1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // A simple C++ interface to the SuiteSparse and CHOLMOD libraries.
32 
33 #ifndef CERES_INTERNAL_SUITESPARSE_H_
34 #define CERES_INTERNAL_SUITESPARSE_H_
35 
36 // This include must come before any #ifndef check on Ceres compile options.
37 #include "ceres/internal/port.h"
38 
39 #ifndef CERES_NO_SUITESPARSE
40 
41 #include <cstring>
42 #include <string>
43 #include <vector>
44 
45 #include "ceres/internal/port.h"
46 #include "ceres/linear_solver.h"
47 #include "cholmod.h"
48 #include "glog/logging.h"
49 #include "SuiteSparseQR.hpp"
50 
51 // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
52 // if SuiteSparse was compiled with Metis support. This makes
53 // calling and linking into cholmod_camd problematic even though it
54 // has nothing to do with Metis. This has been fixed reliably in
55 // 4.2.0.
56 //
57 // The fix was actually committed in 4.1.0, but there is
58 // some confusion about a silent update to the tar ball, so we are
59 // being conservative and choosing the next minor version where
60 // things are stable.
61 #if (SUITESPARSE_VERSION < 4002)
62 #define CERES_NO_CAMD
63 #endif
64 
65 // UF_long is deprecated but SuiteSparse_long is only available in
66 // newer versions of SuiteSparse. So for older versions of
67 // SuiteSparse, we define SuiteSparse_long to be the same as UF_long,
68 // which is what recent versions of SuiteSparse do anyways.
69 #ifndef SuiteSparse_long
70 #define SuiteSparse_long UF_long
71 #endif
72 
73 namespace ceres {
74 namespace internal {
75 
76 class CompressedRowSparseMatrix;
77 class TripletSparseMatrix;
78 
79 // The raw CHOLMOD and SuiteSparseQR libraries have a slightly
80 // cumbersome c like calling format. This object abstracts it away and
81 // provides the user with a simpler interface. The methods here cannot
82 // be static as a cholmod_common object serves as a global variable
83 // for all cholmod function calls.
84 class SuiteSparse {
85  public:
86   SuiteSparse();
87   ~SuiteSparse();
88 
89   // Functions for building cholmod_sparse objects from sparse
90   // matrices stored in triplet form. The matrix A is not
91   // modifed. Called owns the result.
92   cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A);
93 
94   // This function works like CreateSparseMatrix, except that the
95   // return value corresponds to A' rather than A.
96   cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A);
97 
98   // Create a cholmod_sparse wrapper around the contents of A. This is
99   // a shallow object, which refers to the contents of A and does not
100   // use the SuiteSparse machinery to allocate memory.
101   cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
102 
103   // Given a vector x, build a cholmod_dense vector of size out_size
104   // with the first in_size entries copied from x. If x is NULL, then
105   // an all zeros vector is returned. Caller owns the result.
106   cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size);
107 
108   // The matrix A is scaled using the matrix whose diagonal is the
109   // vector scale. mode describes how scaling is applied. Possible
110   // values are CHOLMOD_ROW for row scaling - diag(scale) * A,
111   // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM
112   // for symmetric scaling which scales both the rows and the columns
113   // - diag(scale) * A * diag(scale).
Scale(cholmod_dense * scale,int mode,cholmod_sparse * A)114   void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) {
115      cholmod_scale(scale, mode, A, &cc_);
116   }
117 
118   // Create and return a matrix m = A * A'. Caller owns the
119   // result. The matrix A is not modified.
AATranspose(cholmod_sparse * A)120   cholmod_sparse* AATranspose(cholmod_sparse* A) {
121     cholmod_sparse*m =  cholmod_aat(A, NULL, A->nrow, 1, &cc_);
122     m->stype = 1;  // Pay attention to the upper triangular part.
123     return m;
124   }
125 
126   // y = alpha * A * x + beta * y. Only y is modified.
SparseDenseMultiply(cholmod_sparse * A,double alpha,double beta,cholmod_dense * x,cholmod_dense * y)127   void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta,
128                            cholmod_dense* x, cholmod_dense* y) {
129     double alpha_[2] = {alpha, 0};
130     double beta_[2] = {beta, 0};
131     cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_);
132   }
133 
134   // Find an ordering of A or AA' (if A is unsymmetric) that minimizes
135   // the fill-in in the Cholesky factorization of the corresponding
136   // matrix. This is done by using the AMD algorithm.
137   //
138   // Using this ordering, the symbolic Cholesky factorization of A (or
139   // AA') is computed and returned.
140   //
141   // A is not modified, only the pattern of non-zeros of A is used,
142   // the actual numerical values in A are of no consequence.
143   //
144   // message contains an explanation of the failures if any.
145   //
146   // Caller owns the result.
147   cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, string* message);
148 
149   cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A,
150                                        const vector<int>& row_blocks,
151                                        const vector<int>& col_blocks,
152                                        string* message);
153 
154   // If A is symmetric, then compute the symbolic Cholesky
155   // factorization of A(ordering, ordering). If A is unsymmetric, then
156   // compute the symbolic factorization of
157   // A(ordering,:) A(ordering,:)'.
158   //
159   // A is not modified, only the pattern of non-zeros of A is used,
160   // the actual numerical values in A are of no consequence.
161   //
162   // message contains an explanation of the failures if any.
163   //
164   // Caller owns the result.
