1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 // mierle@gmail.com (Keir Mierle)
31
32 #include "ceres/problem_impl.h"
33
34 #include <algorithm>
35 #include <cstddef>
36 #include <iterator>
37 #include <set>
38 #include <string>
39 #include <utility>
40 #include <vector>
41 #include "ceres/casts.h"
42 #include "ceres/compressed_row_sparse_matrix.h"
43 #include "ceres/cost_function.h"
44 #include "ceres/crs_matrix.h"
45 #include "ceres/evaluator.h"
46 #include "ceres/loss_function.h"
47 #include "ceres/map_util.h"
48 #include "ceres/parameter_block.h"
49 #include "ceres/program.h"
50 #include "ceres/residual_block.h"
51 #include "ceres/stl_util.h"
52 #include "ceres/stringprintf.h"
53 #include "glog/logging.h"
54
55 namespace ceres {
56 namespace internal {
57
58 typedef map<double*, internal::ParameterBlock*> ParameterMap;
59
60 namespace {
FindParameterBlockOrDie(const ParameterMap & parameter_map,double * parameter_block)61 internal::ParameterBlock* FindParameterBlockOrDie(
62 const ParameterMap& parameter_map,
63 double* parameter_block) {
64 ParameterMap::const_iterator it = parameter_map.find(parameter_block);
65 CHECK(it != parameter_map.end())
66 << "Parameter block not found: " << parameter_block;
67 return it->second;
68 }
69
70 // Returns true if two regions of memory, a and b, with sizes size_a and size_b
71 // respectively, overlap.
RegionsAlias(const double * a,int size_a,const double * b,int size_b)72 bool RegionsAlias(const double* a, int size_a,
73 const double* b, int size_b) {
74 return (a < b) ? b < (a + size_a)
75 : a < (b + size_b);
76 }
77
CheckForNoAliasing(double * existing_block,int existing_block_size,double * new_block,int new_block_size)78 void CheckForNoAliasing(double* existing_block,
79 int existing_block_size,
80 double* new_block,
81 int new_block_size) {
82 CHECK(!RegionsAlias(existing_block, existing_block_size,
83 new_block, new_block_size))
84 << "Aliasing detected between existing parameter block at memory "
85 << "location " << existing_block
86 << " and has size " << existing_block_size << " with new parameter "
87 << "block that has memory address " << new_block << " and would have "
88 << "size " << new_block_size << ".";
89 }
90
91 } // namespace
92
InternalAddParameterBlock(double * values,int size)93 ParameterBlock* ProblemImpl::InternalAddParameterBlock(double* values,
94 int size) {
95 CHECK(values != NULL) << "Null pointer passed to AddParameterBlock "
96 << "for a parameter with size " << size;
97
98 // Ignore the request if there is a block for the given pointer already.
99 ParameterMap::iterator it = parameter_block_map_.find(values);
100 if (it != parameter_block_map_.end()) {
101 if (!options_.disable_all_safety_checks) {
102 int existing_size = it->second->Size();
103 CHECK(size == existing_size)
104 << "Tried adding a parameter block with the same double pointer, "
105 << values << ", twice, but with different block sizes. Original "
106 << "size was " << existing_size << " but new size is "
107 << size;
108 }
109 return it->second;
110 }
111
112 if (!options_.disable_all_safety_checks) {
113 // Before adding the parameter block, also check that it doesn't alias any
114 // other parameter blocks.
115 if (!parameter_block_map_.empty()) {
116 ParameterMap::iterator lb = parameter_block_map_.lower_bound(values);
117
118 // If lb is not the first block, check the previous block for aliasing.
119 if (lb != parameter_block_map_.begin()) {
120 ParameterMap::iterator previous = lb;
121 --previous;
122 CheckForNoAliasing(previous->first,
123 previous->second->Size(),
124 values,
125 size);
126 }
127
128 // If lb is not off the end, check lb for aliasing.
129 if (lb != parameter_block_map_.end()) {
130 CheckForNoAliasing(lb->first,
131 lb->second->Size(),
132 values,
133 size);
134 }
135 }
136 }
137
138 // Pass the index of the new parameter block as well to keep the index in
139 // sync with the position of the parameter in the program's parameter vector.
140 ParameterBlock* new_parameter_block =
141 new ParameterBlock(values, size, program_->parameter_blocks_.size());
142
143 // For dynamic problems, add the list of dependent residual blocks, which is
144 // empty to start.
