1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal@google.com (Sameer Agarwal) 30 // 31 // A simple C++ interface to the SuiteSparse and CHOLMOD libraries. 32 33 #ifndef CERES_INTERNAL_SUITESPARSE_H_ 34 #define CERES_INTERNAL_SUITESPARSE_H_ 35 36 // This include must come before any #ifndef check on Ceres compile options. 37 #include "ceres/internal/port.h" 38 39 #ifndef CERES_NO_SUITESPARSE 40 41 #include <cstring> 42 #include <string> 43 #include <vector> 44 45 #include "ceres/internal/port.h" 46 #include "ceres/linear_solver.h" 47 #include "cholmod.h" 48 #include "glog/logging.h" 49 #include "SuiteSparseQR.hpp" 50 51 // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled 52 // if SuiteSparse was compiled with Metis support. This makes 53 // calling and linking into cholmod_camd problematic even though it 54 // has nothing to do with Metis. This has been fixed reliably in 55 // 4.2.0. 56 // 57 // The fix was actually committed in 4.1.0, but there is 58 // some confusion about a silent update to the tar ball, so we are 59 // being conservative and choosing the next minor version where 60 // things are stable. 61 #if (SUITESPARSE_VERSION < 4002) 62 #define CERES_NO_CAMD 63 #endif 64 65 // UF_long is deprecated but SuiteSparse_long is only available in 66 // newer versions of SuiteSparse. So for older versions of 67 // SuiteSparse, we define SuiteSparse_long to be the same as UF_long, 68 // which is what recent versions of SuiteSparse do anyways. 69 #ifndef SuiteSparse_long 70 #define SuiteSparse_long UF_long 71 #endif 72 73 namespace ceres { 74 namespace internal { 75 76 class CompressedRowSparseMatrix; 77 class TripletSparseMatrix; 78 79 // The raw CHOLMOD and SuiteSparseQR libraries have a slightly 80 // cumbersome c like calling format. This object abstracts it away and 81 // provides the user with a simpler interface. The methods here cannot 82 // be static as a cholmod_common object serves as a global variable 83 // for all cholmod function calls. 84 class SuiteSparse { 85 public: 86 SuiteSparse(); 87 ~SuiteSparse(); 88 89 // Functions for building cholmod_sparse objects from sparse 90 // matrices stored in triplet form. The matrix A is not 91 // modifed. Called owns the result. 92 cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A); 93 94 // This function works like CreateSparseMatrix, except that the 95 // return value corresponds to A' rather than A. 96 cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A); 97 98 // Create a cholmod_sparse wrapper around the contents of A. This is 99 // a shallow object, which refers to the contents of A and does not 100 // use the SuiteSparse machinery to allocate memory. 101 cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); 102 103 // Given a vector x, build a cholmod_dense vector of size out_size 104 // with the first in_size entries copied from x. If x is NULL, then 105 // an all zeros vector is returned. Caller owns the result. 106 cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size); 107 108 // The matrix A is scaled using the matrix whose diagonal is the 109 // vector scale. mode describes how scaling is applied. Possible 110 // values are CHOLMOD_ROW for row scaling - diag(scale) * A, 111 // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM 112 // for symmetric scaling which scales both the rows and the columns 113 // - diag(scale) * A * diag(scale). Scale(cholmod_dense * scale,int mode,cholmod_sparse * A)114 void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) { 115 cholmod_scale(scale, mode, A, &cc_); 116 } 117 118 // Create and return a matrix m = A * A'. Caller owns the 119 // result. The matrix A is not modified. AATranspose(cholmod_sparse * A)120 cholmod_sparse* AATranspose(cholmod_sparse* A) { 121 cholmod_sparse*m = cholmod_aat(A, NULL, A->nrow, 1, &cc_); 122 m->stype = 1; // Pay attention to the upper triangular part. 123 return m; 124 } 125 126 // y = alpha * A * x + beta * y. Only y is modified. SparseDenseMultiply(cholmod_sparse * A,double alpha,double beta,cholmod_dense * x,cholmod_dense * y)127 void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta, 128 cholmod_dense* x, cholmod_dense* y) { 129 double alpha_[2] = {alpha, 0}; 130 double beta_[2] = {beta, 0}; 131 cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_); 132 } 133 134 // Find an ordering of A or AA' (if A is unsymmetric) that minimizes 135 // the fill-in in the Cholesky factorization of the corresponding 136 // matrix. This is done by using the AMD algorithm. 137 // 138 // Using this ordering, the symbolic Cholesky factorization of A (or 139 // AA') is computed and returned. 140 // 141 // A is not modified, only the pattern of non-zeros of A is used, 142 // the actual numerical values in A are of no consequence. 143 // 144 // message contains an explanation of the failures if any. 145 // 146 // Caller owns the result. 147 cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, string* message); 148 149 cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A, 150 const vector<int>& row_blocks, 151 const vector<int>& col_blocks, 152 string* message); 153 154 // If A is symmetric, then compute the symbolic Cholesky 155 // factorization of A(ordering, ordering). If A is unsymmetric, then 156 // compute the symbolic factorization of 157 // A(ordering,:) A(ordering,:)'. 158 // 159 // A is not modified, only the pattern of non-zeros of A is used, 160 // the actual numerical values in A are of no consequence. 161 // 162 // message contains an explanation of the failures if any. 163 // 164 // Caller owns the result. 165 cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A, 166 const vector<int>& ordering, 167 string* message); 168 169 // Perform a symbolic factorization of A without re-ordering A. No 170 // postordering of the elimination tree is performed. This ensures 171 // that the symbolic factor does not introduce an extra permutation 172 // on the matrix. See the documentation for CHOLMOD for more details. 