1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: David Gallup (dgallup@google.com)
30 //         Sameer Agarwal (sameeragarwal@google.com)
31 
32 // This include must come before any #ifndef check on Ceres compile options.
33 #include "ceres/internal/port.h"
34 
35 #ifndef CERES_NO_SUITESPARSE
36 
37 #include "ceres/canonical_views_clustering.h"
38 
39 #include "ceres/collections_port.h"
40 #include "ceres/graph.h"
41 #include "ceres/internal/macros.h"
42 #include "ceres/map_util.h"
43 #include "glog/logging.h"
44 
45 namespace ceres {
46 namespace internal {
47 
48 typedef HashMap<int, int> IntMap;
49 typedef HashSet<int> IntSet;
50 
51 class CanonicalViewsClustering {
52  public:
CanonicalViewsClustering()53   CanonicalViewsClustering() {}
54 
55   // Compute the canonical views clustering of the vertices of the
56   // graph. centers will contain the vertices that are the identified
57   // as the canonical views/cluster centers, and membership is a map
58   // from vertices to cluster_ids. The i^th cluster center corresponds
59   // to the i^th cluster. It is possible depending on the
60   // configuration of the clustering algorithm that some of the
61   // vertices may not be assigned to any cluster. In this case they
62   // are assigned to a cluster with id = kInvalidClusterId.
63   void ComputeClustering(const CanonicalViewsClusteringOptions& options,
64                          const Graph<int>& graph,
65                          vector<int>* centers,
66                          IntMap* membership);
67 
68  private:
69   void FindValidViews(IntSet* valid_views) const;
70   double ComputeClusteringQualityDifference(const int candidate,
71                                             const vector<int>& centers) const;
72   void UpdateCanonicalViewAssignments(const int canonical_view);
73   void ComputeClusterMembership(const vector<int>& centers,
74                                 IntMap* membership) const;
75 
76   CanonicalViewsClusteringOptions options_;
77   const Graph<int>* graph_;
78   // Maps a view to its representative canonical view (its cluster
79   // center).
80   IntMap view_to_canonical_view_;
81   // Maps a view to its similarity to its current cluster center.
82   HashMap<int, double> view_to_canonical_view_similarity_;
83   CERES_DISALLOW_COPY_AND_ASSIGN(CanonicalViewsClustering);
84 };
85 
ComputeCanonicalViewsClustering(const CanonicalViewsClusteringOptions & options,const Graph<int> & graph,vector<int> * centers,IntMap * membership)86 void ComputeCanonicalViewsClustering(
87     const CanonicalViewsClusteringOptions& options,
88     const Graph<int>& graph,
89     vector<int>* centers,
90     IntMap* membership) {
91   time_t start_time = time(NULL);
92   CanonicalViewsClustering cv;
93   cv.ComputeClustering(options, graph, centers, membership);
94   VLOG(2) << "Canonical views clustering time (secs): "
95           << time(NULL) - start_time;
96 }
97 
98 // Implementation of CanonicalViewsClustering
ComputeClustering(const CanonicalViewsClusteringOptions & options,const Graph<int> & graph,vector<int> * centers,IntMap * membership)99 void CanonicalViewsClustering::ComputeClustering(
100     const CanonicalViewsClusteringOptions& options,
101     const Graph<int>& graph,
102     vector<int>* centers,
103     IntMap* membership) {
104   options_ = options;
105   CHECK_NOTNULL(centers)->clear();
106   CHECK_NOTNULL(membership)->clear();
107   graph_ = &graph;
108 
109   IntSet valid_views;
110   FindValidViews(&valid_views);
111   while (valid_views.size() > 0) {
112     // Find the next best canonical view.
113     double best_difference = -std::numeric_limits<double>::max();
114     int best_view = 0;
115 
116     // TODO(sameeragarwal): Make this loop multi-threaded.
117     for (IntSet::const_iterator view = valid_views.begin();
118          view != valid_views.end();
119          ++view) {
120       const double difference =
121           ComputeClusteringQualityDifference(*view, *centers);
122       if (difference > best_difference) {
123         best_difference = difference;
124         best_view = *view;
125       }
126     }
127 
128     CHECK_GT(best_difference, -std::numeric_limits<double>::max());
129 
130     // Add canonical view if quality improves, or if minimum is not
131     // yet met, otherwise break.
