1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include <cmath>
32 #include <limits>
33 #include <string>
34 #include "ceres/internal/eigen.h"
35 #include "ceres/internal/port.h"
36 #include "ceres/jet.h"
37 #include "ceres/rotation.h"
38 #include "ceres/stringprintf.h"
39 #include "ceres/test_util.h"
40 #include "glog/logging.h"
41 #include "gmock/gmock.h"
42 #include "gtest/gtest.h"
43 
44 namespace ceres {
45 namespace internal {
46 
47 const double kPi = 3.14159265358979323846;
48 const double kHalfSqrt2 = 0.707106781186547524401;
49 
RandDouble()50 double RandDouble() {
51   double r = rand();
52   return r / RAND_MAX;
53 }
54 
55 // A tolerance value for floating-point comparisons.
56 static double const kTolerance = numeric_limits<double>::epsilon() * 10;
57 
58 // Looser tolerance used for numerically unstable conversions.
59 static double const kLooseTolerance = 1e-9;
60 
61 // Use as:
62 // double quaternion[4];
63 // EXPECT_THAT(quaternion, IsNormalizedQuaternion());
64 MATCHER(IsNormalizedQuaternion, "") {
65   if (arg == NULL) {
66     *result_listener << "Null quaternion";
67     return false;
68   }
69 
70   double norm2 = arg[0] * arg[0] + arg[1] * arg[1] +
71       arg[2] * arg[2] + arg[3] * arg[3];
72   if (fabs(norm2 - 1.0) > kTolerance) {
73     *result_listener << "squared norm is " << norm2;
74     return false;
75   }
76 
77   return true;
78 }
79 
80 // Use as:
81 // double expected_quaternion[4];
82 // double actual_quaternion[4];
83 // EXPECT_THAT(actual_quaternion, IsNearQuaternion(expected_quaternion));
84 MATCHER_P(IsNearQuaternion, expected, "") {
85   if (arg == NULL) {
86     *result_listener << "Null quaternion";
87     return false;
88   }
89 
90   // Quaternions are equivalent upto a sign change. So we will compare
91   // both signs before declaring failure.
92   bool near = true;
93   for (int i = 0; i < 4; i++) {
94     if (fabs(arg[i] - expected[i]) > kTolerance) {
95       near = false;
96       break;
97     }
98   }
99 
100   if (near) {
101     return true;
102   }
103 
104   near = true;
105   for (int i = 0; i < 4; i++) {
106     if (fabs(arg[i] + expected[i]) > kTolerance) {
107       near = false;
108       break;
109     }
110   }
111 
112   if (near) {
113     return true;
114   }
115 
116   *result_listener << "expected : "
117                    << expected[0] << " "
118                    << expected[1] << " "
119                    << expected[2] << " "
120                    << expected[3] << " "
121                    << "actual : "
122                    << arg[0] << " "
123                    << arg[1] << " "
124                    << arg[2] << " "
125                    << arg[3];
126   return false;
127 }
128 
129 // Use as:
130 // double expected_axis_angle[4];
131 // double actual_axis_angle[4];
132 // EXPECT_THAT(actual_axis_angle, IsNearAngleAxis(expected_axis_angle));
133 MATCHER_P(IsNearAngleAxis, expected, "") {
134   if (arg == NULL) {
135     *result_listener << "Null axis/angle";
136     return false;
137   }
138 
139   for (int i = 0; i < 3; i++) {
140     if (fabs(arg[i] - expected[i]) > kTolerance) {
141       *result_listener << "component " << i << " should be " << expected[i];
142       return false;
143     }
144   }
145 
146   return true;
147 }
148 
149 // Use as:
150 // double matrix[9];
151 // EXPECT_THAT(matrix, IsOrthonormal());
152 MATCHER(IsOrthonormal, "") {
153   if (arg == NULL) {
154     *result_listener << "Null matrix";
155     return false;
156   }
157 
158   for (int c1 = 0; c1 < 3; c1++) {
159     for (int c2 = 0; c2 < 3; c2++) {
160       double v = 0;
161       for (int i = 0; i < 3; i++) {
162         v += arg[i + 3 * c1] * arg[i + 3 * c2];
163       }
164       double expected = (c1 == c2) ? 1 : 0;
165       if (fabs(expected - v) > kTolerance) {
166         *result_listener << "Columns " << c1 << " and " << c2
167                          << " should have dot product " << expected
168                          << " but have " << v;
169         return false;
170       }
171     }
172   }
173 
174   return true;
175 }
176 
177 // Use as:
178 // double matrix1[9];
179 // double matrix2[9];
180 // EXPECT_THAT(matrix1, IsNear3x3Matrix(matrix2));
181 MATCHER_P(IsNear3x3Matrix, expected, "") {
182   if (arg == NULL) {
183     *result_listener << "Null matrix";
184     return false;
185   }
186 
187   for (int i = 0; i < 9; i++) {
188     if (fabs(arg[i] - expected[i]) > kTolerance) {
189       *result_listener << "component " << i << " should be " << expected[i];
190       return false;
191     }
192   }
193 
194   return true;
195 }
196 
197 // Transforms a zero axis/angle to a quaternion.
TEST(Rotation,ZeroAngleAxisToQuaternion)198 TEST(Rotation, ZeroAngleAxisToQuaternion) {
199   double axis_angle[3] = { 0, 0, 0 };
200   double quaternion[4];
201   double expected[4] = { 1, 0, 0, 0 };
202   AngleAxisToQuaternion(axis_angle, quaternion);
203   EXPECT_THAT(quaternion, IsNormalizedQuaternion());
204   EXPECT_THAT(quaternion, IsNearQuaternion(expected));
205 }
206 
207 // Test that exact conversion works for small angles.
