1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include <cmath>
32 #include <limits>
33 #include <string>
34 #include "ceres/internal/eigen.h"
35 #include "ceres/internal/port.h"
36 #include "ceres/jet.h"
37 #include "ceres/rotation.h"
38 #include "ceres/stringprintf.h"
39 #include "ceres/test_util.h"
40 #include "glog/logging.h"
41 #include "gmock/gmock.h"
42 #include "gtest/gtest.h"
43
44 namespace ceres {
45 namespace internal {
46
47 const double kPi = 3.14159265358979323846;
48 const double kHalfSqrt2 = 0.707106781186547524401;
49
RandDouble()50 double RandDouble() {
51 double r = rand();
52 return r / RAND_MAX;
53 }
54
55 // A tolerance value for floating-point comparisons.
56 static double const kTolerance = numeric_limits<double>::epsilon() * 10;
57
58 // Looser tolerance used for numerically unstable conversions.
59 static double const kLooseTolerance = 1e-9;
60
61 // Use as:
62 // double quaternion[4];
63 // EXPECT_THAT(quaternion, IsNormalizedQuaternion());
64 MATCHER(IsNormalizedQuaternion, "") {
65 if (arg == NULL) {
66 *result_listener << "Null quaternion";
67 return false;
68 }
69
70 double norm2 = arg[0] * arg[0] + arg[1] * arg[1] +
71 arg[2] * arg[2] + arg[3] * arg[3];
72 if (fabs(norm2 - 1.0) > kTolerance) {
73 *result_listener << "squared norm is " << norm2;
74 return false;
75 }
76
77 return true;
78 }
79
80 // Use as:
81 // double expected_quaternion[4];
82 // double actual_quaternion[4];
83 // EXPECT_THAT(actual_quaternion, IsNearQuaternion(expected_quaternion));
84 MATCHER_P(IsNearQuaternion, expected, "") {
85 if (arg == NULL) {
86 *result_listener << "Null quaternion";
87 return false;
88 }
89
90 // Quaternions are equivalent upto a sign change. So we will compare
91 // both signs before declaring failure.
92 bool near = true;
93 for (int i = 0; i < 4; i++) {
94 if (fabs(arg[i] - expected[i]) > kTolerance) {
95 near = false;
96 break;
97 }
98 }
99
100 if (near) {
101 return true;
102 }
103
104 near = true;
105 for (int i = 0; i < 4; i++) {
106 if (fabs(arg[i] + expected[i]) > kTolerance) {
107 near = false;
108 break;
109 }
110 }
111
112 if (near) {
113 return true;
114 }
115
116 *result_listener << "expected : "
117 << expected[0] << " "
118 << expected[1] << " "
119 << expected[2] << " "
120 << expected[3] << " "
121 << "actual : "
122 << arg[0] << " "
123 << arg[1] << " "
124 << arg[2] << " "
125 << arg[3];
126 return false;
127 }
128
129 // Use as:
130 // double expected_axis_angle[4];
131 // double actual_axis_angle[4];
132 // EXPECT_THAT(actual_axis_angle, IsNearAngleAxis(expected_axis_angle));
133 MATCHER_P(IsNearAngleAxis, expected, "") {
134 if (arg == NULL) {
135 *result_listener << "Null axis/angle";
136 return false;
137 }
138
139 for (int i = 0; i < 3; i++) {
140 if (fabs(arg[i] - expected[i]) > kTolerance) {
141 *result_listener << "component " << i << " should be " << expected[i];
142 return false;
143 }
144 }
145
146 return true;
147 }
148
149 // Use as:
150 // double matrix[9];
151 // EXPECT_THAT(matrix, IsOrthonormal());
152 MATCHER(IsOrthonormal, "") {
153 if (arg == NULL) {
154 *result_listener << "Null matrix";
155 return false;
156 }
157
158 for (int c1 = 0; c1 < 3; c1++) {
159 for (int c2 = 0; c2 < 3; c2++) {
160 double v = 0;
161 for (int i = 0; i < 3; i++) {
162 v += arg[i + 3 * c1] * arg[i + 3 * c2];
163 }
164 double expected = (c1 == c2) ? 1 : 0;
165 if (fabs(expected - v) > kTolerance) {
166 *result_listener << "Columns " << c1 << " and " << c2
167 << " should have dot product " << expected
168 << " but have " << v;
169 return false;
170 }
171 }
172 }
173
174 return true;
175 }
176
177 // Use as:
178 // double matrix1[9];
179 // double matrix2[9];
180 // EXPECT_THAT(matrix1, IsNear3x3Matrix(matrix2));
181 MATCHER_P(IsNear3x3Matrix, expected, "") {
182 if (arg == NULL) {
183 *result_listener << "Null matrix";
184 return false;
185 }
186
187 for (int i = 0; i < 9; i++) {
188 if (fabs(arg[i] - expected[i]) > kTolerance) {
189 *result_listener << "component " << i << " should be " << expected[i];
190 return false;
191 }
192 }
193
194 return true;
195 }
196
197 // Transforms a zero axis/angle to a quaternion.
TEST(Rotation,ZeroAngleAxisToQuaternion)198 TEST(Rotation, ZeroAngleAxisToQuaternion) {
199 double axis_angle[3] = { 0, 0, 0 };
200 double quaternion[4];
201 double expected[4] = { 1, 0, 0, 0 };
202 AngleAxisToQuaternion(axis_angle, quaternion);
203 EXPECT_THAT(quaternion, IsNormalizedQuaternion());
204 EXPECT_THAT(quaternion, IsNearQuaternion(expected));
205 }
206
207 // Test that exact conversion works for small angles.