145 if (options_.enable_fast_removal) {
146 new_parameter_block->EnableResidualBlockDependencies();
147 }
148 parameter_block_map_[values] = new_parameter_block;
149 program_->parameter_blocks_.push_back(new_parameter_block);
150 return new_parameter_block;
151 }
152
InternalRemoveResidualBlock(ResidualBlock * residual_block)153 void ProblemImpl::InternalRemoveResidualBlock(ResidualBlock* residual_block) {
154 CHECK_NOTNULL(residual_block);
155 // Perform no check on the validity of residual_block, that is handled in
156 // the public method: RemoveResidualBlock().
157
158 // If needed, remove the parameter dependencies on this residual block.
159 if (options_.enable_fast_removal) {
160 const int num_parameter_blocks_for_residual =
161 residual_block->NumParameterBlocks();
162 for (int i = 0; i < num_parameter_blocks_for_residual; ++i) {
163 residual_block->parameter_blocks()[i]
164 ->RemoveResidualBlock(residual_block);
165 }
166
167 ResidualBlockSet::iterator it = residual_block_set_.find(residual_block);
168 residual_block_set_.erase(it);
169 }
170 DeleteBlockInVector(program_->mutable_residual_blocks(), residual_block);
171 }
172
173 // Deletes the residual block in question, assuming there are no other
174 // references to it inside the problem (e.g. by another parameter). Referenced
175 // cost and loss functions are tucked away for future deletion, since it is not
176 // possible to know whether other parts of the problem depend on them without
177 // doing a full scan.
DeleteBlock(ResidualBlock * residual_block)178 void ProblemImpl::DeleteBlock(ResidualBlock* residual_block) {
179 // The const casts here are legit, since ResidualBlock holds these
180 // pointers as const pointers but we have ownership of them and
181 // have the right to destroy them when the destructor is called.
182 if (options_.cost_function_ownership == TAKE_OWNERSHIP &&
183 residual_block->cost_function() != NULL) {
184 cost_functions_to_delete_.push_back(
185 const_cast<CostFunction*>(residual_block->cost_function()));
186 }
187 if (options_.loss_function_ownership == TAKE_OWNERSHIP &&
188 residual_block->loss_function() != NULL) {
189 loss_functions_to_delete_.push_back(
190 const_cast<LossFunction*>(residual_block->loss_function()));
191 }
192 delete residual_block;
193 }
194
195 // Deletes the parameter block in question, assuming there are no other
196 // references to it inside the problem (e.g. by any residual blocks).
197 // Referenced parameterizations are tucked away for future deletion, since it
198 // is not possible to know whether other parts of the problem depend on them
199 // without doing a full scan.
DeleteBlock(ParameterBlock * parameter_block)200 void ProblemImpl::DeleteBlock(ParameterBlock* parameter_block) {
201 if (options_.local_parameterization_ownership == TAKE_OWNERSHIP &&
202 parameter_block->local_parameterization() != NULL) {
203 local_parameterizations_to_delete_.push_back(
204 parameter_block->mutable_local_parameterization());
205 }
206 parameter_block_map_.erase(parameter_block->mutable_user_state());
207 delete parameter_block;
208 }
209
ProblemImpl()210 ProblemImpl::ProblemImpl() : program_(new internal::Program) {}
ProblemImpl(const Problem::Options & options)211 ProblemImpl::ProblemImpl(const Problem::Options& options)
212 : options_(options),
213 program_(new internal::Program) {}
214
~ProblemImpl()215 ProblemImpl::~ProblemImpl() {
216 // Collect the unique cost/loss functions and delete the residuals.
217 const int num_residual_blocks = program_->residual_blocks_.size();
218 cost_functions_to_delete_.reserve(num_residual_blocks);
219 loss_functions_to_delete_.reserve(num_residual_blocks);
220 for (int i = 0; i < program_->residual_blocks_.size(); ++i) {
221 DeleteBlock(program_->residual_blocks_[i]);
222 }
223
224 // Collect the unique parameterizations and delete the parameters.
225 for (int i = 0; i < program_->parameter_blocks_.size(); ++i) {
226 DeleteBlock(program_->parameter_blocks_[i]);
227 }
228
229 // Delete the owned cost/loss functions and parameterizations.
230 STLDeleteUniqueContainerPointers(local_parameterizations_to_delete_.begin(),
231 local_parameterizations_to_delete_.end());
232 STLDeleteUniqueContainerPointers(cost_functions_to_delete_.begin(),
233 cost_functions_to_delete_.end());
234 STLDeleteUniqueContainerPointers(loss_functions_to_delete_.begin(),
235 loss_functions_to_delete_.end());
236 }
237
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,const vector<double * > & parameter_blocks)238 ResidualBlock* ProblemImpl::AddResidualBlock(
239 CostFunction* cost_function,
240 LossFunction* loss_function,
241 const vector<double*>& parameter_blocks) {
242 CHECK_NOTNULL(cost_function);
243 CHECK_EQ(parameter_blocks.size(),
244 cost_function->parameter_block_sizes().size());
245
246 // Check the sizes match.