TEST(Rotation,SmallAngleAxisToQuaternion)208 TEST(Rotation, SmallAngleAxisToQuaternion) {
209   // Small, finite value to test.
210   double theta = 1.0e-2;
211   double axis_angle[3] = { theta, 0, 0 };
212   double quaternion[4];
213   double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
214   AngleAxisToQuaternion(axis_angle, quaternion);
215   EXPECT_THAT(quaternion, IsNormalizedQuaternion());
216   EXPECT_THAT(quaternion, IsNearQuaternion(expected));
217 }
218 
219 // Test that approximate conversion works for very small angles.
TEST(Rotation,TinyAngleAxisToQuaternion)220 TEST(Rotation, TinyAngleAxisToQuaternion) {
221   // Very small value that could potentially cause underflow.
222   double theta = pow(numeric_limits<double>::min(), 0.75);
223   double axis_angle[3] = { theta, 0, 0 };
224   double quaternion[4];
225   double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
226   AngleAxisToQuaternion(axis_angle, quaternion);
227   EXPECT_THAT(quaternion, IsNormalizedQuaternion());
228   EXPECT_THAT(quaternion, IsNearQuaternion(expected));
229 }
230 
231 // Transforms a rotation by pi/2 around X to a quaternion.
TEST(Rotation,XRotationToQuaternion)232 TEST(Rotation, XRotationToQuaternion) {
233   double axis_angle[3] = { kPi / 2, 0, 0 };
234   double quaternion[4];
235   double expected[4] = { kHalfSqrt2, kHalfSqrt2, 0, 0 };
236   AngleAxisToQuaternion(axis_angle, quaternion);
237   EXPECT_THAT(quaternion, IsNormalizedQuaternion());
238   EXPECT_THAT(quaternion, IsNearQuaternion(expected));
239 }
240 
241 // Transforms a unit quaternion to an axis angle.
TEST(Rotation,UnitQuaternionToAngleAxis)242 TEST(Rotation, UnitQuaternionToAngleAxis) {
243   double quaternion[4] = { 1, 0, 0, 0 };
244   double axis_angle[3];
245   double expected[3] = { 0, 0, 0 };
246   QuaternionToAngleAxis(quaternion, axis_angle);
247   EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
248 }
249 
250 // Transforms a quaternion that rotates by pi about the Y axis to an axis angle.
TEST(Rotation,YRotationQuaternionToAngleAxis)251 TEST(Rotation, YRotationQuaternionToAngleAxis) {
252   double quaternion[4] = { 0, 0, 1, 0 };
253   double axis_angle[3];
254   double expected[3] = { 0, kPi, 0 };
255   QuaternionToAngleAxis(quaternion, axis_angle);
256   EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
257 }
258 
259 // Transforms a quaternion that rotates by pi/3 about the Z axis to an axis
260 // angle.
TEST(Rotation,ZRotationQuaternionToAngleAxis)261 TEST(Rotation, ZRotationQuaternionToAngleAxis) {
262   double quaternion[4] = { sqrt(3) / 2, 0, 0, 0.5 };
263   double axis_angle[3];
264   double expected[3] = { 0, 0, kPi / 3 };
265   QuaternionToAngleAxis(quaternion, axis_angle);
266   EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
267 }
268 
269 // Test that exact conversion works for small angles.
TEST(Rotation,SmallQuaternionToAngleAxis)270 TEST(Rotation, SmallQuaternionToAngleAxis) {
271   // Small, finite value to test.
272   double theta = 1.0e-2;
273   double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
274   double axis_angle[3];
275   double expected[3] = { theta, 0, 0 };
276   QuaternionToAngleAxis(quaternion, axis_angle);
277   EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
278 }
279 
280 // Test that approximate conversion works for very small angles.
TEST(Rotation,TinyQuaternionToAngleAxis)281 TEST(Rotation, TinyQuaternionToAngleAxis) {
282   // Very small value that could potentially cause underflow.
283   double theta = pow(numeric_limits<double>::min(), 0.75);
284   double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
285   double axis_angle[3];
286   double expected[3] = { theta, 0, 0 };
287   QuaternionToAngleAxis(quaternion, axis_angle);
288   EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
289 }
290 
TEST(Rotation,QuaternionToAngleAxisAngleIsLessThanPi)291 TEST(Rotation, QuaternionToAngleAxisAngleIsLessThanPi) {
292   double quaternion[4];
293   double angle_axis[3];
294 
295   const double half_theta = 0.75 * kPi;
296 
297   quaternion[0] = cos(half_theta);
298   quaternion[1] = 1.0 * sin(half_theta);
299   quaternion[2] = 0.0;
300   quaternion[3] = 0.0;
301   QuaternionToAngleAxis(quaternion, angle_axis);
302   const double angle = sqrt(angle_axis[0] * angle_axis[0] +
303                             angle_axis[1] * angle_axis[1] +
304                             angle_axis[2] * angle_axis[2]);
305   EXPECT_LE(angle, kPi);
306 }
307 
308 static const int kNumTrials = 10000;
309 
310 // Takes a bunch of random axis/angle values, converts them to quaternions,
311 // and back again.
TEST(Rotation,AngleAxisToQuaterionAndBack)312 TEST(Rotation, AngleAxisToQuaterionAndBack) {
313   srand(5);
314   for (int i = 0; i < kNumTrials; i++) {
315     double axis_angle[3];
316     // Make an axis by choosing three random numbers in [-1, 1) and
317     // normalizing.
