1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/normal_prior.h"
32 
33 #include <cstddef>
34 
35 #include "gtest/gtest.h"
36 #include "ceres/internal/eigen.h"
37 #include "ceres/random.h"
38 
39 namespace ceres {
40 namespace internal {
41 
RandomVector(Vector * v)42 void RandomVector(Vector* v) {
43   for (int r = 0; r < v->rows(); ++r)
44     (*v)[r] = 2 * RandDouble() - 1;
45 }
46 
RandomMatrix(Matrix * m)47 void RandomMatrix(Matrix* m) {
48   for (int r = 0; r < m->rows(); ++r) {
49     for (int c = 0; c < m->cols(); ++c) {
50       (*m)(r, c) = 2 * RandDouble() - 1;
51     }
52   }
53 }
54 
TEST(NormalPriorTest,ResidualAtRandomPosition)55 TEST(NormalPriorTest, ResidualAtRandomPosition) {
56   srand(5);
57 
58   for (int num_rows = 1; num_rows < 5; ++num_rows) {
59     for (int num_cols = 1; num_cols < 5; ++num_cols) {
60       Vector b(num_cols);
61       RandomVector(&b);
62 
63       Matrix A(num_rows, num_cols);
64       RandomMatrix(&A);
65 
66       double * x = new double[num_cols];
67       for (int i = 0; i < num_cols; ++i)
68         x[i] = 2 * RandDouble() - 1;
69 
70       double * jacobian = new double[num_rows * num_cols];
71       Vector residuals(num_rows);
72 
73       NormalPrior prior(A, b);
74       prior.Evaluate(&x, residuals.data(), &jacobian);
75 
76       // Compare the norm of the residual
77       double residual_diff_norm =
78           (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
79       EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
80 
81       // Compare the jacobians
82       MatrixRef J(jacobian, num_rows, num_cols);
83       double jacobian_diff_norm = (J - A).norm();
84       EXPECT_NEAR(jacobian_diff_norm, 0.0, 1e-10);
85 
86       delete []x;
87       delete []jacobian;
88     }
89   }
90 }
91 
TEST(NormalPriorTest,ResidualAtRandomPositionNullJacobians)92 TEST(NormalPriorTest, ResidualAtRandomPositionNullJacobians) {
93   srand(5);
94 
95   for (int num_rows = 1; num_rows < 5; ++num_rows) {
96     for (int num_cols = 1; num_cols < 5; ++num_cols) {
97       Vector b(num_cols);
98       RandomVector(&b);
99 
100       Matrix A(num_rows, num_cols);
101       RandomMatrix(&A);
102 
103       double * x = new double[num_cols];
104       for (int i = 0; i < num_cols; ++i)
105         x[i] = 2 * RandDouble() - 1;
106 
107       double* jacobians[1];
108       jacobians[0] = NULL;
109 
110       Vector residuals(num_rows);
111 
112       NormalPrior prior(A, b);
113       prior.Evaluate(&x, residuals.data(), jacobians);
114 
115       // Compare the norm of the residual
116       double residual_diff_norm =
117           (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
118       EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
119 
120       prior.Evaluate(&x, residuals.data(), NULL);
121       // Compare the norm of the residual
122       residual_diff_norm =
123           (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm();
124       EXPECT_NEAR(residual_diff_norm, 0, 1e-10);
125 
126 
127       delete []x;
128     }
129   }
130 }
131 
132 }  // namespace internal
133 }  // namespace ceres
134