TEST(Rotation,SmallAngleAxisToQuaternion)208 TEST(Rotation, SmallAngleAxisToQuaternion) {
209 // Small, finite value to test.
210 double theta = 1.0e-2;
211 double axis_angle[3] = { theta, 0, 0 };
212 double quaternion[4];
213 double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
214 AngleAxisToQuaternion(axis_angle, quaternion);
215 EXPECT_THAT(quaternion, IsNormalizedQuaternion());
216 EXPECT_THAT(quaternion, IsNearQuaternion(expected));
217 }
218
219 // Test that approximate conversion works for very small angles.
TEST(Rotation,TinyAngleAxisToQuaternion)220 TEST(Rotation, TinyAngleAxisToQuaternion) {
221 // Very small value that could potentially cause underflow.
222 double theta = pow(numeric_limits<double>::min(), 0.75);
223 double axis_angle[3] = { theta, 0, 0 };
224 double quaternion[4];
225 double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
226 AngleAxisToQuaternion(axis_angle, quaternion);
227 EXPECT_THAT(quaternion, IsNormalizedQuaternion());
228 EXPECT_THAT(quaternion, IsNearQuaternion(expected));
229 }
230
231 // Transforms a rotation by pi/2 around X to a quaternion.
TEST(Rotation,XRotationToQuaternion)232 TEST(Rotation, XRotationToQuaternion) {
233 double axis_angle[3] = { kPi / 2, 0, 0 };
234 double quaternion[4];
235 double expected[4] = { kHalfSqrt2, kHalfSqrt2, 0, 0 };
236 AngleAxisToQuaternion(axis_angle, quaternion);
237 EXPECT_THAT(quaternion, IsNormalizedQuaternion());
238 EXPECT_THAT(quaternion, IsNearQuaternion(expected));
239 }
240
241 // Transforms a unit quaternion to an axis angle.
TEST(Rotation,UnitQuaternionToAngleAxis)242 TEST(Rotation, UnitQuaternionToAngleAxis) {
243 double quaternion[4] = { 1, 0, 0, 0 };
244 double axis_angle[3];
245 double expected[3] = { 0, 0, 0 };
246 QuaternionToAngleAxis(quaternion, axis_angle);
247 EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
248 }
249
250 // Transforms a quaternion that rotates by pi about the Y axis to an axis angle.
TEST(Rotation,YRotationQuaternionToAngleAxis)251 TEST(Rotation, YRotationQuaternionToAngleAxis) {
252 double quaternion[4] = { 0, 0, 1, 0 };
253 double axis_angle[3];
254 double expected[3] = { 0, kPi, 0 };
255 QuaternionToAngleAxis(quaternion, axis_angle);
256 EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
257 }
258
259 // Transforms a quaternion that rotates by pi/3 about the Z axis to an axis
260 // angle.
TEST(Rotation,ZRotationQuaternionToAngleAxis)261 TEST(Rotation, ZRotationQuaternionToAngleAxis) {
262 double quaternion[4] = { sqrt(3) / 2, 0, 0, 0.5 };
263 double axis_angle[3];
264 double expected[3] = { 0, 0, kPi / 3 };
265 QuaternionToAngleAxis(quaternion, axis_angle);
266 EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
267 }
268
269 // Test that exact conversion works for small angles.
TEST(Rotation,SmallQuaternionToAngleAxis)270 TEST(Rotation, SmallQuaternionToAngleAxis) {
271 // Small, finite value to test.
272 double theta = 1.0e-2;
273 double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
274 double axis_angle[3];
275 double expected[3] = { theta, 0, 0 };
276 QuaternionToAngleAxis(quaternion, axis_angle);
277 EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
278 }
279
280 // Test that approximate conversion works for very small angles.
TEST(Rotation,TinyQuaternionToAngleAxis)281 TEST(Rotation, TinyQuaternionToAngleAxis) {
282 // Very small value that could potentially cause underflow.
283 double theta = pow(numeric_limits<double>::min(), 0.75);
284 double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
285 double axis_angle[3];
286 double expected[3] = { theta, 0, 0 };
287 QuaternionToAngleAxis(quaternion, axis_angle);
288 EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
289 }
290
TEST(Rotation,QuaternionToAngleAxisAngleIsLessThanPi)291 TEST(Rotation, QuaternionToAngleAxisAngleIsLessThanPi) {
292 double quaternion[4];
293 double angle_axis[3];
294
295 const double half_theta = 0.75 * kPi;
296
297 quaternion[0] = cos(half_theta);
298 quaternion[1] = 1.0 * sin(half_theta);
299 quaternion[2] = 0.0;
300 quaternion[3] = 0.0;
301 QuaternionToAngleAxis(quaternion, angle_axis);
302 const double angle = sqrt(angle_axis[0] * angle_axis[0] +
303 angle_axis[1] * angle_axis[1] +
304 angle_axis[2] * angle_axis[2]);
305 EXPECT_LE(angle, kPi);
306 }
307
308 static const int kNumTrials = 10000;
309
310 // Takes a bunch of random axis/angle values, converts them to quaternions,
311 // and back again.
TEST(Rotation,AngleAxisToQuaterionAndBack)312 TEST(Rotation, AngleAxisToQuaterionAndBack) {
313 srand(5);
314 for (int i = 0; i < kNumTrials; i++) {
315 double axis_angle[3];
316 // Make an axis by choosing three random numbers in [-1, 1) and
317 // normalizing.