318     double norm = 0;
319     for (int i = 0; i < 3; i++) {
320       axis_angle[i] = RandDouble() * 2 - 1;
321       norm += axis_angle[i] * axis_angle[i];
322     }
323     norm = sqrt(norm);
324 
325     // Angle in [-pi, pi).
326     double theta = kPi * 2 * RandDouble() - kPi;
327     for (int i = 0; i < 3; i++) {
328       axis_angle[i] = axis_angle[i] * theta / norm;
329     }
330 
331     double quaternion[4];
332     double round_trip[3];
333     // We use ASSERTs here because if there's one failure, there are
334     // probably many and spewing a million failures doesn't make anyone's
335     // day.
336     AngleAxisToQuaternion(axis_angle, quaternion);
337     ASSERT_THAT(quaternion, IsNormalizedQuaternion());
338     QuaternionToAngleAxis(quaternion, round_trip);
339     ASSERT_THAT(round_trip, IsNearAngleAxis(axis_angle));
340   }
341 }
342 
343 // Takes a bunch of random quaternions, converts them to axis/angle,
344 // and back again.
TEST(Rotation,QuaterionToAngleAxisAndBack)345 TEST(Rotation, QuaterionToAngleAxisAndBack) {
346   srand(5);
347   for (int i = 0; i < kNumTrials; i++) {
348     double quaternion[4];
349     // Choose four random numbers in [-1, 1) and normalize.
350     double norm = 0;
351     for (int i = 0; i < 4; i++) {
352       quaternion[i] = RandDouble() * 2 - 1;
353       norm += quaternion[i] * quaternion[i];
354     }
355     norm = sqrt(norm);
356 
357     for (int i = 0; i < 4; i++) {
358       quaternion[i] = quaternion[i] / norm;
359     }
360 
361     double axis_angle[3];
362     double round_trip[4];
363     QuaternionToAngleAxis(quaternion, axis_angle);
364     AngleAxisToQuaternion(axis_angle, round_trip);
365     ASSERT_THAT(round_trip, IsNormalizedQuaternion());
366     ASSERT_THAT(round_trip, IsNearQuaternion(quaternion));
367   }
368 }
369 
370 // Transforms a zero axis/angle to a rotation matrix.
TEST(Rotation,ZeroAngleAxisToRotationMatrix)371 TEST(Rotation, ZeroAngleAxisToRotationMatrix) {
372   double axis_angle[3] = { 0, 0, 0 };
373   double matrix[9];
374   double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
375   AngleAxisToRotationMatrix(axis_angle, matrix);
376   EXPECT_THAT(matrix, IsOrthonormal());
377   EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
378 }
379 
TEST(Rotation,NearZeroAngleAxisToRotationMatrix)380 TEST(Rotation, NearZeroAngleAxisToRotationMatrix) {
381   double axis_angle[3] = { 1e-24, 2e-24, 3e-24 };
382   double matrix[9];
383   double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
384   AngleAxisToRotationMatrix(axis_angle, matrix);
385   EXPECT_THAT(matrix, IsOrthonormal());
386   EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
387 }
388 
389 // Transforms a rotation by pi/2 around X to a rotation matrix and back.
TEST(Rotation,XRotationToRotationMatrix)390 TEST(Rotation, XRotationToRotationMatrix) {
391   double axis_angle[3] = { kPi / 2, 0, 0 };
392   double matrix[9];
393   // The rotation matrices are stored column-major.
394   double expected[9] = { 1, 0, 0, 0, 0, 1, 0, -1, 0 };
395   AngleAxisToRotationMatrix(axis_angle, matrix);
396   EXPECT_THAT(matrix, IsOrthonormal());
397   EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
398   double round_trip[3];
399   RotationMatrixToAngleAxis(matrix, round_trip);
400   EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
401 }
402 
403 // Transforms an axis angle that rotates by pi about the Y axis to a
404 // rotation matrix and back.
TEST(Rotation,YRotationToRotationMatrix)405 TEST(Rotation, YRotationToRotationMatrix) {
406   double axis_angle[3] = { 0, kPi, 0 };
407   double matrix[9];
408   double expected[9] = { -1, 0, 0, 0, 1, 0, 0, 0, -1 };
409   AngleAxisToRotationMatrix(axis_angle, matrix);
410   EXPECT_THAT(matrix, IsOrthonormal());
411   EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
412 
413   double round_trip[3];
414   RotationMatrixToAngleAxis(matrix, round_trip);
415   EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
416 }
417 
TEST(Rotation,NearPiAngleAxisRoundTrip)418 TEST(Rotation, NearPiAngleAxisRoundTrip) {
419   double in_axis_angle[3];
420   double matrix[9];
421   double out_axis_angle[3];
422 
423   srand(5);
424   for (int i = 0; i < kNumTrials; i++) {
425     // Make an axis by choosing three random numbers in [-1, 1) and
426     // normalizing.
427     double norm = 0;
428     for (int i = 0; i < 3; i++) {
429       in_axis_angle[i] = RandDouble() * 2 - 1;
430       norm += in_axis_angle[i] * in_axis_angle[i];
431     }
432     norm = sqrt(norm);
433 
434     // Angle in [pi - kMaxSmallAngle, pi).