247 const vector<int32>& parameter_block_sizes =
248 cost_function->parameter_block_sizes();
249
250 if (!options_.disable_all_safety_checks) {
251 CHECK_EQ(parameter_block_sizes.size(), parameter_blocks.size())
252 << "Number of blocks input is different than the number of blocks "
253 << "that the cost function expects.";
254
255 // Check for duplicate parameter blocks.
256 vector<double*> sorted_parameter_blocks(parameter_blocks);
257 sort(sorted_parameter_blocks.begin(), sorted_parameter_blocks.end());
258 vector<double*>::const_iterator duplicate_items =
259 unique(sorted_parameter_blocks.begin(),
260 sorted_parameter_blocks.end());
261 if (duplicate_items != sorted_parameter_blocks.end()) {
262 string blocks;
263 for (int i = 0; i < parameter_blocks.size(); ++i) {
264 blocks += StringPrintf(" %p ", parameter_blocks[i]);
265 }
266
267 LOG(FATAL) << "Duplicate parameter blocks in a residual parameter "
268 << "are not allowed. Parameter block pointers: ["
269 << blocks << "]";
270 }
271 }
272
273 // Add parameter blocks and convert the double*'s to parameter blocks.
274 vector<ParameterBlock*> parameter_block_ptrs(parameter_blocks.size());
275 for (int i = 0; i < parameter_blocks.size(); ++i) {
276 parameter_block_ptrs[i] =
277 InternalAddParameterBlock(parameter_blocks[i],
278 parameter_block_sizes[i]);
279 }
280
281 if (!options_.disable_all_safety_checks) {
282 // Check that the block sizes match the block sizes expected by the
283 // cost_function.
284 for (int i = 0; i < parameter_block_ptrs.size(); ++i) {
285 CHECK_EQ(cost_function->parameter_block_sizes()[i],
286 parameter_block_ptrs[i]->Size())
287 << "The cost function expects parameter block " << i
288 << " of size " << cost_function->parameter_block_sizes()[i]
289 << " but was given a block of size "
290 << parameter_block_ptrs[i]->Size();
291 }
292 }
293
294 ResidualBlock* new_residual_block =
295 new ResidualBlock(cost_function,
296 loss_function,
297 parameter_block_ptrs,
298 program_->residual_blocks_.size());
299
300 // Add dependencies on the residual to the parameter blocks.
301 if (options_.enable_fast_removal) {
302 for (int i = 0; i < parameter_blocks.size(); ++i) {
303 parameter_block_ptrs[i]->AddResidualBlock(new_residual_block);
304 }
305 }
306
307 program_->residual_blocks_.push_back(new_residual_block);
308
309 if (options_.enable_fast_removal) {
310 residual_block_set_.insert(new_residual_block);
311 }
312
313 return new_residual_block;
314 }
315
316 // Unfortunately, macros don't help much to reduce this code, and var args don't
317 // work because of the ambiguous case that there is no loss function.