165   cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A,
166                                                   const vector<int>& ordering,
167                                                   string* message);
168 
169   // Perform a symbolic factorization of A without re-ordering A. No
170   // postordering of the elimination tree is performed. This ensures
171   // that the symbolic factor does not introduce an extra permutation
172   // on the matrix. See the documentation for CHOLMOD for more details.
173   //
174   // message contains an explanation of the failures if any.
175   cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A,
176                                                      string* message);
177 
178   // Use the symbolic factorization in L, to find the numerical
179   // factorization for the matrix A or AA^T. Return true if
180   // successful, false otherwise. L contains the numeric factorization
181   // on return.
182   //
183   // message contains an explanation of the failures if any.
184   LinearSolverTerminationType Cholesky(cholmod_sparse* A,
185                                        cholmod_factor* L,
186                                        string* message);
187 
188   // Given a Cholesky factorization of a matrix A = LL^T, solve the
189   // linear system Ax = b, and return the result. If the Solve fails
190   // NULL is returned. Caller owns the result.
191   //
192   // message contains an explanation of the failures if any.
193   cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, string* message);
194 
195   // By virtue of the modeling layer in Ceres being block oriented,
196   // all the matrices used by Ceres are also block oriented. When
197   // doing sparse direct factorization of these matrices the
198   // fill-reducing ordering algorithms (in particular AMD) can either
199   // be run on the block or the scalar form of these matrices. The two
200   // SuiteSparse::AnalyzeCholesky methods allows the the client to
201   // compute the symbolic factorization of a matrix by either using
202   // AMD on the matrix or a user provided ordering of the rows.
203   //
204   // But since the underlying matrices are block oriented, it is worth
205   // running AMD on just the block structre of these matrices and then
206   // lifting these block orderings to a full scalar ordering. This
207   // preserves the block structure of the permuted matrix, and exposes
208   // more of the super-nodal structure of the matrix to the numerical
209   // factorization routines.
210   //
211   // Find the block oriented AMD ordering of a matrix A, whose row and
212   // column blocks are given by row_blocks, and col_blocks
213   // respectively. The matrix may or may not be symmetric. The entries
214   // of col_blocks do not need to sum to the number of columns in
215   // A. If this is the case, only the first sum(col_blocks) are used
216   // to compute the ordering.
217   bool BlockAMDOrdering(const cholmod_sparse* A,
218                         const vector<int>& row_blocks,
219                         const vector<int>& col_blocks,
220                         vector<int>* ordering);
221 
222   // Find a fill reducing approximate minimum degree
223   // ordering. ordering is expected to be large enough to hold the
224   // ordering.
225   bool ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering);
226 
227 
228   // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
229   // if SuiteSparse was compiled with Metis support. This makes
230   // calling and linking into cholmod_camd problematic even though it
231   // has nothing to do with Metis. This has been fixed reliably in
232   // 4.2.0.
233   //
234   // The fix was actually committed in 4.1.0, but there is
235   // some confusion about a silent update to the tar ball, so we are
236   // being conservative and choosing the next minor version where
237   // things are stable.
IsConstrainedApproximateMinimumDegreeOrderingAvailable()238   static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
239     return (SUITESPARSE_VERSION>4001);
240   }
241 
242   // Find a fill reducing approximate minimum degree
243   // ordering. constraints is an array which associates with each
244   // column of the matrix an elimination group. i.e., all columns in
245   // group 0 are eliminated first, all columns in group 1 are
246   // eliminated next etc. This function finds a fill reducing ordering
247   // that obeys these constraints.
248   //
249   // Calling ApproximateMinimumDegreeOrdering is equivalent to calling
250   // ConstrainedApproximateMinimumDegreeOrdering with a constraint
251   // array that puts all columns in the same elimination group.
252   //
253   // If CERES_NO_CAMD is defined then calling this function will
254   // result in a crash.
255   bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
256                                                    int* constraints,
257                                                    int* ordering);
258 
Free(cholmod_sparse * m)259   void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); }
Free(cholmod_dense * m)260   void Free(cholmod_dense* m)  { cholmod_free_dense(&m, &cc_);  }
Free(cholmod_factor * m)261   void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); }
262 
Print(cholmod_sparse * m,const string & name)263   void Print(cholmod_sparse* m, const string& name) {
264     cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_);
265   }
266 
Print(cholmod_dense * m,const string & name)267   void Print(cholmod_dense* m, const string& name) {
268     cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_);
269   }
270 
Print(cholmod_triplet * m,const string & name)271   void Print(cholmod_triplet* m, const string& name) {
272     cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_);
273   }
274 
mutable_cc()275   cholmod_common* mutable_cc() { return &cc_; }
276 
277  private:
278   cholmod_common cc_;
279 };
280 
281 }  // namespace internal
282 }  // namespace ceres
283 
284 #else  // CERES_NO_SUITESPARSE
285 
286 typedef void cholmod_factor;
287 
288 class SuiteSparse {
289  public:
290   // Defining this static function even when SuiteSparse is not
291   // available, allows client code to check for the presence of CAMD
292   // without checking for the absence of the CERES_NO_CAMD symbol.
293   //
294   // This is safer because the symbol maybe missing due to a user
295   // accidently not including suitesparse.h in their code when
296   // checking for the symbol.
IsConstrainedApproximateMinimumDegreeOrderingAvailable()297   static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
298     return false;
299   }
300 
Free(void *)301   void Free(void*) {};
302 };
303 
304 #endif  // CERES_NO_SUITESPARSE
305 
306 #endif  // CERES_INTERNAL_SUITESPARSE_H_
307