435     const double kMaxSmallAngle = 1e-2;
436     double theta = kPi - kMaxSmallAngle * RandDouble();
437 
438     for (int i = 0; i < 3; i++) {
439       in_axis_angle[i] *= (theta / norm);
440     }
441     AngleAxisToRotationMatrix(in_axis_angle, matrix);
442     RotationMatrixToAngleAxis(matrix, out_axis_angle);
443 
444     for (int i = 0; i < 3; ++i) {
445       EXPECT_NEAR(out_axis_angle[i], in_axis_angle[i], kLooseTolerance);
446     }
447   }
448 }
449 
TEST(Rotation,AtPiAngleAxisRoundTrip)450 TEST(Rotation, AtPiAngleAxisRoundTrip) {
451   // A rotation of kPi about the X axis;
452   static const double kMatrix[3][3] = {
453     {1.0,  0.0,  0.0},
454     {0.0,  -1.0,  0.0},
455     {0.0,  0.0,  -1.0}
456   };
457 
458   double in_matrix[9];
459   // Fill it from kMatrix in col-major order.
460   for (int j = 0, k = 0; j < 3; ++j) {
461      for (int i = 0; i < 3; ++i, ++k) {
462        in_matrix[k] = kMatrix[i][j];
463      }
464   }
465 
466   const double expected_axis_angle[3] = { kPi, 0, 0 };
467 
468   double out_matrix[9];
469   double axis_angle[3];
470   RotationMatrixToAngleAxis(in_matrix, axis_angle);
471   AngleAxisToRotationMatrix(axis_angle, out_matrix);
472 
473   LOG(INFO) << "AngleAxis = " << axis_angle[0] << " " << axis_angle[1]
474             << " " << axis_angle[2];
475   LOG(INFO) << "Expected AngleAxis = " << kPi << " 0 0";
476   double out_rowmajor[3][3];
477   for (int j = 0, k = 0; j < 3; ++j) {
478     for (int i = 0; i < 3; ++i, ++k) {
479       out_rowmajor[i][j] = out_matrix[k];
480     }
481   }
482   LOG(INFO) << "Rotation:";
483   LOG(INFO) << "EXPECTED      |        ACTUAL";
484   for (int i = 0; i < 3; ++i) {
485     string line;
486     for (int j = 0; j < 3; ++j) {
487       StringAppendF(&line, "%g ", kMatrix[i][j]);
488     }
489     line += "         |        ";
490     for (int j = 0; j < 3; ++j) {
491       StringAppendF(&line, "%g ", out_rowmajor[i][j]);
492     }
493     LOG(INFO) << line;
494   }
495 
496   EXPECT_THAT(axis_angle, IsNearAngleAxis(expected_axis_angle));
497   EXPECT_THAT(out_matrix, IsNear3x3Matrix(in_matrix));
498 }
499 
500 // Transforms an axis angle that rotates by pi/3 about the Z axis to a
501 // rotation matrix.
TEST(Rotation,ZRotationToRotationMatrix)502 TEST(Rotation, ZRotationToRotationMatrix) {
503   double axis_angle[3] =  { 0, 0, kPi / 3 };
504   double matrix[9];
505   // This is laid-out row-major on the screen but is actually stored
506   // column-major.
507   double expected[9] = { 0.5, sqrt(3) / 2, 0,   // Column 1
508                          -sqrt(3) / 2, 0.5, 0,  // Column 2
509                          0, 0, 1 };             // Column 3
510   AngleAxisToRotationMatrix(axis_angle, matrix);
511   EXPECT_THAT(matrix, IsOrthonormal());
512   EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
513   double round_trip[3];
514   RotationMatrixToAngleAxis(matrix, round_trip);
515   EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
516 }
517 
518 // Takes a bunch of random axis/angle values, converts them to rotation
519 // matrices, and back again.
TEST(Rotation,AngleAxisToRotationMatrixAndBack)520 TEST(Rotation, AngleAxisToRotationMatrixAndBack) {
521   srand(5);
522   for (int i = 0; i < kNumTrials; i++) {
523     double axis_angle[3];
524     // Make an axis by choosing three random numbers in [-1, 1) and
525     // normalizing.
526     double norm = 0;
527     for (int i = 0; i < 3; i++) {
528       axis_angle[i] = RandDouble() * 2 - 1;
529       norm += axis_angle[i] * axis_angle[i];
530     }
531     norm = sqrt(norm);
532 
533     // Angle in [-pi, pi).
534     double theta = kPi * 2 * RandDouble() - kPi;
535     for (int i = 0; i < 3; i++) {
536       axis_angle[i] = axis_angle[i] * theta / norm;
537     }
538 
539     double matrix[9];
540     double round_trip[3];
541     AngleAxisToRotationMatrix(axis_angle, matrix);
542     ASSERT_THAT(matrix, IsOrthonormal());
543     RotationMatrixToAngleAxis(matrix, round_trip);
544 
545     for (int i = 0; i < 3; ++i) {
546       EXPECT_NEAR(round_trip[i], axis_angle[i], kLooseTolerance);
547     }
548   }
549 }
550 
551 // Takes a bunch of random axis/angle values near zero, converts them
552 // to rotation matrices, and back again.
TEST(Rotation,AngleAxisToRotationMatrixAndBackNearZero)553 TEST(Rotation, AngleAxisToRotationMatrixAndBackNearZero) {
554   srand(5);
555   for (int i = 0; i < kNumTrials; i++) {
556     double axis_angle[3];
557     // Make an axis by choosing three random numbers in [-1, 1) and
558     // normalizing.
