1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: David Gallup (dgallup@google.com)
30 // Sameer Agarwal (sameeragarwal@google.com)
31
32 // This include must come before any #ifndef check on Ceres compile options.
33 #include "ceres/internal/port.h"
34
35 #ifndef CERES_NO_SUITESPARSE
36
37 #include "ceres/canonical_views_clustering.h"
38
39 #include "ceres/collections_port.h"
40 #include "ceres/graph.h"
41 #include "ceres/internal/macros.h"
42 #include "ceres/map_util.h"
43 #include "glog/logging.h"
44
45 namespace ceres {
46 namespace internal {
47
48 typedef HashMap<int, int> IntMap;
49 typedef HashSet<int> IntSet;
50
51 class CanonicalViewsClustering {
52 public:
CanonicalViewsClustering()53 CanonicalViewsClustering() {}
54
55 // Compute the canonical views clustering of the vertices of the
56 // graph. centers will contain the vertices that are the identified
57 // as the canonical views/cluster centers, and membership is a map
58 // from vertices to cluster_ids. The i^th cluster center corresponds
59 // to the i^th cluster. It is possible depending on the
60 // configuration of the clustering algorithm that some of the
61 // vertices may not be assigned to any cluster. In this case they
62 // are assigned to a cluster with id = kInvalidClusterId.
63 void ComputeClustering(const CanonicalViewsClusteringOptions& options,
64 const Graph<int>& graph,
65 vector<int>* centers,
66 IntMap* membership);
67
68 private:
69 void FindValidViews(IntSet* valid_views) const;
70 double ComputeClusteringQualityDifference(const int candidate,
71 const vector<int>& centers) const;
72 void UpdateCanonicalViewAssignments(const int canonical_view);
73 void ComputeClusterMembership(const vector<int>& centers,
74 IntMap* membership) const;
75
76 CanonicalViewsClusteringOptions options_;
77 const Graph<int>* graph_;
78 // Maps a view to its representative canonical view (its cluster
79 // center).
80 IntMap view_to_canonical_view_;
81 // Maps a view to its similarity to its current cluster center.
82 HashMap<int, double> view_to_canonical_view_similarity_;
83 CERES_DISALLOW_COPY_AND_ASSIGN(CanonicalViewsClustering);
84 };
85
ComputeCanonicalViewsClustering(const CanonicalViewsClusteringOptions & options,const Graph<int> & graph,vector<int> * centers,IntMap * membership)86 void ComputeCanonicalViewsClustering(
87 const CanonicalViewsClusteringOptions& options,
88 const Graph<int>& graph,
89 vector<int>* centers,
90 IntMap* membership) {
91 time_t start_time = time(NULL);
92 CanonicalViewsClustering cv;
93 cv.ComputeClustering(options, graph, centers, membership);
94 VLOG(2) << "Canonical views clustering time (secs): "
95 << time(NULL) - start_time;
96 }
97
98 // Implementation of CanonicalViewsClustering
ComputeClustering(const CanonicalViewsClusteringOptions & options,const Graph<int> & graph,vector<int> * centers,IntMap * membership)99 void CanonicalViewsClustering::ComputeClustering(
100 const CanonicalViewsClusteringOptions& options,
101 const Graph<int>& graph,
102 vector<int>* centers,
103 IntMap* membership) {
104 options_ = options;
105 CHECK_NOTNULL(centers)->clear();
106 CHECK_NOTNULL(membership)->clear();
107 graph_ = &graph;
108
109 IntSet valid_views;
110 FindValidViews(&valid_views);
111 while (valid_views.size() > 0) {
112 // Find the next best canonical view.
113 double best_difference = -std::numeric_limits<double>::max();
114 int best_view = 0;
115
116 // TODO(sameeragarwal): Make this loop multi-threaded.
117 for (IntSet::const_iterator view = valid_views.begin();
118 view != valid_views.end();
119 ++view) {
120 const double difference =
121 ComputeClusteringQualityDifference(*view, *centers);
122 if (difference > best_difference) {
123 best_difference = difference;
124 best_view = *view;
125 }
126 }
127
128 CHECK_GT(best_difference, -std::numeric_limits<double>::max());
129
130 // Add canonical view if quality improves, or if minimum is not
131 // yet met, otherwise break.