132     if ((best_difference <= 0) &&
133         (centers->size() >= options_.min_views)) {
134       break;
135     }
136 
137     centers->push_back(best_view);
138     valid_views.erase(best_view);
139     UpdateCanonicalViewAssignments(best_view);
140   }
141 
142   ComputeClusterMembership(*centers, membership);
143 }
144 
145 // Return the set of vertices of the graph which have valid vertex
146 // weights.
FindValidViews(IntSet * valid_views) const147 void CanonicalViewsClustering::FindValidViews(
148     IntSet* valid_views) const {
149   const IntSet& views = graph_->vertices();
150   for (IntSet::const_iterator view = views.begin();
151        view != views.end();
152        ++view) {
153     if (graph_->VertexWeight(*view) != Graph<int>::InvalidWeight()) {
154       valid_views->insert(*view);
155     }
156   }
157 }
158 
159 // Computes the difference in the quality score if 'candidate' were
160 // added to the set of canonical views.
ComputeClusteringQualityDifference(const int candidate,const vector<int> & centers) const161 double CanonicalViewsClustering::ComputeClusteringQualityDifference(
162     const int candidate,
163     const vector<int>& centers) const {
164   // View score.
165   double difference =
166       options_.view_score_weight * graph_->VertexWeight(candidate);
167 
168   // Compute how much the quality score changes if the candidate view
169   // was added to the list of canonical views and its nearest
170   // neighbors became members of its cluster.
171   const IntSet& neighbors = graph_->Neighbors(candidate);
172   for (IntSet::const_iterator neighbor = neighbors.begin();
173        neighbor != neighbors.end();
174        ++neighbor) {
175     const double old_similarity =
176         FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0);
177     const double new_similarity = graph_->EdgeWeight(*neighbor, candidate);
178     if (new_similarity > old_similarity) {
179       difference += new_similarity - old_similarity;
180     }
181   }
182 
183   // Number of views penalty.
184   difference -= options_.size_penalty_weight;
185 
186   // Orthogonality.
187   for (int i = 0; i < centers.size(); ++i) {
188     difference -= options_.similarity_penalty_weight *
189         graph_->EdgeWeight(centers[i], candidate);
190   }
191 
192   return difference;
193 }
194 
195 // Reassign views if they're more similar to the new canonical view.
UpdateCanonicalViewAssignments(const int canonical_view)196 void CanonicalViewsClustering::UpdateCanonicalViewAssignments(
197     const int canonical_view) {
198   const IntSet& neighbors = graph_->Neighbors(canonical_view);
199   for (IntSet::const_iterator neighbor = neighbors.begin();
200        neighbor != neighbors.end();
201        ++neighbor) {
202     const double old_similarity =
203         FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0);
204     const double new_similarity =
205         graph_->EdgeWeight(*neighbor, canonical_view);
206     if (new_similarity > old_similarity) {
207       view_to_canonical_view_[*neighbor] = canonical_view;
208       view_to_canonical_view_similarity_[*neighbor] = new_similarity;
209     }
210   }
211 }
212 
213 // Assign a cluster id to each view.
ComputeClusterMembership(const vector<int> & centers,IntMap * membership) const214 void CanonicalViewsClustering::ComputeClusterMembership(
215     const vector<int>& centers,
216     IntMap* membership) const {
217   CHECK_NOTNULL(membership)->clear();
218 
219   // The i^th cluster has cluster id i.
220   IntMap center_to_cluster_id;
221   for (int i = 0; i < centers.size(); ++i) {
222     center_to_cluster_id[centers[i]] = i;
223   }
224 
225   static const int kInvalidClusterId = -1;
226 
227   const IntSet& views = graph_->vertices();
228   for (IntSet::const_iterator view = views.begin();
229        view != views.end();
230        ++view) {
231     IntMap::const_iterator it =
232         view_to_canonical_view_.find(*view);
233     int cluster_id = kInvalidClusterId;
234     if (it != view_to_canonical_view_.end()) {
235       cluster_id = FindOrDie(center_to_cluster_id, it->second);
236     }
237 
238     InsertOrDie(membership, *view, cluster_id);
239   }
240 }
241 
242 }  // namespace internal
243 }  // namespace ceres
244 
245 #endif  // CERES_NO_SUITESPARSE
246