559     double norm = 0;
560     for (int i = 0; i < 3; i++) {
561       axis_angle[i] = RandDouble() * 2 - 1;
562       norm += axis_angle[i] * axis_angle[i];
563     }
564     norm = sqrt(norm);
565 
566     // Tiny theta.
567     double theta = 1e-16 * (kPi * 2 * RandDouble() - kPi);
568     for (int i = 0; i < 3; i++) {
569       axis_angle[i] = axis_angle[i] * theta / norm;
570     }
571 
572     double matrix[9];
573     double round_trip[3];
574     AngleAxisToRotationMatrix(axis_angle, matrix);
575     ASSERT_THAT(matrix, IsOrthonormal());
576     RotationMatrixToAngleAxis(matrix, round_trip);
577 
578     for (int i = 0; i < 3; ++i) {
579       EXPECT_NEAR(round_trip[i], axis_angle[i],
580                   std::numeric_limits<double>::epsilon());
581     }
582   }
583 }
584 
585 
586 // Transposes a 3x3 matrix.
Transpose3x3(double m[9])587 static void Transpose3x3(double m[9]) {
588   std::swap(m[1], m[3]);
589   std::swap(m[2], m[6]);
590   std::swap(m[5], m[7]);
591 }
592 
593 // Convert Euler angles from radians to degrees.
ToDegrees(double ea[3])594 static void ToDegrees(double ea[3]) {
595   for (int i = 0; i < 3; ++i)
596     ea[i] *= 180.0 / kPi;
597 }
598 
599 // Compare the 3x3 rotation matrices produced by the axis-angle
600 // rotation 'aa' and the Euler angle rotation 'ea' (in radians).
CompareEulerToAngleAxis(double aa[3],double ea[3])601 static void CompareEulerToAngleAxis(double aa[3], double ea[3]) {
602   double aa_matrix[9];
603   AngleAxisToRotationMatrix(aa, aa_matrix);
604   Transpose3x3(aa_matrix);  // Column to row major order.
605 
606   double ea_matrix[9];
607   ToDegrees(ea);  // Radians to degrees.
608   const int kRowStride = 3;
609   EulerAnglesToRotationMatrix(ea, kRowStride, ea_matrix);
610 
611   EXPECT_THAT(aa_matrix, IsOrthonormal());
612   EXPECT_THAT(ea_matrix, IsOrthonormal());
613   EXPECT_THAT(ea_matrix, IsNear3x3Matrix(aa_matrix));
614 }
615 
616 // Test with rotation axis along the x/y/z axes.
617 // Also test zero rotation.
TEST(EulerAnglesToRotationMatrix,OnAxis)618 TEST(EulerAnglesToRotationMatrix, OnAxis) {
619   int n_tests = 0;
620   for (double x = -1.0; x <= 1.0; x += 1.0) {
621     for (double y = -1.0; y <= 1.0; y += 1.0) {
622       for (double z = -1.0; z <= 1.0; z += 1.0) {
623         if ((x != 0) + (y != 0) + (z != 0) > 1)
624           continue;
625         double axis_angle[3] = {x, y, z};
626         double euler_angles[3] = {x, y, z};
627         CompareEulerToAngleAxis(axis_angle, euler_angles);
628         ++n_tests;
629       }
630     }
631   }
632   CHECK_EQ(7, n_tests);
633 }
634 
635 // Test that a random rotation produces an orthonormal rotation
636 // matrix.
TEST(EulerAnglesToRotationMatrix,IsOrthonormal)637 TEST(EulerAnglesToRotationMatrix, IsOrthonormal) {
638   srand(5);
639   for (int trial = 0; trial < kNumTrials; ++trial) {
640     double ea[3];
641     for (int i = 0; i < 3; ++i)
642       ea[i] = 360.0 * (RandDouble() * 2.0 - 1.0);
643     double ea_matrix[9];
644     ToDegrees(ea);  // Radians to degrees.
645     EulerAnglesToRotationMatrix(ea, 3, ea_matrix);
646     EXPECT_THAT(ea_matrix, IsOrthonormal());
647   }
648 }
649 
650 // Tests using Jets for specific behavior involving auto differentiation
651 // near singularity points.
652 
653 typedef Jet<double, 3> J3;
654 typedef Jet<double, 4> J4;
655 
MakeJ3(double a,double v0,double v1,double v2)656 J3 MakeJ3(double a, double v0, double v1, double v2) {
657   J3 j;
658   j.a = a;
659   j.v[0] = v0;
660   j.v[1] = v1;
661   j.v[2] = v2;
662   return j;
663 }
664 
MakeJ4(double a,double v0,double v1,double v2,double v3)665 J4 MakeJ4(double a, double v0, double v1, double v2, double v3) {
666   J4 j;
667   j.a = a;
668   j.v[0] = v0;
669   j.v[1] = v1;
670   j.v[2] = v2;
671   j.v[3] = v3;
672   return j;
673 }
674 
675 
IsClose(double x,double y)676 bool IsClose(double x, double y) {
677   EXPECT_FALSE(IsNaN(x));
678   EXPECT_FALSE(IsNaN(y));
679   double absdiff = fabs(x - y);
680   if (x == 0 || y == 0) {
681     return absdiff <= kTolerance;
682   }
683   double reldiff = absdiff / max(fabs(x), fabs(y));
684   return reldiff <= kTolerance;
685 }
686 
687 template <int N>
IsClose(const Jet<double,N> & x,const Jet<double,N> & y)688 bool IsClose(const Jet<double, N> &x, const Jet<double, N> &y) {
689   if (IsClose(x.a, y.a)) {
690     for (int i = 0; i < N; i++) {
691       if (!IsClose(x.v[i], y.v[i])) {
692         return false;
693       }
694     }
695   }
696   return true;
697 }
698 
699 template <int M, int N>
ExpectJetArraysClose(const Jet<double,N> * x,const Jet<double,N> * y)700 void ExpectJetArraysClose(const Jet<double, N> *x, const Jet<double, N> *y) {
701   for (int i = 0; i < M; i++) {
702     if (!IsClose(x[i], y[i])) {
703       LOG(ERROR) << "Jet " << i << "/" << M << " not equal";
704       LOG(ERROR) << "x[" << i << "]: " << x[i];
705       LOG(ERROR) << "y[" << i << "]: " << y[i];
706       Jet<double, N> d, zero;
707       d.a = y[i].a - x[i].a;
708       for (int j = 0; j < N; j++) {
709         d.v[j] = y[i].v[j] - x[i].v[j];
710       }
711       LOG(ERROR) << "diff: " << d;
712       EXPECT_TRUE(IsClose(x[i], y[i]));
713     }
714   }
715 }
716 
717 // Log-10 of a value well below machine precision.
