1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Various algorithms that operate on undirected graphs.
32
33 #ifndef CERES_INTERNAL_GRAPH_ALGORITHMS_H_
34 #define CERES_INTERNAL_GRAPH_ALGORITHMS_H_
35
36 #include <algorithm>
37 #include <vector>
38 #include <utility>
39 #include "ceres/collections_port.h"
40 #include "ceres/graph.h"
41 #include "glog/logging.h"
42
43 namespace ceres {
44 namespace internal {
45
46 // Compare two vertices of a graph by their degrees, if the degrees
47 // are equal then order them by their ids.
48 template <typename Vertex>
49 class VertexTotalOrdering {
50 public:
VertexTotalOrdering(const Graph<Vertex> & graph)51 explicit VertexTotalOrdering(const Graph<Vertex>& graph)
52 : graph_(graph) {}
53
operator()54 bool operator()(const Vertex& lhs, const Vertex& rhs) const {
55 if (graph_.Neighbors(lhs).size() == graph_.Neighbors(rhs).size()) {
56 return lhs < rhs;
57 }
58 return graph_.Neighbors(lhs).size() < graph_.Neighbors(rhs).size();
59 }
60
61 private:
62 const Graph<Vertex>& graph_;
63 };
64
65 template <typename Vertex>
66 class VertexDegreeLessThan {
67 public:
VertexDegreeLessThan(const Graph<Vertex> & graph)68 explicit VertexDegreeLessThan(const Graph<Vertex>& graph)
69 : graph_(graph) {}
70
operator()71 bool operator()(const Vertex& lhs, const Vertex& rhs) const {
72 return graph_.Neighbors(lhs).size() < graph_.Neighbors(rhs).size();
73 }
74
75 private:
76 const Graph<Vertex>& graph_;
77 };
78
79 // Order the vertices of a graph using its (approximately) largest
80 // independent set, where an independent set of a graph is a set of
81 // vertices that have no edges connecting them. The maximum
82 // independent set problem is NP-Hard, but there are effective
83 // approximation algorithms available. The implementation here uses a
84 // breadth first search that explores the vertices in order of
85 // increasing degree. The same idea is used by Saad & Li in "MIQR: A
86 // multilevel incomplete QR preconditioner for large sparse
87 // least-squares problems", SIMAX, 2007.
88 //
89 // Given a undirected graph G(V,E), the algorithm is a greedy BFS
90 // search where the vertices are explored in increasing order of their
91 // degree. The output vector ordering contains elements of S in
92 // increasing order of their degree, followed by elements of V - S in
93 // increasing order of degree. The return value of the function is the
94 // cardinality of S.
95 template <typename Vertex>
IndependentSetOrdering(const Graph<Vertex> & graph,vector<Vertex> * ordering)96 int IndependentSetOrdering(const Graph<Vertex>& graph,
97 vector<Vertex>* ordering) {
98 const HashSet<Vertex>& vertices = graph.vertices();
99 const int num_vertices = vertices.size();
100
101 CHECK_NOTNULL(ordering);
102 ordering->clear();
103 ordering->reserve(num_vertices);
104
105 // Colors for labeling the graph during the BFS.
106 const char kWhite = 0;
107 const char kGrey = 1;
108 const char kBlack = 2;
109
110 // Mark all vertices white.
111 HashMap<Vertex, char> vertex_color;
112 vector<Vertex> vertex_queue;
113 for (typename HashSet<Vertex>::const_iterator it = vertices.begin();
114 it != vertices.end();
115 ++it) {
116 vertex_color[*it] = kWhite;
117 vertex_queue.push_back(*it);
118 }
119
120
121 sort(vertex_queue.begin(), vertex_queue.end(),
122 VertexTotalOrdering<Vertex>(graph));
123
124 // Iterate over vertex_queue. Pick the first white vertex, add it
125 // to the independent set. Mark it black and its neighbors grey.
126 for (int i = 0; i < vertex_queue.size(); ++i) {
127 const Vertex& vertex = vertex_queue[i];
128 if (vertex_color[vertex] != kWhite) {
129 continue;
130 }
131
132 ordering->push_back(vertex);
133 vertex_color[vertex] = kBlack;
134 const HashSet<Vertex>& neighbors = graph.Neighbors(vertex);
135 for (typename HashSet<Vertex>::const_iterator it = neighbors.begin();
136 it != neighbors.end();
137 ++it) {
138 vertex_color[*it] = kGrey;
139 }
140 }
141
142 int independent_set_size = ordering->size();
143
144 // Iterate over the vertices and add all the grey vertices to the
145 // ordering. At this stage there should only be black or grey
146 // vertices in the graph.