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0)318 ResidualBlock* ProblemImpl::AddResidualBlock(
319 CostFunction* cost_function,
320 LossFunction* loss_function,
321 double* x0) {
322 vector<double*> residual_parameters;
323 residual_parameters.push_back(x0);
324 return AddResidualBlock(cost_function, loss_function, residual_parameters);
325 }
326
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1)327 ResidualBlock* ProblemImpl::AddResidualBlock(
328 CostFunction* cost_function,
329 LossFunction* loss_function,
330 double* x0, double* x1) {
331 vector<double*> residual_parameters;
332 residual_parameters.push_back(x0);
333 residual_parameters.push_back(x1);
334 return AddResidualBlock(cost_function, loss_function, residual_parameters);
335 }
336
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1,double * x2)337 ResidualBlock* ProblemImpl::AddResidualBlock(
338 CostFunction* cost_function,
339 LossFunction* loss_function,
340 double* x0, double* x1, double* x2) {
341 vector<double*> residual_parameters;
342 residual_parameters.push_back(x0);
343 residual_parameters.push_back(x1);
344 residual_parameters.push_back(x2);
345 return AddResidualBlock(cost_function, loss_function, residual_parameters);
346 }
347
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1,double * x2,double * x3)348 ResidualBlock* ProblemImpl::AddResidualBlock(
349 CostFunction* cost_function,
350 LossFunction* loss_function,
351 double* x0, double* x1, double* x2, double* x3) {
352 vector<double*> residual_parameters;
353 residual_parameters.push_back(x0);
354 residual_parameters.push_back(x1);
355 residual_parameters.push_back(x2);
356 residual_parameters.push_back(x3);
357 return AddResidualBlock(cost_function, loss_function, residual_parameters);
358 }
359
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1,double * x2,double * x3,double * x4)360 ResidualBlock* ProblemImpl::AddResidualBlock(
361 CostFunction* cost_function,
362 LossFunction* loss_function,
363 double* x0, double* x1, double* x2, double* x3, double* x4) {
364 vector<double*> residual_parameters;
365 residual_parameters.push_back(x0);
366 residual_parameters.push_back(x1);
367 residual_parameters.push_back(x2);
368 residual_parameters.push_back(x3);
369 residual_parameters.push_back(x4);
370 return AddResidualBlock(cost_function, loss_function, residual_parameters);
371 }
372
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1,double * x2,double * x3,double * x4,double * x5)373 ResidualBlock* ProblemImpl::AddResidualBlock(
374 CostFunction* cost_function,
375 LossFunction* loss_function,
376 double* x0, double* x1, double* x2, double* x3, double* x4, double* x5) {
377 vector<double*> residual_parameters;
378 residual_parameters.push_back(x0);
379 residual_parameters.push_back(x1);
380 residual_parameters.push_back(x2);
381 residual_parameters.push_back(x3);
382 residual_parameters.push_back(x4);
383 residual_parameters.push_back(x5);
384 return AddResidualBlock(cost_function, loss_function, residual_parameters);
385 }
386
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1,double * x2,double * x3,double * x4,double * x5,double * x6)387 ResidualBlock* ProblemImpl::AddResidualBlock(
388 CostFunction* cost_function,
389 LossFunction* loss_function,
390 double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
391 double* x6) {
392 vector<double*> residual_parameters;
393 residual_parameters.push_back(x0);
394 residual_parameters.push_back(x1);
395 residual_parameters.push_back(x2);
396 residual_parameters.push_back(x3);
397 residual_parameters.push_back(x4);
398 residual_parameters.push_back(x5);
399 residual_parameters.push_back(x6);
400 return AddResidualBlock(cost_function, loss_function, residual_parameters);
401 }
402
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1,double * x2,double * x3,double * x4,double * x5,double * x6,double * x7)403 ResidualBlock* ProblemImpl::AddResidualBlock(
404 CostFunction* cost_function,
405 LossFunction* loss_function,
406 double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
407 double* x6, double* x7) {
408 vector<double*> residual_parameters;
409 residual_parameters.push_back(x0);
410 residual_parameters.push_back(x1);
411 residual_parameters.push_back(x2);
412 residual_parameters.push_back(x3);
413 residual_parameters.push_back(x4);
414 residual_parameters.push_back(x5);
415 residual_parameters.push_back(x6);
416 residual_parameters.push_back(x7);
417 return AddResidualBlock(cost_function, loss_function, residual_parameters);
418 }
419
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1,double * x2,double * x3,double * x4,double * x5,double * x6,double * x7,double * x8)420 ResidualBlock* ProblemImpl::AddResidualBlock(
421 CostFunction* cost_function,
422 LossFunction* loss_function,
423 double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
424 double* x6, double* x7, double* x8) {
425 vector<double*> residual_parameters;
426 residual_parameters.push_back(x0);
427 residual_parameters.push_back(x1);
428 residual_parameters.push_back(x2);
429 residual_parameters.push_back(x3);
430 residual_parameters.push_back(x4);
431 residual_parameters.push_back(x5);
432 residual_parameters.push_back(x6);
433 residual_parameters.push_back(x7);
434 residual_parameters.push_back(x8);
435 return AddResidualBlock(cost_function, loss_function, residual_parameters);
436 }
437
AddResidualBlock(CostFunction * cost_function,LossFunction * loss_function,double * x0,double * x1,double * x2,double * x3,double * x4,double * x5,double * x6,double * x7,double * x8,double * x9)438 ResidualBlock* ProblemImpl::AddResidualBlock(
439 CostFunction* cost_function,
440 LossFunction* loss_function,
441 double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
442 double* x6, double* x7, double* x8, double* x9) {
443 vector<double*> residual_parameters;
444 residual_parameters.push_back(x0);
445 residual_parameters.push_back(x1);
446 residual_parameters.push_back(x2);
447 residual_parameters.push_back(x3);
448 residual_parameters.push_back(x4);
449 residual_parameters.push_back(x5);
450 residual_parameters.push_back(x6);
451 residual_parameters.push_back(x7);
452 residual_parameters.push_back(x8);
453 residual_parameters.push_back(x9);
454 return AddResidualBlock(cost_function, loss_function, residual_parameters);
455 }
456
AddParameterBlock(double * values,int size)457 void ProblemImpl::AddParameterBlock(double* values, int size) {
458 InternalAddParameterBlock(values, size);
459 }
460
AddParameterBlock(double * values,int size,LocalParameterization * local_parameterization)461 void ProblemImpl::AddParameterBlock(
462 double* values,
463 int size,
464 LocalParameterization* local_parameterization) {
465 ParameterBlock* parameter_block =
466 InternalAddParameterBlock(values, size);
467 if (local_parameterization != NULL) {
468 parameter_block->SetParameterization(local_parameterization);
469 }
470 }
471
472 // Delete a block from a vector of blocks, maintaining the indexing invariant.