718 static const int kSmallTinyCutoff =
719     static_cast<int>(2 * log(numeric_limits<double>::epsilon())/log(10.0));
720 
721 // Log-10 of a value just below values representable by double.
722 static const int kTinyZeroLimit   =
723     static_cast<int>(1 + log(numeric_limits<double>::min())/log(10.0));
724 
725 // Test that exact conversion works for small angles when jets are used.
TEST(Rotation,SmallAngleAxisToQuaternionForJets)726 TEST(Rotation, SmallAngleAxisToQuaternionForJets) {
727   // Examine small x rotations that are still large enough
728   // to be well within the range represented by doubles.
729   for (int i = -2; i >= kSmallTinyCutoff; i--) {
730     double theta = pow(10.0, i);
731     J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) };
732     J3 quaternion[4];
733     J3 expected[4] = {
734         MakeJ3(cos(theta/2), -sin(theta/2)/2, 0, 0),
735         MakeJ3(sin(theta/2), cos(theta/2)/2, 0, 0),
736         MakeJ3(0, 0, sin(theta/2)/theta, 0),
737         MakeJ3(0, 0, 0, sin(theta/2)/theta),
738     };
739     AngleAxisToQuaternion(axis_angle, quaternion);
740     ExpectJetArraysClose<4, 3>(quaternion, expected);
741   }
742 }
743 
744 
745 // Test that conversion works for very small angles when jets are used.
TEST(Rotation,TinyAngleAxisToQuaternionForJets)746 TEST(Rotation, TinyAngleAxisToQuaternionForJets) {
747   // Examine tiny x rotations that extend all the way to where
748   // underflow occurs.
749   for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) {
750     double theta = pow(10.0, i);
751     J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) };
752     J3 quaternion[4];
753     // To avoid loss of precision in the test itself,
754     // a finite expansion is used here, which will
755     // be exact up to machine precision for the test values used.
756     J3 expected[4] = {
757         MakeJ3(1.0, 0, 0, 0),
758         MakeJ3(0, 0.5, 0, 0),
759         MakeJ3(0, 0, 0.5, 0),
760         MakeJ3(0, 0, 0, 0.5),
761     };
762     AngleAxisToQuaternion(axis_angle, quaternion);
763     ExpectJetArraysClose<4, 3>(quaternion, expected);
764   }
765 }
766 
767 // Test that derivatives are correct for zero rotation.
TEST(Rotation,ZeroAngleAxisToQuaternionForJets)768 TEST(Rotation, ZeroAngleAxisToQuaternionForJets) {
769   J3 axis_angle[3] = { J3(0, 0), J3(0, 1), J3(0, 2) };
770   J3 quaternion[4];
771   J3 expected[4] = {
772       MakeJ3(1.0, 0, 0, 0),
773       MakeJ3(0, 0.5, 0, 0),
774       MakeJ3(0, 0, 0.5, 0),
775       MakeJ3(0, 0, 0, 0.5),
776   };
777   AngleAxisToQuaternion(axis_angle, quaternion);
778   ExpectJetArraysClose<4, 3>(quaternion, expected);
779 }
780 
781 // Test that exact conversion works for small angles.
TEST(Rotation,SmallQuaternionToAngleAxisForJets)782 TEST(Rotation, SmallQuaternionToAngleAxisForJets) {
783   // Examine small x rotations that are still large enough
784   // to be well within the range represented by doubles.
785   for (int i = -2; i >= kSmallTinyCutoff; i--) {
786     double theta = pow(10.0, i);
787     double s = sin(theta);
788     double c = cos(theta);
789     J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) };
790     J4 axis_angle[3];
791     J4 expected[3] = {
792         MakeJ4(s, -2*theta, 2*theta*c, 0, 0),
793         MakeJ4(0, 0, 0, 2*theta/s, 0),
794         MakeJ4(0, 0, 0, 0, 2*theta/s),
795     };
796     QuaternionToAngleAxis(quaternion, axis_angle);
797     ExpectJetArraysClose<3, 4>(axis_angle, expected);
798   }
799 }
800 
801 // Test that conversion works for very small angles.
TEST(Rotation,TinyQuaternionToAngleAxisForJets)802 TEST(Rotation, TinyQuaternionToAngleAxisForJets) {
803   // Examine tiny x rotations that extend all the way to where
804   // underflow occurs.