318 double norm = 0;
319 for (int i = 0; i < 3; i++) {
320 axis_angle[i] = RandDouble() * 2 - 1;
321 norm += axis_angle[i] * axis_angle[i];
322 }
323 norm = sqrt(norm);
324
325 // Angle in [-pi, pi).
326 double theta = kPi * 2 * RandDouble() - kPi;
327 for (int i = 0; i < 3; i++) {
328 axis_angle[i] = axis_angle[i] * theta / norm;
329 }
330
331 double quaternion[4];
332 double round_trip[3];
333 // We use ASSERTs here because if there's one failure, there are
334 // probably many and spewing a million failures doesn't make anyone's
335 // day.
336 AngleAxisToQuaternion(axis_angle, quaternion);
337 ASSERT_THAT(quaternion, IsNormalizedQuaternion());
338 QuaternionToAngleAxis(quaternion, round_trip);
339 ASSERT_THAT(round_trip, IsNearAngleAxis(axis_angle));
340 }
341 }
342
343 // Takes a bunch of random quaternions, converts them to axis/angle,
344 // and back again.
TEST(Rotation,QuaterionToAngleAxisAndBack)345 TEST(Rotation, QuaterionToAngleAxisAndBack) {
346 srand(5);
347 for (int i = 0; i < kNumTrials; i++) {
348 double quaternion[4];
349 // Choose four random numbers in [-1, 1) and normalize.
350 double norm = 0;
351 for (int i = 0; i < 4; i++) {
352 quaternion[i] = RandDouble() * 2 - 1;
353 norm += quaternion[i] * quaternion[i];
354 }
355 norm = sqrt(norm);
356
357 for (int i = 0; i < 4; i++) {
358 quaternion[i] = quaternion[i] / norm;
359 }
360
361 double axis_angle[3];
362 double round_trip[4];
363 QuaternionToAngleAxis(quaternion, axis_angle);
364 AngleAxisToQuaternion(axis_angle, round_trip);
365 ASSERT_THAT(round_trip, IsNormalizedQuaternion());
366 ASSERT_THAT(round_trip, IsNearQuaternion(quaternion));
367 }
368 }
369
370 // Transforms a zero axis/angle to a rotation matrix.
TEST(Rotation,ZeroAngleAxisToRotationMatrix)371 TEST(Rotation, ZeroAngleAxisToRotationMatrix) {
372 double axis_angle[3] = { 0, 0, 0 };
373 double matrix[9];
374 double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
375 AngleAxisToRotationMatrix(axis_angle, matrix);
376 EXPECT_THAT(matrix, IsOrthonormal());
377 EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
378 }
379
TEST(Rotation,NearZeroAngleAxisToRotationMatrix)380 TEST(Rotation, NearZeroAngleAxisToRotationMatrix) {
381 double axis_angle[3] = { 1e-24, 2e-24, 3e-24 };
382 double matrix[9];
383 double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
384 AngleAxisToRotationMatrix(axis_angle, matrix);
385 EXPECT_THAT(matrix, IsOrthonormal());
386 EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
387 }
388
389 // Transforms a rotation by pi/2 around X to a rotation matrix and back.
TEST(Rotation,XRotationToRotationMatrix)390 TEST(Rotation, XRotationToRotationMatrix) {
391 double axis_angle[3] = { kPi / 2, 0, 0 };
392 double matrix[9];
393 // The rotation matrices are stored column-major.
394 double expected[9] = { 1, 0, 0, 0, 0, 1, 0, -1, 0 };
395 AngleAxisToRotationMatrix(axis_angle, matrix);
396 EXPECT_THAT(matrix, IsOrthonormal());
397 EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
398 double round_trip[3];
399 RotationMatrixToAngleAxis(matrix, round_trip);
400 EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
401 }
402
403 // Transforms an axis angle that rotates by pi about the Y axis to a
404 // rotation matrix and back.
TEST(Rotation,YRotationToRotationMatrix)405 TEST(Rotation, YRotationToRotationMatrix) {
406 double axis_angle[3] = { 0, kPi, 0 };
407 double matrix[9];
408 double expected[9] = { -1, 0, 0, 0, 1, 0, 0, 0, -1 };
409 AngleAxisToRotationMatrix(axis_angle, matrix);
410 EXPECT_THAT(matrix, IsOrthonormal());
411 EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
412
413 double round_trip[3];
414 RotationMatrixToAngleAxis(matrix, round_trip);
415 EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
416 }
417
TEST(Rotation,NearPiAngleAxisRoundTrip)418 TEST(Rotation, NearPiAngleAxisRoundTrip) {
419 double in_axis_angle[3];
420 double matrix[9];
421 double out_axis_angle[3];
422
423 srand(5);
424 for (int i = 0; i < kNumTrials; i++) {
425 // Make an axis by choosing three random numbers in [-1, 1) and
426 // normalizing.
427 double norm = 0;
428 for (int i = 0; i < 3; i++) {
429 in_axis_angle[i] = RandDouble() * 2 - 1;
430 norm += in_axis_angle[i] * in_axis_angle[i];
431 }
432 norm = sqrt(norm);
433
434 // Angle in [pi - kMaxSmallAngle, pi).