173 // 174 // message contains an explanation of the failures if any. 175 cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A, 176 string* message); 177 178 // Use the symbolic factorization in L, to find the numerical 179 // factorization for the matrix A or AA^T. Return true if 180 // successful, false otherwise. L contains the numeric factorization 181 // on return. 182 // 183 // message contains an explanation of the failures if any. 184 LinearSolverTerminationType Cholesky(cholmod_sparse* A, 185 cholmod_factor* L, 186 string* message); 187 188 // Given a Cholesky factorization of a matrix A = LL^T, solve the 189 // linear system Ax = b, and return the result. If the Solve fails 190 // NULL is returned. Caller owns the result. 191 // 192 // message contains an explanation of the failures if any. 193 cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, string* message); 194 195 // By virtue of the modeling layer in Ceres being block oriented, 196 // all the matrices used by Ceres are also block oriented. When 197 // doing sparse direct factorization of these matrices the 198 // fill-reducing ordering algorithms (in particular AMD) can either 199 // be run on the block or the scalar form of these matrices. The two 200 // SuiteSparse::AnalyzeCholesky methods allows the the client to 201 // compute the symbolic factorization of a matrix by either using 202 // AMD on the matrix or a user provided ordering of the rows. 203 // 204 // But since the underlying matrices are block oriented, it is worth 205 // running AMD on just the block structre of these matrices and then 206 // lifting these block orderings to a full scalar ordering. This 207 // preserves the block structure of the permuted matrix, and exposes 208 // more of the super-nodal structure of the matrix to the numerical 209 // factorization routines. 210 // 211 // Find the block oriented AMD ordering of a matrix A, whose row and 212 // column blocks are given by row_blocks, and col_blocks 213 // respectively. The matrix may or may not be symmetric. The entries 214 // of col_blocks do not need to sum to the number of columns in 215 // A. If this is the case, only the first sum(col_blocks) are used 216 // to compute the ordering. 217 bool BlockAMDOrdering(const cholmod_sparse* A, 218 const vector<int>& row_blocks, 219 const vector<int>& col_blocks, 220 vector<int>* ordering); 221 222 // Find a fill reducing approximate minimum degree 223 // ordering. ordering is expected to be large enough to hold the 224 // ordering. 225 bool ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering); 226 227 228 // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled 229 // if SuiteSparse was compiled with Metis support. This makes 230 // calling and linking into cholmod_camd problematic even though it 231 // has nothing to do with Metis. This has been fixed reliably in 232 // 4.2.0. 233 // 234 // The fix was actually committed in 4.1.0, but there is 235 // some confusion about a silent update to the tar ball, so we are 236 // being conservative and choosing the next minor version where 237 // things are stable. IsConstrainedApproximateMinimumDegreeOrderingAvailable()238 static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() { 239 return (SUITESPARSE_VERSION>4001); 240 } 241 242 // Find a fill reducing approximate minimum degree 243 // ordering. constraints is an array which associates with each 244 // column of the matrix an elimination group. i.e., all columns in 245 // group 0 are eliminated first, all columns in group 1 are 246 // eliminated next etc. This function finds a fill reducing ordering 247 // that obeys these constraints. 248 // 249 // Calling ApproximateMinimumDegreeOrdering is equivalent to calling 250 // ConstrainedApproximateMinimumDegreeOrdering with a constraint 251 // array that puts all columns in the same elimination group. 252 // 253 // If CERES_NO_CAMD is defined then calling this function will 254 // result in a crash. 255 bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, 256 int* constraints, 257 int* ordering); 258 Free(cholmod_sparse * m)259 void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); } Free(cholmod_dense * m)260 void Free(cholmod_dense* m) { cholmod_free_dense(&m, &cc_); } Free(cholmod_factor * m)261 void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); } 262 Print(cholmod_sparse * m,const string & name)263 void Print(cholmod_sparse* m, const string& name) { 264 cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_); 265 } 266 Print(cholmod_dense * m,const string & name)267 void Print(cholmod_dense* m, const string& name) { 268 cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_); 269 } 270 Print(cholmod_triplet * m,const string & name)271 void Print(cholmod_triplet* m, const string& name) { 272 cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_); 273 } 274 mutable_cc()275 cholmod_common* mutable_cc() { return &cc_; } 276 277 private: 278 cholmod_common cc_; 279 }; 280 281 } // namespace internal 282 } // namespace ceres 283 284 #else // CERES_NO_SUITESPARSE 285 286 typedef void cholmod_factor; 287 288 class SuiteSparse { 289 public: 290 // Defining this static function even when SuiteSparse is not 291 // available, allows client code to check for the presence of CAMD 292 // without checking for the absence of the CERES_NO_CAMD symbol. 293 // 294 // This is safer because the symbol maybe missing due to a user 295 // accidently not including suitesparse.h in their code when 296 // checking for the symbol. IsConstrainedApproximateMinimumDegreeOrderingAvailable()297 static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() { 298 return false; 299 } 300 Free(void *)301 void Free(void*) {}; 302 }; 303 304 #endif // CERES_NO_SUITESPARSE 305 306 #endif // CERES_INTERNAL_SUITESPARSE_H_ 307