1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal@google.com (Sameer Agarwal) 30 31 #ifndef CERES_INTERNAL_DOGLEG_STRATEGY_H_ 32 #define CERES_INTERNAL_DOGLEG_STRATEGY_H_ 33 34 #include "ceres/linear_solver.h" 35 #include "ceres/trust_region_strategy.h" 36 37 namespace ceres { 38 namespace internal { 39 40 // Dogleg step computation and trust region sizing strategy based on 41 // on "Methods for Nonlinear Least Squares" by K. Madsen, H.B. Nielsen 42 // and O. Tingleff. Available to download from 43 // 44 // http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf 45 // 46 // One minor modification is that instead of computing the pure 47 // Gauss-Newton step, we compute a regularized version of it. This is 48 // because the Jacobian is often rank-deficient and in such cases 49 // using a direct solver leads to numerical failure. 50 // 51 // If SUBSPACE is passed as the type argument to the constructor, the 52 // DoglegStrategy follows the approach by Shultz, Schnabel, Byrd. 53 // This finds the exact optimum over the two-dimensional subspace 54 // spanned by the two Dogleg vectors. 55 class DoglegStrategy : public TrustRegionStrategy { 56 public: 57 explicit DoglegStrategy(const TrustRegionStrategy::Options& options); ~DoglegStrategy()58 virtual ~DoglegStrategy() {} 59 60 // TrustRegionStrategy interface 61 virtual Summary ComputeStep(const PerSolveOptions& per_solve_options, 62 SparseMatrix* jacobian, 63 const double* residuals, 64 double* step); 65 virtual void StepAccepted(double step_quality); 66 virtual void StepRejected(double step_quality); 67 virtual void StepIsInvalid(); 68 69 virtual double Radius() const; 70 71 // These functions are predominantly for testing. gradient()72 Vector gradient() const { return gradient_; } gauss_newton_step()73 Vector gauss_newton_step() const { return gauss_newton_step_; } subspace_basis()74 Matrix subspace_basis() const { return subspace_basis_; } subspace_g()75 Vector subspace_g() const { return subspace_g_; } subspace_B()76 Matrix subspace_B() const { return subspace_B_; } 77 78 private: 79 typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vector2d; 80 typedef Eigen::Matrix<double, 2, 2, Eigen::DontAlign> Matrix2d; 81 82 LinearSolver::Summary ComputeGaussNewtonStep( 83 const PerSolveOptions& per_solve_options, 84 SparseMatrix* jacobian, 85 const double* residuals); 86 void ComputeCauchyPoint(SparseMatrix* jacobian); 87 void ComputeGradient(SparseMatrix* jacobian, const double* residuals); 88 void ComputeTraditionalDoglegStep(double* step); 89 bool ComputeSubspaceModel(SparseMatrix* jacobian); 90 void ComputeSubspaceDoglegStep(double* step); 91 92 bool FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const; 93 Vector MakePolynomialForBoundaryConstrainedProblem() const; 94 Vector2d ComputeSubspaceStepFromRoot(double lambda) const; 95 double EvaluateSubspaceModel(const Vector2d& x) const; 96 97 LinearSolver* linear_solver_; 98 double radius_; 99 const double max_radius_; 100 101 const double min_diagonal_; 102 const double max_diagonal_; 103 104 // mu is used to scale the diagonal matrix used to make the 105 // Gauss-Newton solve full rank. In each solve, the strategy starts 106 // out with mu = min_mu, and tries values upto max_mu. If the user 107 // reports an invalid step, the value of mu_ is increased so that 108 // the next solve starts with a stronger regularization. 109 // 110 // If a successful step is reported, then the value of mu_ is 111 // decreased with a lower bound of min_mu_. 112 double mu_; 113 const double min_mu_; 114 const double max_mu_; 115 const double mu_increase_factor_; 116 const double increase_threshold_; 117 const double decrease_threshold_; 118 119 Vector diagonal_; // sqrt(diag(J^T J)) 120 Vector lm_diagonal_; 121 122 Vector gradient_; 123 Vector gauss_newton_step_; 124 125 // cauchy_step = alpha * gradient 126 double alpha_; 127 double dogleg_step_norm_; 128 129 // When, ComputeStep is called, reuse_ indicates whether the 130 // Gauss-Newton and Cauchy steps from the last call to ComputeStep 131 // can be reused or not. 132 // 133 // If the user called StepAccepted, then it is expected that the 134 // user has recomputed the Jacobian matrix and new Gauss-Newton 135 // solve is needed and reuse is set to false. 136 // 137 // If the user called StepRejected, then it is expected that the 138 // user wants to solve the trust region problem with the same matrix 139 // but a different trust region radius and the Gauss-Newton and 140 // Cauchy steps can be reused to compute the Dogleg, thus reuse is 141 // set to true. 142 // 143 // If the user called StepIsInvalid, then there was a numerical 144 // problem with the step computed in the last call to ComputeStep, 145 // and the regularization used to do the Gauss-Newton solve is 146 // increased and a new solve should be done when ComputeStep is 147 // called again, thus reuse is set to false. 148 bool reuse_; 149 150 // The dogleg type determines how the minimum of the local 151 // quadratic model is found. 152 DoglegType dogleg_type_; 153 154 // If the type is SUBSPACE_DOGLEG, the two-dimensional 155 // model 1/2 x^T B x + g^T x has to be computed and stored. 156 bool subspace_is_one_dimensional_; 157 Matrix subspace_basis_; 158 Vector2d subspace_g_; 159 Matrix2d subspace_B_; 160 }; 161 162 } // namespace internal 163 } // namespace ceres 164 165 #endif // CERES_INTERNAL_DOGLEG_STRATEGY_H_ 166