435 const double kMaxSmallAngle = 1e-2;
436 double theta = kPi - kMaxSmallAngle * RandDouble();
437
438 for (int i = 0; i < 3; i++) {
439 in_axis_angle[i] *= (theta / norm);
440 }
441 AngleAxisToRotationMatrix(in_axis_angle, matrix);
442 RotationMatrixToAngleAxis(matrix, out_axis_angle);
443
444 for (int i = 0; i < 3; ++i) {
445 EXPECT_NEAR(out_axis_angle[i], in_axis_angle[i], kLooseTolerance);
446 }
447 }
448 }
449
TEST(Rotation,AtPiAngleAxisRoundTrip)450 TEST(Rotation, AtPiAngleAxisRoundTrip) {
451 // A rotation of kPi about the X axis;
452 static const double kMatrix[3][3] = {
453 {1.0, 0.0, 0.0},
454 {0.0, -1.0, 0.0},
455 {0.0, 0.0, -1.0}
456 };
457
458 double in_matrix[9];
459 // Fill it from kMatrix in col-major order.
460 for (int j = 0, k = 0; j < 3; ++j) {
461 for (int i = 0; i < 3; ++i, ++k) {
462 in_matrix[k] = kMatrix[i][j];
463 }
464 }
465
466 const double expected_axis_angle[3] = { kPi, 0, 0 };
467
468 double out_matrix[9];
469 double axis_angle[3];
470 RotationMatrixToAngleAxis(in_matrix, axis_angle);
471 AngleAxisToRotationMatrix(axis_angle, out_matrix);
472
473 LOG(INFO) << "AngleAxis = " << axis_angle[0] << " " << axis_angle[1]
474 << " " << axis_angle[2];
475 LOG(INFO) << "Expected AngleAxis = " << kPi << " 0 0";
476 double out_rowmajor[3][3];
477 for (int j = 0, k = 0; j < 3; ++j) {
478 for (int i = 0; i < 3; ++i, ++k) {
479 out_rowmajor[i][j] = out_matrix[k];
480 }
481 }
482 LOG(INFO) << "Rotation:";
483 LOG(INFO) << "EXPECTED | ACTUAL";
484 for (int i = 0; i < 3; ++i) {
485 string line;
486 for (int j = 0; j < 3; ++j) {
487 StringAppendF(&line, "%g ", kMatrix[i][j]);
488 }
489 line += " | ";
490 for (int j = 0; j < 3; ++j) {
491 StringAppendF(&line, "%g ", out_rowmajor[i][j]);
492 }
493 LOG(INFO) << line;
494 }
495
496 EXPECT_THAT(axis_angle, IsNearAngleAxis(expected_axis_angle));
497 EXPECT_THAT(out_matrix, IsNear3x3Matrix(in_matrix));
498 }
499
500 // Transforms an axis angle that rotates by pi/3 about the Z axis to a
501 // rotation matrix.
TEST(Rotation,ZRotationToRotationMatrix)502 TEST(Rotation, ZRotationToRotationMatrix) {
503 double axis_angle[3] = { 0, 0, kPi / 3 };
504 double matrix[9];
505 // This is laid-out row-major on the screen but is actually stored
506 // column-major.
507 double expected[9] = { 0.5, sqrt(3) / 2, 0, // Column 1
508 -sqrt(3) / 2, 0.5, 0, // Column 2
509 0, 0, 1 }; // Column 3
510 AngleAxisToRotationMatrix(axis_angle, matrix);
511 EXPECT_THAT(matrix, IsOrthonormal());
512 EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
513 double round_trip[3];
514 RotationMatrixToAngleAxis(matrix, round_trip);
515 EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
516 }
517
518 // Takes a bunch of random axis/angle values, converts them to rotation
519 // matrices, and back again.
TEST(Rotation,AngleAxisToRotationMatrixAndBack)520 TEST(Rotation, AngleAxisToRotationMatrixAndBack) {
521 srand(5);
522 for (int i = 0; i < kNumTrials; i++) {
523 double axis_angle[3];
524 // Make an axis by choosing three random numbers in [-1, 1) and
525 // normalizing.
526 double norm = 0;
527 for (int i = 0; i < 3; i++) {
528 axis_angle[i] = RandDouble() * 2 - 1;
529 norm += axis_angle[i] * axis_angle[i];
530 }
531 norm = sqrt(norm);
532
533 // Angle in [-pi, pi).
534 double theta = kPi * 2 * RandDouble() - kPi;
535 for (int i = 0; i < 3; i++) {
536 axis_angle[i] = axis_angle[i] * theta / norm;
537 }
538
539 double matrix[9];
540 double round_trip[3];
541 AngleAxisToRotationMatrix(axis_angle, matrix);
542 ASSERT_THAT(matrix, IsOrthonormal());
543 RotationMatrixToAngleAxis(matrix, round_trip);
544
545 for (int i = 0; i < 3; ++i) {
546 EXPECT_NEAR(round_trip[i], axis_angle[i], kLooseTolerance);
547 }
548 }
549 }
550
551 // Takes a bunch of random axis/angle values near zero, converts them
552 // to rotation matrices, and back again.
TEST(Rotation,AngleAxisToRotationMatrixAndBackNearZero)553 TEST(Rotation, AngleAxisToRotationMatrixAndBackNearZero) {
554 srand(5);
555 for (int i = 0; i < kNumTrials; i++) {
556 double axis_angle[3];
557 // Make an axis by choosing three random numbers in [-1, 1) and
558 // normalizing.
