparseMatrix> B_;
64 };
65 
TEST_F(BlockSparseMatrixTest,SetZeroTest)66 TEST_F(BlockSparseMatrixTest, SetZeroTest) {
67   A_->SetZero();
68   EXPECT_EQ(13, A_->num_nonzeros());
69 }
70 
TEST_F(BlockSparseMatrixTest,RightMultiplyTest)71 TEST_F(BlockSparseMatrixTest, RightMultiplyTest) {
72   Vector y_a = Vector::Zero(A_->num_rows());
73   Vector y_b = Vector::Zero(A_->num_rows());
74   for (int i = 0; i < A_->num_cols(); ++i) {
75     Vector x = Vector::Zero(A_->num_cols());
76     x[i] = 1.0;
77     A_->RightMultiply(x.data(), y_a.data());
78     B_->RightMultiply(x.data(), y_b.data());
79     EXPECT_LT((y_a - y_b).norm(), 1e-12);
80   }
81 }
82 
TEST_F(BlockSparseMatrixTest,LeftMultiplyTest)83 TEST_F(BlockSparseMatrixTest, LeftMultiplyTest) {
84   Vector y_a = Vector::Zero(A_->num_cols());
85   Vector y_b = Vector::Zero(A_->num_cols());
86   for (int i = 0; i < A_->num_rows(); ++i) {
87     Vector x = Vector::Zero(A_->num_rows());
88     x[i] = 1.0;
89     A_->LeftMultiply(x.data(), y_a.data());
90     B_->LeftMultiply(x.data(), y_b.data());
91     EXPECT_LT((y_a - y_b).norm(), 1e-12);
92   }
93 }
94 
TEST_F(BlockSparseMatrixTest,SquaredColumnNormTest)95 TEST_F(BlockSparseMatrixTest, SquaredColumnNormTest) {
96   Vector y_a = Vector::Zero(A_->num_cols());
97   Vector y_b = Vector::Zero(A_->num_cols());
98   A_->SquaredColumnNorm(y_a.data());
99   B_->SquaredColumnNorm(y_b.data());
100   EXPECT_LT((y_a - y_b).norm(), 1e-12);
101 }
102 
TEST_F(BlockSparseMatrixTest,ToDenseMatrixTest)103 TEST_F(BlockSparseMatrixTest, ToDenseMatrixTest) {
104   Matrix m_a;
105   Matrix m_b;
106   A_->ToDenseMatrix(&m_a);
107   B_->ToDenseMatrix(&m_b);
108   EXPECT_LT((m_a - m_b).norm(), 1e-12);
109 }
110 
111 }  // namespace internal
112 }  // namespace ceres
113