473 // This is done in constant time by moving an element from the end of the
474 // vector over the element to remove, then popping the last element. It
475 // destroys the ordering in the interest of speed.
476 template<typename Block>
DeleteBlockInVector(vector<Block * > * mutable_blocks,Block * block_to_remove)477 void ProblemImpl::DeleteBlockInVector(vector<Block*>* mutable_blocks,
478 Block* block_to_remove) {
479 CHECK_EQ((*mutable_blocks)[block_to_remove->index()], block_to_remove)
480 << "You found a Ceres bug! \n"
481 << "Block requested: "
482 << block_to_remove->ToString() << "\n"
483 << "Block present: "
484 << (*mutable_blocks)[block_to_remove->index()]->ToString();
485
486 // Prepare the to-be-moved block for the new, lower-in-index position by
487 // setting the index to the blocks final location.
488 Block* tmp = mutable_blocks->back();
489 tmp->set_index(block_to_remove->index());
490
491 // Overwrite the to-be-deleted residual block with the one at the end.
492 (*mutable_blocks)[block_to_remove->index()] = tmp;
493
494 DeleteBlock(block_to_remove);
495
496 // The block is gone so shrink the vector of blocks accordingly.
497 mutable_blocks->pop_back();
498 }
499
RemoveResidualBlock(ResidualBlock * residual_block)500 void ProblemImpl::RemoveResidualBlock(ResidualBlock* residual_block) {
501 CHECK_NOTNULL(residual_block);
502
503 // Verify that residual_block identifies a residual in the current problem.
504 const string residual_not_found_message =
505 StringPrintf("Residual block to remove: %p not found. This usually means "
506 "one of three things have happened:\n"
507 " 1) residual_block is uninitialised and points to a random "
508 "area in memory.\n"
509 " 2) residual_block represented a residual that was added to"
510 " the problem, but referred to a parameter block which has "
511 "since been removed, which removes all residuals which "
512 "depend on that parameter block, and was thus removed.\n"
513 " 3) residual_block referred to a residual that has already "
514 "been removed from the problem (by the user).",
515 residual_block);
516 if (options_.enable_fast_removal) {
517 CHECK(residual_block_set_.find(residual_block) !=
518 residual_block_set_.end())
519 << residual_not_found_message;
520 } else {
521 // Perform a full search over all current residuals.
522 CHECK(std::find(program_->residual_blocks().begin(),
523 program_->residual_blocks().end(),
524 residual_block) != program_->residual_blocks().end())
525 << residual_not_found_message;
526 }
527
528 InternalRemoveResidualBlock(residual_block);
529 }
530
RemoveParameterBlock(double * values)531 void ProblemImpl::RemoveParameterBlock(double* values) {
532 ParameterBlock* parameter_block =
533 FindParameterBlockOrDie(parameter_block_map_, values);
534
535 if (options_.enable_fast_removal) {
536 // Copy the dependent residuals from the parameter block because the set of
537 // dependents will change after each call to RemoveResidualBlock().
538 vector<ResidualBlock*> residual_blocks_to_remove(
539 parameter_block->mutable_residual_blocks()->begin(),
540 parameter_block->mutable_residual_blocks()->end());
541 for (int i = 0; i < residual_blocks_to_remove.size(); ++i) {
542 InternalRemoveResidualBlock(residual_blocks_to_remove[i]);
543 }
544 } else {
545 // Scan all the residual blocks to remove ones that depend on the parameter
546 // block. Do the scan backwards since the vector changes while iterating.