805   for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) {
806     double theta = pow(10.0, i);
807     double s = sin(theta);
808     double c = cos(theta);
809     J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) };
810     J4 axis_angle[3];
811     // To avoid loss of precision in the test itself,
812     // a finite expansion is used here, which will
813     // be exact up to machine precision for the test values used.
814     J4 expected[3] = {
815         MakeJ4(theta, -2*theta, 2.0, 0, 0),
816         MakeJ4(0, 0, 0, 2.0, 0),
817         MakeJ4(0, 0, 0, 0, 2.0),
818     };
819     QuaternionToAngleAxis(quaternion, axis_angle);
820     ExpectJetArraysClose<3, 4>(axis_angle, expected);
821   }
822 }
823 
824 // Test that conversion works for no rotation.
TEST(Rotation,ZeroQuaternionToAngleAxisForJets)825 TEST(Rotation, ZeroQuaternionToAngleAxisForJets) {
826   J4 quaternion[4] = { J4(1, 0), J4(0, 1), J4(0, 2), J4(0, 3) };
827   J4 axis_angle[3];
828   J4 expected[3] = {
829       MakeJ4(0, 0, 2.0, 0, 0),
830       MakeJ4(0, 0, 0, 2.0, 0),
831       MakeJ4(0, 0, 0, 0, 2.0),
832   };
833   QuaternionToAngleAxis(quaternion, axis_angle);
834   ExpectJetArraysClose<3, 4>(axis_angle, expected);
835 }
836 
TEST(Quaternion,RotatePointGivesSameAnswerAsRotationByMatrixCanned)837 TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrixCanned) {
838   // Canned data generated in octave.
839   double const q[4] = {
840     +0.1956830471754074,
841     -0.0150618562474847,
842     +0.7634572982788086,
843     -0.3019454777240753,
844   };
845   double const Q[3][3] = {  // Scaled rotation matrix.
846     { -0.6355194033477252,  0.0951730541682254,  0.3078870197911186 },
847     { -0.1411693904792992,  0.5297609702153905, -0.4551502574482019 },
848     { -0.2896955822708862, -0.4669396571547050, -0.4536309793389248 },
849   };
850   double const R[3][3] = {  // With unit rows and columns.
851     { -0.8918859164053080,  0.1335655625725649,  0.4320876677394745 },
852     { -0.1981166751680096,  0.7434648665444399, -0.6387564287225856 },
853     { -0.4065578619806013, -0.6553016349046693, -0.6366242786393164 },
854   };
855 
856   // Compute R from q and compare to known answer.
857   double Rq[3][3];
858   QuaternionToScaledRotation<double>(q, Rq[0]);
859   ExpectArraysClose(9, Q[0], Rq[0], kTolerance);
860 
861   // Now do the same but compute R with normalization.
862   QuaternionToRotation<double>(q, Rq[0]);
863   ExpectArraysClose(9, R[0], Rq[0], kTolerance);
864 }
865 
866 
TEST(Quaternion,RotatePointGivesSameAnswerAsRotationByMatrix)867 TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrix) {
868   // Rotation defined by a unit quaternion.
869   double const q[4] = {
870     0.2318160216097109,
871     -0.0178430356832060,
872     0.9044300776717159,
873     -0.3576998641394597,
874   };
875   double const p[3] = {
876     +0.11,
877     -13.15,
878     1.17,
879   };
880 
881   double R[3 * 3];
882   QuaternionToRotation(q, R);
883 
884   double result1[3];
885   UnitQuaternionRotatePoint(q, p, result1);
886 
887   double result2[3];
888   VectorRef(result2, 3) = ConstMatrixRef(R, 3, 3)* ConstVectorRef(p, 3);
889   ExpectArraysClose(3, result1, result2, kTolerance);
890 }
891 
892 
893 // Verify that (a * b) * c == a * (b * c).
TEST(Quaternion,MultiplicationIsAssociative)894 TEST(Quaternion, MultiplicationIsAssociative) {
895   double a[4];
896   double b[4];
897   double c[4];
898   for (int i = 0; i < 4; ++i) {
899     a[i] = 2 * RandDouble() - 1;
900     b[i] = 2 * RandDouble() - 1;
901     c[i] = 2 * RandDouble() - 1;
902   }
903 
904   double ab[4];
905   double ab_c[4];
906   QuaternionProduct(a, b, ab);
907   QuaternionProduct(ab, c, ab_c);
908 
909   double bc[4];
910   double a_bc[4];
911   QuaternionProduct(b, c, bc);
912   QuaternionProduct(a, bc, a_bc);
913 
914   ASSERT_NEAR(ab_c[0], a_bc[0], kTolerance);
915   ASSERT_NEAR(ab_c[1], a_bc[1], kTolerance);
916   ASSERT_NEAR(ab_c[2], a_bc[2], kTolerance);
917   ASSERT_NEAR(ab_c[3], a_bc[3], kTolerance);
918 }
919 
920 
TEST(AngleAxis,RotatePointGivesSameAnswerAsRotationMatrix)921 TEST(AngleAxis, RotatePointGivesSameAnswerAsRotationMatrix) {
922   double angle_axis[3];
923   double R[9];
924   double p[3];
925   double angle_axis_rotated_p[3];
926   double rotation_matrix_rotated_p[3];
927 
928   for (int i = 0; i < 10000; ++i) {
929     double theta = (2.0 * i * 0.0011 - 1.0) * kPi;
930     for (int j = 0; j < 50; ++j) {
931       double norm2 = 0.0;
932       for (int k = 0; k < 3; ++k) {
933         angle_axis[k] = 2.0 * RandDouble() - 1.0;
934         p[k] = 2.0 * RandDouble() - 1.0;
935         norm2 = angle_axis[k] * angle_axis[k];
936       }
937 
938       const double inv_norm = theta / sqrt(norm2);
939       for (int k = 0; k < 3; ++k) {
940         angle_axis[k] *= inv_norm;
941       }
942 
943       AngleAxisToRotationMatrix(angle_axis, R);