147 for (typename vector<Vertex>::const_iterator it = vertex_queue.begin();
148 it != vertex_queue.end();
149 ++it) {
150 const Vertex vertex = *it;
151 DCHECK(vertex_color[vertex] != kWhite);
152 if (vertex_color[vertex] != kBlack) {
153 ordering->push_back(vertex);
154 }
155 }
156
157 CHECK_EQ(ordering->size(), num_vertices);
158 return independent_set_size;
159 }
160
161 // Same as above with one important difference. The ordering parameter
162 // is an input/output parameter which carries an initial ordering of
163 // the vertices of the graph. The greedy independent set algorithm
164 // starts by sorting the vertices in increasing order of their
165 // degree. The input ordering is used to stabilize this sort, i.e., if
166 // two vertices have the same degree then they are ordered in the same
167 // order in which they occur in "ordering".
168 //
169 // This is useful in eliminating non-determinism from the Schur
170 // ordering algorithm over all.
171 template <typename Vertex>
StableIndependentSetOrdering(const Graph<Vertex> & graph,vector<Vertex> * ordering)172 int StableIndependentSetOrdering(const Graph<Vertex>& graph,
173 vector<Vertex>* ordering) {
174 CHECK_NOTNULL(ordering);
175 const HashSet<Vertex>& vertices = graph.vertices();
176 const int num_vertices = vertices.size();
177 CHECK_EQ(vertices.size(), ordering->size());
178
179 // Colors for labeling the graph during the BFS.
180 const char kWhite = 0;
181 const char kGrey = 1;
182 const char kBlack = 2;
183
184 vector<Vertex> vertex_queue(*ordering);
185
186 stable_sort(vertex_queue.begin(), vertex_queue.end(),
187 VertexDegreeLessThan<Vertex>(graph));
188
189 // Mark all vertices white.
190 HashMap<Vertex, char> vertex_color;
191 for (typename HashSet<Vertex>::const_iterator it = vertices.begin();
192 it != vertices.end();
193 ++it) {
194 vertex_color[*it] = kWhite;
195 }
196
197 ordering->clear();
198 ordering->reserve(num_vertices);
199 // Iterate over vertex_queue. Pick the first white vertex, add it
200 // to the independent set. Mark it black and its neighbors grey.
201 for (int i = 0; i < vertex_queue.size(); ++i) {
202 const Vertex& vertex = vertex_queue[i];
203 if (vertex_color[vertex] != kWhite) {
204 continue;
205 }
206
207 ordering->push_back(vertex);
208 vertex_color[vertex] = kBlack;
209 const HashSet<Vertex>& neighbors = graph.Neighbors(vertex);
210 for (typename HashSet<Vertex>::const_iterator it = neighbors.begin();
211 it != neighbors.end();
212 ++it) {
213 vertex_color[*it] = kGrey;
214 }
215 }
216
217 int independent_set_size = ordering->size();
218
219 // Iterate over the vertices and add all the grey vertices to the
220 // ordering. At this stage there should only be black or grey
221 // vertices in the graph.
222 for (typename vector<Vertex>::const_iterator it = vertex_queue.begin();
223 it != vertex_queue.end();
224 ++it) {
225 const Vertex vertex = *it;
226 DCHECK(vertex_color[vertex] != kWhite);
227 if (vertex_color[vertex] != kBlack) {
228 ordering->push_back(vertex);
229 }
230 }
231
232 CHECK_EQ(ordering->size(), num_vertices);
233 return independent_set_size;
234 }
235
236 // Find the connected component for a vertex implemented using the
237 // find and update operation for disjoint-set. Recursively traverse
238 // the disjoint set structure till you reach a vertex whose connected
239 // component has the same id as the vertex itself. Along the way
240 // update the connected components of all the vertices. This updating
241 // is what gives this data structure its efficiency.
242 template <typename Vertex>
FindConnectedComponent(const Vertex & vertex,HashMap<Vertex,Vertex> * union_find)243 Vertex FindConnectedComponent(const Vertex& vertex,
244 HashMap<Vertex, Vertex>* union_find) {
245 typename HashMap<Vertex, Vertex>::iterator it = union_find->find(vertex);
246 DCHECK(it != union_find->end());
247 if (it->second != vertex) {
248 it->second = FindConnectedComponent(it->second, union_find);
249 }
250
251 return it->second;
252 }
253
254 // Compute a degree two constrained Maximum Spanning Tree/forest of
255 // the input graph. Caller owns the result.