547 const int num_residual_blocks = NumResidualBlocks();
548 for (int i = num_residual_blocks - 1; i >= 0; --i) {
549 ResidualBlock* residual_block =
550 (*(program_->mutable_residual_blocks()))[i];
551 const int num_parameter_blocks = residual_block->NumParameterBlocks();
552 for (int j = 0; j < num_parameter_blocks; ++j) {
553 if (residual_block->parameter_blocks()[j] == parameter_block) {
554 InternalRemoveResidualBlock(residual_block);
555 // The parameter blocks are guaranteed unique.
556 break;
557 }
558 }
559 }
560 }
561 DeleteBlockInVector(program_->mutable_parameter_blocks(), parameter_block);
562 }
563
SetParameterBlockConstant(double * values)564 void ProblemImpl::SetParameterBlockConstant(double* values) {
565 FindParameterBlockOrDie(parameter_block_map_, values)->SetConstant();
566 }
567
SetParameterBlockVariable(double * values)568 void ProblemImpl::SetParameterBlockVariable(double* values) {
569 FindParameterBlockOrDie(parameter_block_map_, values)->SetVarying();
570 }
571
SetParameterization(double * values,LocalParameterization * local_parameterization)572 void ProblemImpl::SetParameterization(
573 double* values,
574 LocalParameterization* local_parameterization) {
575 FindParameterBlockOrDie(parameter_block_map_, values)
576 ->SetParameterization(local_parameterization);
577 }
578
GetParameterization(double * values) const579 const LocalParameterization* ProblemImpl::GetParameterization(
580 double* values) const {
581 return FindParameterBlockOrDie(parameter_block_map_, values)
582 ->local_parameterization();
583 }
584
SetParameterLowerBound(double * values,int index,double lower_bound)585 void ProblemImpl::SetParameterLowerBound(double* values,
586 int index,
587 double lower_bound) {
588 FindParameterBlockOrDie(parameter_block_map_, values)
589 ->SetLowerBound(index, lower_bound);
590 }
591
SetParameterUpperBound(double * values,int index,double upper_bound)592 void ProblemImpl::SetParameterUpperBound(double* values,
593 int index,
594 double upper_bound) {
595 FindParameterBlockOrDie(parameter_block_map_, values)
596 ->SetUpperBound(index, upper_bound);
597 }
598
Evaluate(const Problem::EvaluateOptions & evaluate_options,double * cost,vector<double> * residuals,vector<double> * gradient,CRSMatrix * jacobian)599 bool ProblemImpl::Evaluate(const Problem::EvaluateOptions& evaluate_options,
600 double* cost,
601 vector<double>* residuals,
602 vector<double>* gradient,
603 CRSMatrix* jacobian) {
604 if (cost == NULL &&
605 residuals == NULL &&
606 gradient == NULL &&
607 jacobian == NULL) {
608 LOG(INFO) << "Nothing to do.";
609 return true;
610 }
611
612 // If the user supplied residual blocks, then use them, otherwise
613 // take the residual blocks from the underlying program.
614 Program program;
615 *program.mutable_residual_blocks() =
616 ((evaluate_options.residual_blocks.size() > 0)
617 ? evaluate_options.residual_blocks : program_->residual_blocks());
618
619 const vector<double*>& parameter_block_ptrs =
620 evaluate_options.parameter_blocks;
621
622 vector<ParameterBlock*> variable_parameter_blocks;
623 vector<ParameterBlock*>& parameter_blocks =
624 *program.mutable_parameter_blocks();
625
626 if (parameter_block_ptrs.size() == 0) {
627 // The user did not provide any parameter blocks, so default to
628 // using all the parameter blocks in the order that they are in
629 // the underlying program object.
630 parameter_blocks = program_->parameter_blocks();
631 } else {
632 // The user supplied a vector of parameter blocks. Using this list
633 // requires a number of steps.
634
635 // 1. Convert double* into ParameterBlock*
636 parameter_blocks.resize(parameter_block_ptrs.size());
637 for (int i = 0; i < parameter_block_ptrs.size(); ++i) {
638 parameter_blocks[i] =
639 FindParameterBlockOrDie(parameter_block_map_,
640 parameter_block_ptrs[i]);
641 }
642
643 // 2. The user may have only supplied a subset of parameter
644 // blocks, so identify the ones that are not supplied by the user
645 // and are NOT constant. These parameter blocks are stored in
646 // variable_parameter_blocks.
647 //
648 // To ensure that the parameter blocks are not included in the
649 // columns of the jacobian, we need to make sure that they are
650 // constant during evaluation and then make them variable again
651 // after we are done.