559 double norm = 0;
560 for (int i = 0; i < 3; i++) {
561 axis_angle[i] = RandDouble() * 2 - 1;
562 norm += axis_angle[i] * axis_angle[i];
563 }
564 norm = sqrt(norm);
565
566 // Tiny theta.
567 double theta = 1e-16 * (kPi * 2 * RandDouble() - kPi);
568 for (int i = 0; i < 3; i++) {
569 axis_angle[i] = axis_angle[i] * theta / norm;
570 }
571
572 double matrix[9];
573 double round_trip[3];
574 AngleAxisToRotationMatrix(axis_angle, matrix);
575 ASSERT_THAT(matrix, IsOrthonormal());
576 RotationMatrixToAngleAxis(matrix, round_trip);
577
578 for (int i = 0; i < 3; ++i) {
579 EXPECT_NEAR(round_trip[i], axis_angle[i],
580 std::numeric_limits<double>::epsilon());
581 }
582 }
583 }
584
585
586 // Transposes a 3x3 matrix.
Transpose3x3(double m[9])587 static void Transpose3x3(double m[9]) {
588 std::swap(m[1], m[3]);
589 std::swap(m[2], m[6]);
590 std::swap(m[5], m[7]);
591 }
592
593 // Convert Euler angles from radians to degrees.
ToDegrees(double ea[3])594 static void ToDegrees(double ea[3]) {
595 for (int i = 0; i < 3; ++i)
596 ea[i] *= 180.0 / kPi;
597 }
598
599 // Compare the 3x3 rotation matrices produced by the axis-angle
600 // rotation 'aa' and the Euler angle rotation 'ea' (in radians).
CompareEulerToAngleAxis(double aa[3],double ea[3])601 static void CompareEulerToAngleAxis(double aa[3], double ea[3]) {
602 double aa_matrix[9];
603 AngleAxisToRotationMatrix(aa, aa_matrix);
604 Transpose3x3(aa_matrix); // Column to row major order.
605
606 double ea_matrix[9];
607 ToDegrees(ea); // Radians to degrees.
608 const int kRowStride = 3;
609 EulerAnglesToRotationMatrix(ea, kRowStride, ea_matrix);
610
611 EXPECT_THAT(aa_matrix, IsOrthonormal());
612 EXPECT_THAT(ea_matrix, IsOrthonormal());
613 EXPECT_THAT(ea_matrix, IsNear3x3Matrix(aa_matrix));
614 }
615
616 // Test with rotation axis along the x/y/z axes.
617 // Also test zero rotation.
TEST(EulerAnglesToRotationMatrix,OnAxis)618 TEST(EulerAnglesToRotationMatrix, OnAxis) {
619 int n_tests = 0;
620 for (double x = -1.0; x <= 1.0; x += 1.0) {
621 for (double y = -1.0; y <= 1.0; y += 1.0) {
622 for (double z = -1.0; z <= 1.0; z += 1.0) {
623 if ((x != 0) + (y != 0) + (z != 0) > 1)
624 continue;
625 double axis_angle[3] = {x, y, z};
626 double euler_angles[3] = {x, y, z};
627 CompareEulerToAngleAxis(axis_angle, euler_angles);
628 ++n_tests;
629 }
630 }
631 }
632 CHECK_EQ(7, n_tests);
633 }
634
635 // Test that a random rotation produces an orthonormal rotation
636 // matrix.
TEST(EulerAnglesToRotationMatrix,IsOrthonormal)637 TEST(EulerAnglesToRotationMatrix, IsOrthonormal) {
638 srand(5);
639 for (int trial = 0; trial < kNumTrials; ++trial) {
640 double ea[3];
641 for (int i = 0; i < 3; ++i)
642 ea[i] = 360.0 * (RandDouble() * 2.0 - 1.0);
643 double ea_matrix[9];
644 ToDegrees(ea); // Radians to degrees.
645 EulerAnglesToRotationMatrix(ea, 3, ea_matrix);
646 EXPECT_THAT(ea_matrix, IsOrthonormal());
647 }
648 }
649
650 // Tests using Jets for specific behavior involving auto differentiation
651 // near singularity points.
652
653 typedef Jet<double, 3> J3;
654 typedef Jet<double, 4> J4;
655
MakeJ3(double a,double v0,double v1,double v2)656 J3 MakeJ3(double a, double v0, double v1, double v2) {
657 J3 j;
658 j.a = a;
659 j.v[0] = v0;
660 j.v[1] = v1;
661 j.v[2] = v2;
662 return j;
663 }
664
MakeJ4(double a,double v0,double v1,double v2,double v3)665 J4 MakeJ4(double a, double v0, double v1, double v2, double v3) {
666 J4 j;
667 j.a = a;
668 j.v[0] = v0;
669 j.v[1] = v1;
670 j.v[2] = v2;
671 j.v[3] = v3;
672 return j;
673 }
674
675
IsClose(double x,double y)676 bool IsClose(double x, double y) {
677 EXPECT_FALSE(IsNaN(x));
678 EXPECT_FALSE(IsNaN(y));
679 double absdiff = fabs(x - y);
680 if (x == 0 || y == 0) {
681 return absdiff <= kTolerance;
682 }
683 double reldiff = absdiff / max(fabs(x), fabs(y));
684 return reldiff <= kTolerance;
685 }
686
687 template <int N>
IsClose(const Jet<double,N> & x,const Jet<double,N> & y)688 bool IsClose(const Jet<double, N> &x, const Jet<double, N> &y) {
689 if (IsClose(x.a, y.a)) {
690 for (int i = 0; i < N; i++) {
691 if (!IsClose(x.v[i], y.v[i])) {
692 return false;
693 }
694 }
695 }
696 return true;
697 }
698
699 template <int M, int N>
ExpectJetArraysClose(const Jet<double,N> * x,const Jet<double,N> * y)700 void ExpectJetArraysClose(const Jet<double, N> *x, const Jet<double, N> *y) {
701 for (int i = 0; i < M; i++) {
702 if (!IsClose(x[i], y[i])) {
703 LOG(ERROR) << "Jet " << i << "/" << M << " not equal";
704 LOG(ERROR) << "x[" << i << "]: " << x[i];
705 LOG(ERROR) << "y[" << i << "]: " << y[i];
706 Jet<double, N> d, zero;
707 d.a = y[i].a - x[i].a;
708 for (int j = 0; j < N; j++) {
709 d.v[j] = y[i].v[j] - x[i].v[j];
710 }
711 LOG(ERROR) << "diff: " << d;
712 EXPECT_TRUE(IsClose(x[i], y[i]));
713 }
714 }
715 }
716
717 // Log-10 of a value well below machine precision.