256 //
257 // Finding degree 2 spanning tree of a graph is not always
258 // possible. For example a star graph, i.e. a graph with n-nodes
259 // where one node is connected to the other n-1 nodes does not have
260 // a any spanning trees of degree less than n-1.Even if such a tree
261 // exists, finding such a tree is NP-Hard.
262
263 // We get around both of these problems by using a greedy, degree
264 // constrained variant of Kruskal's algorithm. We start with a graph
265 // G_T with the same vertex set V as the input graph G(V,E) but an
266 // empty edge set. We then iterate over the edges of G in decreasing
267 // order of weight, adding them to G_T if doing so does not create a
268 // cycle in G_T} and the degree of all the vertices in G_T remains
269 // bounded by two. This O(|E|) algorithm results in a degree-2
270 // spanning forest, or a collection of linear paths that span the
271 // graph G.
272 template <typename Vertex>
273 Graph<Vertex>*
Degree2MaximumSpanningForest(const Graph<Vertex> & graph)274 Degree2MaximumSpanningForest(const Graph<Vertex>& graph) {
275 // Array of edges sorted in decreasing order of their weights.
276 vector<pair<double, pair<Vertex, Vertex> > > weighted_edges;
277 Graph<Vertex>* forest = new Graph<Vertex>();
278
279 // Disjoint-set to keep track of the connected components in the
280 // maximum spanning tree.
281 HashMap<Vertex, Vertex> disjoint_set;
282
283 // Sort of the edges in the graph in decreasing order of their
284 // weight. Also add the vertices of the graph to the Maximum
285 // Spanning Tree graph and set each vertex to be its own connected
286 // component in the disjoint_set structure.
287 const HashSet<Vertex>& vertices = graph.vertices();
288 for (typename HashSet<Vertex>::const_iterator it = vertices.begin();
289 it != vertices.end();
290 ++it) {
291 const Vertex vertex1 = *it;
292 forest->AddVertex(vertex1, graph.VertexWeight(vertex1));
293 disjoint_set[vertex1] = vertex1;
294
295 const HashSet<Vertex>& neighbors = graph.Neighbors(vertex1);
296 for (typename HashSet<Vertex>::const_iterator it2 = neighbors.begin();
297 it2 != neighbors.end();
298 ++it2) {
299 const Vertex vertex2 = *it2;
300 if (vertex1 >= vertex2) {
301 continue;
302 }
303 const double weight = graph.EdgeWeight(vertex1, vertex2);
304 weighted_edges.push_back(make_pair(weight, make_pair(vertex1, vertex2)));
305 }
306 }
307
308 // The elements of this vector, are pairs<edge_weight,
309 // edge>. Sorting it using the reverse iterators gives us the edges
310 // in decreasing order of edges.
311 sort(weighted_edges.rbegin(), weighted_edges.rend());
312
313 // Greedily add edges to the spanning tree/forest as long as they do
314 // not violate the degree/cycle constraint.
315 for (int i =0; i < weighted_edges.size(); ++i) {
316 const pair<Vertex, Vertex>& edge = weighted_edges[i].second;
317 const Vertex vertex1 = edge.first;
318 const Vertex vertex2 = edge.second;
319
320 // Check if either of the vertices are of degree 2 already, in
321 // which case adding this edge will violate the degree 2
322 // constraint.
323 if ((forest->Neighbors(vertex1).size() == 2) ||
324 (forest->Neighbors(vertex2).size() == 2)) {
325 continue;
326 }
327
328 // Find the id of the connected component to which the two
329 // vertices belong to. If the id is the same, it means that the
330 // two of them are already connected to each other via some other
331 // vertex, and adding this edge will create a cycle.
332 Vertex root1 = FindConnectedComponent(vertex1, &disjoint_set);
333 Vertex root2 = FindConnectedComponent(vertex2, &disjoint_set);
334
335 if (root1 == root2) {
336 continue;
337 }
338
339 // This edge can be added, add an edge in either direction with
340 // the same weight as the original graph.
341 const double edge_weight = graph.EdgeWeight(vertex1, vertex2);
342 forest->AddEdge(vertex1, vertex2, edge_weight);
343 forest->AddEdge(vertex2, vertex1, edge_weight);
344
345 // Connected the two connected components by updating the
346 // disjoint_set structure. Always connect the connected component
347 // with the greater index with the connected component with the
348 // smaller index. This should ensure shallower trees, for quicker
349 // lookup.
350 if (root2 < root1) {
351 std::swap(root1, root2);
352 };
353
354 disjoint_set[root2] = root1;
355 }
356 return forest;
357 }
358
359 } // namespace internal
360 } // namespace ceres
361
362 #endif // CERES_INTERNAL_GRAPH_ALGORITHMS_H_
363