652 vector<ParameterBlock*> all_parameter_blocks(program_->parameter_blocks());
653 vector<ParameterBlock*> included_parameter_blocks(
654 program.parameter_blocks());
655
656 vector<ParameterBlock*> excluded_parameter_blocks;
657 sort(all_parameter_blocks.begin(), all_parameter_blocks.end());
658 sort(included_parameter_blocks.begin(), included_parameter_blocks.end());
659 set_difference(all_parameter_blocks.begin(),
660 all_parameter_blocks.end(),
661 included_parameter_blocks.begin(),
662 included_parameter_blocks.end(),
663 back_inserter(excluded_parameter_blocks));
664
665 variable_parameter_blocks.reserve(excluded_parameter_blocks.size());
666 for (int i = 0; i < excluded_parameter_blocks.size(); ++i) {
667 ParameterBlock* parameter_block = excluded_parameter_blocks[i];
668 if (!parameter_block->IsConstant()) {
669 variable_parameter_blocks.push_back(parameter_block);
670 parameter_block->SetConstant();
671 }
672 }
673 }
674
675 // Setup the Parameter indices and offsets before an evaluator can
676 // be constructed and used.
677 program.SetParameterOffsetsAndIndex();
678
679 Evaluator::Options evaluator_options;
680
681 // Even though using SPARSE_NORMAL_CHOLESKY requires SuiteSparse or
682 // CXSparse, here it just being used for telling the evaluator to
683 // use a SparseRowCompressedMatrix for the jacobian. This is because
684 // the Evaluator decides the storage for the Jacobian based on the
685 // type of linear solver being used.
686 evaluator_options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
687 evaluator_options.num_threads = evaluate_options.num_threads;
688
689 string error;
690 scoped_ptr<Evaluator> evaluator(
691 Evaluator::Create(evaluator_options, &program, &error));
692 if (evaluator.get() == NULL) {
693 LOG(ERROR) << "Unable to create an Evaluator object. "
694 << "Error: " << error
695 << "This is a Ceres bug; please contact the developers!";
696
697 // Make the parameter blocks that were temporarily marked
698 // constant, variable again.
699 for (int i = 0; i < variable_parameter_blocks.size(); ++i) {
700 variable_parameter_blocks[i]->SetVarying();
701 }
702
703 program_->SetParameterBlockStatePtrsToUserStatePtrs();
704 program_->SetParameterOffsetsAndIndex();
705 return false;
706 }
707
708 if (residuals !=NULL) {
709 residuals->resize(evaluator->NumResiduals());
710 }
711
712 if (gradient != NULL) {
713 gradient->resize(evaluator->NumEffectiveParameters());
714 }
715
716 scoped_ptr<CompressedRowSparseMatrix> tmp_jacobian;
717 if (jacobian != NULL) {
718 tmp_jacobian.reset(
719 down_cast<CompressedRowSparseMatrix*>(evaluator->CreateJacobian()));
720 }
721
722 // Point the state pointers to the user state pointers. This is
723 // needed so that we can extract a parameter vector which is then
724 // passed to Evaluator::Evaluate.
725 program.SetParameterBlockStatePtrsToUserStatePtrs();
726
727 // Copy the value of the parameter blocks into a vector, since the
728 // Evaluate::Evaluate method needs its input as such. The previous
729 // call to SetParameterBlockStatePtrsToUserStatePtrs ensures that
730 // these values are the ones corresponding to the actual state of
731 // the parameter blocks, rather than the temporary state pointer
732 // used for evaluation.
733 Vector parameters(program.NumParameters());
734 program.ParameterBlocksToStateVector(parameters.data());
735
736 double tmp_cost = 0;
737
738 Evaluator::EvaluateOptions evaluator_evaluate_options;
739 evaluator_evaluate_options.apply_loss_function =
740 evaluate_options.apply_loss_function;
741 bool status = evaluator->Evaluate(evaluator_evaluate_options,
742 parameters.data(),
743 &tmp_cost,
744 residuals != NULL ? &(*residuals)[0] : NULL,
745 gradient != NULL ? &(*gradient)[0] : NULL,
746 tmp_jacobian.get());
747
748 // Make the parameter blocks that were temporarily marked constant,
749 // variable again.