718 static const int kSmallTinyCutoff =
719 static_cast<int>(2 * log(numeric_limits<double>::epsilon())/log(10.0));
720
721 // Log-10 of a value just below values representable by double.
722 static const int kTinyZeroLimit =
723 static_cast<int>(1 + log(numeric_limits<double>::min())/log(10.0));
724
725 // Test that exact conversion works for small angles when jets are used.
TEST(Rotation,SmallAngleAxisToQuaternionForJets)726 TEST(Rotation, SmallAngleAxisToQuaternionForJets) {
727 // Examine small x rotations that are still large enough
728 // to be well within the range represented by doubles.
729 for (int i = -2; i >= kSmallTinyCutoff; i--) {
730 double theta = pow(10.0, i);
731 J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) };
732 J3 quaternion[4];
733 J3 expected[4] = {
734 MakeJ3(cos(theta/2), -sin(theta/2)/2, 0, 0),
735 MakeJ3(sin(theta/2), cos(theta/2)/2, 0, 0),
736 MakeJ3(0, 0, sin(theta/2)/theta, 0),
737 MakeJ3(0, 0, 0, sin(theta/2)/theta),
738 };
739 AngleAxisToQuaternion(axis_angle, quaternion);
740 ExpectJetArraysClose<4, 3>(quaternion, expected);
741 }
742 }
743
744
745 // Test that conversion works for very small angles when jets are used.
TEST(Rotation,TinyAngleAxisToQuaternionForJets)746 TEST(Rotation, TinyAngleAxisToQuaternionForJets) {
747 // Examine tiny x rotations that extend all the way to where
748 // underflow occurs.
749 for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) {
750 double theta = pow(10.0, i);
751 J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) };
752 J3 quaternion[4];
753 // To avoid loss of precision in the test itself,
754 // a finite expansion is used here, which will
755 // be exact up to machine precision for the test values used.
756 J3 expected[4] = {
757 MakeJ3(1.0, 0, 0, 0),
758 MakeJ3(0, 0.5, 0, 0),
759 MakeJ3(0, 0, 0.5, 0),
760 MakeJ3(0, 0, 0, 0.5),
761 };
762 AngleAxisToQuaternion(axis_angle, quaternion);
763 ExpectJetArraysClose<4, 3>(quaternion, expected);
764 }
765 }
766
767 // Test that derivatives are correct for zero rotation.
TEST(Rotation,ZeroAngleAxisToQuaternionForJets)768 TEST(Rotation, ZeroAngleAxisToQuaternionForJets) {
769 J3 axis_angle[3] = { J3(0, 0), J3(0, 1), J3(0, 2) };
770 J3 quaternion[4];
771 J3 expected[4] = {
772 MakeJ3(1.0, 0, 0, 0),
773 MakeJ3(0, 0.5, 0, 0),
774 MakeJ3(0, 0, 0.5, 0),
775 MakeJ3(0, 0, 0, 0.5),
776 };
777 AngleAxisToQuaternion(axis_angle, quaternion);
778 ExpectJetArraysClose<4, 3>(quaternion, expected);
779 }
780
781 // Test that exact conversion works for small angles.
TEST(Rotation,SmallQuaternionToAngleAxisForJets)782 TEST(Rotation, SmallQuaternionToAngleAxisForJets) {
783 // Examine small x rotations that are still large enough
784 // to be well within the range represented by doubles.
785 for (int i = -2; i >= kSmallTinyCutoff; i--) {
786 double theta = pow(10.0, i);
787 double s = sin(theta);
788 double c = cos(theta);
789 J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) };
790 J4 axis_angle[3];
791 J4 expected[3] = {
792 MakeJ4(s, -2*theta, 2*theta*c, 0, 0),
793 MakeJ4(0, 0, 0, 2*theta/s, 0),
794 MakeJ4(0, 0, 0, 0, 2*theta/s),
795 };
796 QuaternionToAngleAxis(quaternion, axis_angle);
797 ExpectJetArraysClose<3, 4>(axis_angle, expected);
798 }
799 }
800
801 // Test that conversion works for very small angles.
TEST(Rotation,TinyQuaternionToAngleAxisForJets)802 TEST(Rotation, TinyQuaternionToAngleAxisForJets) {
803 // Examine tiny x rotations that extend all the way to where
804 // underflow occurs.