944       rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2];
945       rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2];
946       rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2];
947 
948       AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p);
949       for (int k = 0; k < 3; ++k) {
950         EXPECT_NEAR(rotation_matrix_rotated_p[k],
951                     angle_axis_rotated_p[k],
952                     kTolerance) << "p: " << p[0]
953                                 << " " << p[1]
954                                 << " " << p[2]
955                                 << " angle_axis: " << angle_axis[0]
956                                 << " " << angle_axis[1]
957                                 << " " << angle_axis[2];
958       }
959     }
960   }
961 }
962 
TEST(AngleAxis,NearZeroRotatePointGivesSameAnswerAsRotationMatrix)963 TEST(AngleAxis, NearZeroRotatePointGivesSameAnswerAsRotationMatrix) {
964   double angle_axis[3];
965   double R[9];
966   double p[3];
967   double angle_axis_rotated_p[3];
968   double rotation_matrix_rotated_p[3];
969 
970   for (int i = 0; i < 10000; ++i) {
971     double norm2 = 0.0;
972     for (int k = 0; k < 3; ++k) {
973       angle_axis[k] = 2.0 * RandDouble() - 1.0;
974       p[k] = 2.0 * RandDouble() - 1.0;
975       norm2 = angle_axis[k] * angle_axis[k];
976     }
977 
978     double theta = (2.0 * i * 0.0001  - 1.0) * 1e-16;
979     const double inv_norm = theta / sqrt(norm2);
980     for (int k = 0; k < 3; ++k) {
981       angle_axis[k] *= inv_norm;
982     }
983 
984     AngleAxisToRotationMatrix(angle_axis, R);
985     rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2];
986     rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2];
987     rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2];
988 
989     AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p);
990     for (int k = 0; k < 3; ++k) {
991       EXPECT_NEAR(rotation_matrix_rotated_p[k],
992                   angle_axis_rotated_p[k],
993                   kTolerance) << "p: " << p[0]
994                               << " " << p[1]
995                               << " " << p[2]
996                               << " angle_axis: " << angle_axis[0]
997                               << " " << angle_axis[1]
998                               << " " << angle_axis[2];
999     }
1000   }
1001 }
1002 
TEST(MatrixAdapter,RowMajor3x3ReturnTypeAndAccessIsCorrect)1003 TEST(MatrixAdapter, RowMajor3x3ReturnTypeAndAccessIsCorrect) {
1004   double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
1005   const float const_array[9] =
1006       { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f };
1007   MatrixAdapter<double, 3, 1> A = RowMajorAdapter3x3(array);
1008   MatrixAdapter<const float, 3, 1> B = RowMajorAdapter3x3(const_array);
1009 
1010   for (int i = 0; i < 3; ++i) {
1011     for (int j = 0; j < 3; ++j) {
1012       // The values are integers from 1 to 9, so equality tests are appropriate
1013       // even for float and double values.
1014       EXPECT_EQ(A(i, j), array[3*i+j]);
1015       EXPECT_EQ(B(i, j), const_array[3*i+j]);
1016     }
1017   }
1018 }
1019 
TEST(MatrixAdapter,ColumnMajor3x3ReturnTypeAndAccessIsCorrect)1020 TEST(MatrixAdapter, ColumnMajor3x3ReturnTypeAndAccessIsCorrect) {
1021   double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
1022   const float const_array[9] =
1023       { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f };
1024   MatrixAdapter<double, 1, 3> A = ColumnMajorAdapter3x3(array);
1025   MatrixAdapter<const float, 1, 3> B = ColumnMajorAdapter3x3(const_array);
1026 
1027   for (int i = 0; i < 3; ++i) {
1028     for (int j = 0; j < 3; ++j) {
1029       // The values are integers from 1 to 9, so equality tests are
1030       // appropriate even for float and double values.
1031       EXPECT_EQ(A(i, j), array[3*j+i]);
1032       EXPECT_EQ(B(i, j), const_array[3*j+i]);
1033     }
1034   }
1035 }
1036 
TEST(MatrixAdapter,RowMajor2x4IsCorrect)1037 TEST(MatrixAdapter, RowMajor2x4IsCorrect) {
1038   const int expected[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
1039   int array[8];
1040   MatrixAdapter<int, 4, 1> M(array);
1041   M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4;
1042   M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8;
1043   for (int k = 0; k < 8; ++k) {
1044     EXPECT_EQ(array[k], expected[k]);
1045   }
1046 }
1047 
TEST(MatrixAdapter,ColumnMajor2x4IsCorrect)1048 TEST(MatrixAdapter, ColumnMajor2x4IsCorrect) {
1049   const int expected[8] = { 1, 5, 2, 6, 3, 7, 4, 8 };
1050   int array[8];
1051   MatrixAdapter<int, 1, 2> M(array);
1052   M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4;
1053   M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8;
1054   for (int k = 0; k < 8; ++k) {
1055     EXPECT_EQ(array[k], expected[k]);
1056   }
1057 }
1058 
1059 }  // namespace internal
1060 }  // namespace ceres
1061