132 if ((best_difference <= 0) &&
133 (centers->size() >= options_.min_views)) {
134 break;
135 }
136
137 centers->push_back(best_view);
138 valid_views.erase(best_view);
139 UpdateCanonicalViewAssignments(best_view);
140 }
141
142 ComputeClusterMembership(*centers, membership);
143 }
144
145 // Return the set of vertices of the graph which have valid vertex
146 // weights.
FindValidViews(IntSet * valid_views) const147 void CanonicalViewsClustering::FindValidViews(
148 IntSet* valid_views) const {
149 const IntSet& views = graph_->vertices();
150 for (IntSet::const_iterator view = views.begin();
151 view != views.end();
152 ++view) {
153 if (graph_->VertexWeight(*view) != Graph<int>::InvalidWeight()) {
154 valid_views->insert(*view);
155 }
156 }
157 }
158
159 // Computes the difference in the quality score if 'candidate' were
160 // added to the set of canonical views.
ComputeClusteringQualityDifference(const int candidate,const vector<int> & centers) const161 double CanonicalViewsClustering::ComputeClusteringQualityDifference(
162 const int candidate,
163 const vector<int>& centers) const {
164 // View score.
165 double difference =
166 options_.view_score_weight * graph_->VertexWeight(candidate);
167
168 // Compute how much the quality score changes if the candidate view
169 // was added to the list of canonical views and its nearest
170 // neighbors became members of its cluster.
171 const IntSet& neighbors = graph_->Neighbors(candidate);
172 for (IntSet::const_iterator neighbor = neighbors.begin();
173 neighbor != neighbors.end();
174 ++neighbor) {
175 const double old_similarity =
176 FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0);
177 const double new_similarity = graph_->EdgeWeight(*neighbor, candidate);
178 if (new_similarity > old_similarity) {
179 difference += new_similarity - old_similarity;
180 }
181 }
182
183 // Number of views penalty.
184 difference -= options_.size_penalty_weight;
185
186 // Orthogonality.
187 for (int i = 0; i < centers.size(); ++i) {
188 difference -= options_.similarity_penalty_weight *
189 graph_->EdgeWeight(centers[i], candidate);
190 }
191
192 return difference;
193 }
194
195 // Reassign views if they're more similar to the new canonical view.
UpdateCanonicalViewAssignments(const int canonical_view)196 void CanonicalViewsClustering::UpdateCanonicalViewAssignments(
197 const int canonical_view) {
198 const IntSet& neighbors = graph_->Neighbors(canonical_view);
199 for (IntSet::const_iterator neighbor = neighbors.begin();
200 neighbor != neighbors.end();
201 ++neighbor) {
202 const double old_similarity =
203 FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0);
204 const double new_similarity =
205 graph_->EdgeWeight(*neighbor, canonical_view);
206 if (new_similarity > old_similarity) {
207 view_to_canonical_view_[*neighbor] = canonical_view;
208 view_to_canonical_view_similarity_[*neighbor] = new_similarity;
209 }
210 }
211 }
212
213 // Assign a cluster id to each view.
ComputeClusterMembership(const vector<int> & centers,IntMap * membership) const214 void CanonicalViewsClustering::ComputeClusterMembership(
215 const vector<int>& centers,
216 IntMap* membership) const {
217 CHECK_NOTNULL(membership)->clear();
218
219 // The i^th cluster has cluster id i.
220 IntMap center_to_cluster_id;
221 for (int i = 0; i < centers.size(); ++i) {
222 center_to_cluster_id[centers[i]] = i;
223 }
224
225 static const int kInvalidClusterId = -1;
226
227 const IntSet& views = graph_->vertices();
228 for (IntSet::const_iterator view = views.begin();
229 view != views.end();
230 ++view) {
231 IntMap::const_iterator it =
232 view_to_canonical_view_.find(*view);
233 int cluster_id = kInvalidClusterId;
234 if (it != view_to_canonical_view_.end()) {
235 cluster_id = FindOrDie(center_to_cluster_id, it->second);
236 }
237
238 InsertOrDie(membership, *view, cluster_id);
239 }
240 }
241
242 } // namespace internal
243 } // namespace ceres
244
245 #endif // CERES_NO_SUITESPARSE
246