805 for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) {
806 double theta = pow(10.0, i);
807 double s = sin(theta);
808 double c = cos(theta);
809 J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) };
810 J4 axis_angle[3];
811 // To avoid loss of precision in the test itself,
812 // a finite expansion is used here, which will
813 // be exact up to machine precision for the test values used.
814 J4 expected[3] = {
815 MakeJ4(theta, -2*theta, 2.0, 0, 0),
816 MakeJ4(0, 0, 0, 2.0, 0),
817 MakeJ4(0, 0, 0, 0, 2.0),
818 };
819 QuaternionToAngleAxis(quaternion, axis_angle);
820 ExpectJetArraysClose<3, 4>(axis_angle, expected);
821 }
822 }
823
824 // Test that conversion works for no rotation.
TEST(Rotation,ZeroQuaternionToAngleAxisForJets)825 TEST(Rotation, ZeroQuaternionToAngleAxisForJets) {
826 J4 quaternion[4] = { J4(1, 0), J4(0, 1), J4(0, 2), J4(0, 3) };
827 J4 axis_angle[3];
828 J4 expected[3] = {
829 MakeJ4(0, 0, 2.0, 0, 0),
830 MakeJ4(0, 0, 0, 2.0, 0),
831 MakeJ4(0, 0, 0, 0, 2.0),
832 };
833 QuaternionToAngleAxis(quaternion, axis_angle);
834 ExpectJetArraysClose<3, 4>(axis_angle, expected);
835 }
836
TEST(Quaternion,RotatePointGivesSameAnswerAsRotationByMatrixCanned)837 TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrixCanned) {
838 // Canned data generated in octave.
839 double const q[4] = {
840 +0.1956830471754074,
841 -0.0150618562474847,
842 +0.7634572982788086,
843 -0.3019454777240753,
844 };
845 double const Q[3][3] = { // Scaled rotation matrix.
846 { -0.6355194033477252, 0.0951730541682254, 0.3078870197911186 },
847 { -0.1411693904792992, 0.5297609702153905, -0.4551502574482019 },
848 { -0.2896955822708862, -0.4669396571547050, -0.4536309793389248 },
849 };
850 double const R[3][3] = { // With unit rows and columns.
851 { -0.8918859164053080, 0.1335655625725649, 0.4320876677394745 },
852 { -0.1981166751680096, 0.7434648665444399, -0.6387564287225856 },
853 { -0.4065578619806013, -0.6553016349046693, -0.6366242786393164 },
854 };
855
856 // Compute R from q and compare to known answer.
857 double Rq[3][3];
858 QuaternionToScaledRotation<double>(q, Rq[0]);
859 ExpectArraysClose(9, Q[0], Rq[0], kTolerance);
860
861 // Now do the same but compute R with normalization.
862 QuaternionToRotation<double>(q, Rq[0]);
863 ExpectArraysClose(9, R[0], Rq[0], kTolerance);
864 }
865
866
TEST(Quaternion,RotatePointGivesSameAnswerAsRotationByMatrix)867 TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrix) {
868 // Rotation defined by a unit quaternion.
869 double const q[4] = {
870 0.2318160216097109,
871 -0.0178430356832060,
872 0.9044300776717159,
873 -0.3576998641394597,
874 };
875 double const p[3] = {
876 +0.11,
877 -13.15,
878 1.17,
879 };
880
881 double R[3 * 3];
882 QuaternionToRotation(q, R);
883
884 double result1[3];
885 UnitQuaternionRotatePoint(q, p, result1);
886
887 double result2[3];
888 VectorRef(result2, 3) = ConstMatrixRef(R, 3, 3)* ConstVectorRef(p, 3);
889 ExpectArraysClose(3, result1, result2, kTolerance);
890 }
891
892
893 // Verify that (a * b) * c == a * (b * c).
TEST(Quaternion,MultiplicationIsAssociative)894 TEST(Quaternion, MultiplicationIsAssociative) {
895 double a[4];
896 double b[4];
897 double c[4];
898 for (int i = 0; i < 4; ++i) {
899 a[i] = 2 * RandDouble() - 1;
900 b[i] = 2 * RandDouble() - 1;
901 c[i] = 2 * RandDouble() - 1;
902 }
903
904 double ab[4];
905 double ab_c[4];
906 QuaternionProduct(a, b, ab);
907 QuaternionProduct(ab, c, ab_c);
908
909 double bc[4];
910 double a_bc[4];
911 QuaternionProduct(b, c, bc);
912 QuaternionProduct(a, bc, a_bc);
913
914 ASSERT_NEAR(ab_c[0], a_bc[0], kTolerance);
915 ASSERT_NEAR(ab_c[1], a_bc[1], kTolerance);
916 ASSERT_NEAR(ab_c[2], a_bc[2], kTolerance);
917 ASSERT_NEAR(ab_c[3], a_bc[3], kTolerance);
918 }
919
920
TEST(AngleAxis,RotatePointGivesSameAnswerAsRotationMatrix)921 TEST(AngleAxis, RotatePointGivesSameAnswerAsRotationMatrix) {
922 double angle_axis[3];
923 double R[9];
924 double p[3];
925 double angle_axis_rotated_p[3];
926 double rotation_matrix_rotated_p[3];
927
928 for (int i = 0; i < 10000; ++i) {
929 double theta = (2.0 * i * 0.0011 - 1.0) * kPi;
930 for (int j = 0; j < 50; ++j) {
931 double norm2 = 0.0;
932 for (int k = 0; k < 3; ++k) {
933 angle_axis[k] = 2.0 * RandDouble() - 1.0;
934 p[k] = 2.0 * RandDouble() - 1.0;
935 norm2 = angle_axis[k] * angle_axis[k];
936 }
937
938 const double inv_norm = theta / sqrt(norm2);