750 for (int i = 0; i < variable_parameter_blocks.size(); ++i) {
751 variable_parameter_blocks[i]->SetVarying();
752 }
753
754 if (status) {
755 if (cost != NULL) {
756 *cost = tmp_cost;
757 }
758 if (jacobian != NULL) {
759 tmp_jacobian->ToCRSMatrix(jacobian);
760 }
761 }
762
763 program_->SetParameterBlockStatePtrsToUserStatePtrs();
764 program_->SetParameterOffsetsAndIndex();
765 return status;
766 }
767
NumParameterBlocks() const768 int ProblemImpl::NumParameterBlocks() const {
769 return program_->NumParameterBlocks();
770 }
771
NumParameters() const772 int ProblemImpl::NumParameters() const {
773 return program_->NumParameters();
774 }
775
NumResidualBlocks() const776 int ProblemImpl::NumResidualBlocks() const {
777 return program_->NumResidualBlocks();
778 }
779
NumResiduals() const780 int ProblemImpl::NumResiduals() const {
781 return program_->NumResiduals();
782 }
783
ParameterBlockSize(const double * parameter_block) const784 int ProblemImpl::ParameterBlockSize(const double* parameter_block) const {
785 return FindParameterBlockOrDie(parameter_block_map_,
786 const_cast<double*>(parameter_block))->Size();
787 };
788
ParameterBlockLocalSize(const double * parameter_block) const789 int ProblemImpl::ParameterBlockLocalSize(const double* parameter_block) const {
790 return FindParameterBlockOrDie(
791 parameter_block_map_, const_cast<double*>(parameter_block))->LocalSize();
792 };
793
HasParameterBlock(const double * parameter_block) const794 bool ProblemImpl::HasParameterBlock(const double* parameter_block) const {
795 return (parameter_block_map_.find(const_cast<double*>(parameter_block)) !=
796 parameter_block_map_.end());
797 }
798
GetParameterBlocks(vector<double * > * parameter_blocks) const799 void ProblemImpl::GetParameterBlocks(vector<double*>* parameter_blocks) const {
800 CHECK_NOTNULL(parameter_blocks);
801 parameter_blocks->resize(0);
802 for (ParameterMap::const_iterator it = parameter_block_map_.begin();
803 it != parameter_block_map_.end();
804 ++it) {
805 parameter_blocks->push_back(it->first);
806 }
807 }
808
GetResidualBlocks(vector<ResidualBlockId> * residual_blocks) const809 void ProblemImpl::GetResidualBlocks(
810 vector<ResidualBlockId>* residual_blocks) const {
811 CHECK_NOTNULL(residual_blocks);
812 *residual_blocks = program().residual_blocks();
813 }
814
GetParameterBlocksForResidualBlock(const ResidualBlockId residual_block,vector<double * > * parameter_blocks) const815 void ProblemImpl::GetParameterBlocksForResidualBlock(
816 const ResidualBlockId residual_block,
817 vector<double*>* parameter_blocks) const {
818 int num_parameter_blocks = residual_block->NumParameterBlocks();
819 CHECK_NOTNULL(parameter_blocks)->resize(num_parameter_blocks);
820 for (int i = 0; i < num_parameter_blocks; ++i) {
821 (*parameter_blocks)[i] =
822 residual_block->parameter_blocks()[i]->mutable_user_state();
823 }
824 }
825
GetResidualBlocksForParameterBlock(const double * values,vector<ResidualBlockId> * residual_blocks) const826 void ProblemImpl::GetResidualBlocksForParameterBlock(
827 const double* values,
828 vector<ResidualBlockId>* residual_blocks) const {
829 ParameterBlock* parameter_block =
830 FindParameterBlockOrDie(parameter_block_map_,
831 const_cast<double*>(values));
832
833 if (options_.enable_fast_removal) {
834 // In this case the residual blocks that depend on the parameter block are
835 // stored in the parameter block already, so just copy them out.
836 CHECK_NOTNULL(residual_blocks)->resize(
837 parameter_block->mutable_residual_blocks()->size());
838 std::copy(parameter_block->mutable_residual_blocks()->begin(),
839 parameter_block->mutable_residual_blocks()->end(),
840 residual_blocks->begin());
841 return;
842 }
843
844 // Find residual blocks that depend on the parameter block.
845 CHECK_NOTNULL(residual_blocks)->clear();
846 const int num_residual_blocks = NumResidualBlocks();
847 for (int i = 0; i < num_residual_blocks; ++i) {
848 ResidualBlock* residual_block =
849 (*(program_->mutable_residual_blocks()))[i];
850 const int num_parameter_blocks = residual_block->NumParameterBlocks();
851 for (int j = 0; j < num_parameter_blocks; ++j) {
852 if (residual_block->parameter_blocks()[j] == parameter_block) {
853 residual_blocks->push_back(residual_block);
854 // The parameter blocks are guaranteed unique.
855 break;
856 }
857 }
858 }
859 }
860
861 } // namespace internal
862 } // namespace ceres
863