939 for (int k = 0; k < 3; ++k) {
940 angle_axis[k] *= inv_norm;
941 }
942
943 AngleAxisToRotationMatrix(angle_axis, R);
944 rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2];
945 rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2];
946 rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2];
947
948 AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p);
949 for (int k = 0; k < 3; ++k) {
950 EXPECT_NEAR(rotation_matrix_rotated_p[k],
951 angle_axis_rotated_p[k],
952 kTolerance) << "p: " << p[0]
953 << " " << p[1]
954 << " " << p[2]
955 << " angle_axis: " << angle_axis[0]
956 << " " << angle_axis[1]
957 << " " << angle_axis[2];
958 }
959 }
960 }
961 }
962
TEST(AngleAxis,NearZeroRotatePointGivesSameAnswerAsRotationMatrix)963 TEST(AngleAxis, NearZeroRotatePointGivesSameAnswerAsRotationMatrix) {
964 double angle_axis[3];
965 double R[9];
966 double p[3];
967 double angle_axis_rotated_p[3];
968 double rotation_matrix_rotated_p[3];
969
970 for (int i = 0; i < 10000; ++i) {
971 double norm2 = 0.0;
972 for (int k = 0; k < 3; ++k) {
973 angle_axis[k] = 2.0 * RandDouble() - 1.0;
974 p[k] = 2.0 * RandDouble() - 1.0;
975 norm2 = angle_axis[k] * angle_axis[k];
976 }
977
978 double theta = (2.0 * i * 0.0001 - 1.0) * 1e-16;
979 const double inv_norm = theta / sqrt(norm2);
980 for (int k = 0; k < 3; ++k) {
981 angle_axis[k] *= inv_norm;
982 }
983
984 AngleAxisToRotationMatrix(angle_axis, R);
985 rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2];
986 rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2];
987 rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2];
988
989 AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p);
990 for (int k = 0; k < 3; ++k) {
991 EXPECT_NEAR(rotation_matrix_rotated_p[k],
992 angle_axis_rotated_p[k],
993 kTolerance) << "p: " << p[0]
994 << " " << p[1]
995 << " " << p[2]
996 << " angle_axis: " << angle_axis[0]
997 << " " << angle_axis[1]
998 << " " << angle_axis[2];
999 }
1000 }
1001 }
1002
TEST(MatrixAdapter,RowMajor3x3ReturnTypeAndAccessIsCorrect)1003 TEST(MatrixAdapter, RowMajor3x3ReturnTypeAndAccessIsCorrect) {
1004 double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
1005 const float const_array[9] =
1006 { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f };
1007 MatrixAdapter<double, 3, 1> A = RowMajorAdapter3x3(array);
1008 MatrixAdapter<const float, 3, 1> B = RowMajorAdapter3x3(const_array);
1009
1010 for (int i = 0; i < 3; ++i) {
1011 for (int j = 0; j < 3; ++j) {
1012 // The values are integers from 1 to 9, so equality tests are appropriate
1013 // even for float and double values.
1014 EXPECT_EQ(A(i, j), array[3*i+j]);
1015 EXPECT_EQ(B(i, j), const_array[3*i+j]);
1016 }
1017 }
1018 }
1019
TEST(MatrixAdapter,ColumnMajor3x3ReturnTypeAndAccessIsCorrect)1020 TEST(MatrixAdapter, ColumnMajor3x3ReturnTypeAndAccessIsCorrect) {
1021 double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
1022 const float const_array[9] =
1023 { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f };
1024 MatrixAdapter<double, 1, 3> A = ColumnMajorAdapter3x3(array);
1025 MatrixAdapter<const float, 1, 3> B = ColumnMajorAdapter3x3(const_array);
1026
1027 for (int i = 0; i < 3; ++i) {
1028 for (int j = 0; j < 3; ++j) {
1029 // The values are integers from 1 to 9, so equality tests are
1030 // appropriate even for float and double values.
1031 EXPECT_EQ(A(i, j), array[3*j+i]);
1032 EXPECT_EQ(B(i, j), const_array[3*j+i]);
1033 }
1034 }
1035 }
1036
TEST(MatrixAdapter,RowMajor2x4IsCorrect)1037 TEST(MatrixAdapter, RowMajor2x4IsCorrect) {
1038 const int expected[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
1039 int array[8];
1040 MatrixAdapter<int, 4, 1> M(array);
1041 M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4;
1042 M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8;
1043 for (int k = 0; k < 8; ++k) {
1044 EXPECT_EQ(array[k], expected[k]);
1045 }
1046 }
1047
TEST(MatrixAdapter,ColumnMajor2x4IsCorrect)1048 TEST(MatrixAdapter, ColumnMajor2x4IsCorrect) {
1049 const int expected[8] = { 1, 5, 2, 6, 3, 7, 4, 8 };
1050 int array[8];
1051 MatrixAdapter<int, 1, 2> M(array);
1052 M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4;
1053 M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8;
1054 for (int k = 0; k < 8; ++k) {
1055 EXPECT_EQ(array[k], expected[k]);
1056 }
1057 }
1058
1059 } // namespace internal
1060 } // namespace ceres
1061