1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
11 // The class in this file generates structures that follow the Microsoft
12 // Visual C++ ABI, which is actually not very well documented at all outside
13 // of Microsoft.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGVTables.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenTypes.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/VTableBuilder.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSet.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Intrinsics.h"
31
32 using namespace clang;
33 using namespace CodeGen;
34
35 namespace {
36
37 /// Holds all the vbtable globals for a given class.
38 struct VBTableGlobals {
39 const VPtrInfoVector *VBTables;
40 SmallVector<llvm::GlobalVariable *, 2> Globals;
41 };
42
43 class MicrosoftCXXABI : public CGCXXABI {
44 public:
MicrosoftCXXABI(CodeGenModule & CGM)45 MicrosoftCXXABI(CodeGenModule &CGM)
46 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
47 ClassHierarchyDescriptorType(nullptr),
48 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
49 ThrowInfoType(nullptr) {}
50
51 bool HasThisReturn(GlobalDecl GD) const override;
52 bool hasMostDerivedReturn(GlobalDecl GD) const override;
53
54 bool classifyReturnType(CGFunctionInfo &FI) const override;
55
56 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
57
isSRetParameterAfterThis() const58 bool isSRetParameterAfterThis() const override { return true; }
59
isThisCompleteObject(GlobalDecl GD) const60 bool isThisCompleteObject(GlobalDecl GD) const override {
61 // The Microsoft ABI doesn't use separate complete-object vs.
62 // base-object variants of constructors, but it does of destructors.
63 if (isa<CXXDestructorDecl>(GD.getDecl())) {
64 switch (GD.getDtorType()) {
65 case Dtor_Complete:
66 case Dtor_Deleting:
67 return true;
68
69 case Dtor_Base:
70 return false;
71
72 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
73 }
74 llvm_unreachable("bad dtor kind");
75 }
76
77 // No other kinds.
78 return false;
79 }
80
getSrcArgforCopyCtor(const CXXConstructorDecl * CD,FunctionArgList & Args) const81 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
82 FunctionArgList &Args) const override {
83 assert(Args.size() >= 2 &&
84 "expected the arglist to have at least two args!");
85 // The 'most_derived' parameter goes second if the ctor is variadic and
86 // has v-bases.
87 if (CD->getParent()->getNumVBases() > 0 &&
88 CD->getType()->castAs<FunctionProtoType>()->isVariadic())
89 return 2;
90 return 1;
91 }
92
getVBPtrOffsets(const CXXRecordDecl * RD)93 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
94 std::vector<CharUnits> VBPtrOffsets;
95 const ASTContext &Context = getContext();
96 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
97
98 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
99 for (const VPtrInfo *VBT : *VBGlobals.VBTables) {
100 const ASTRecordLayout &SubobjectLayout =
101 Context.getASTRecordLayout(VBT->BaseWithVPtr);
102 CharUnits Offs = VBT->NonVirtualOffset;
103 Offs += SubobjectLayout.getVBPtrOffset();
104 if (VBT->getVBaseWithVPtr())
105 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
106 VBPtrOffsets.push_back(Offs);
107 }
108 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
109 return VBPtrOffsets;
110 }
111
GetPureVirtualCallName()112 StringRef GetPureVirtualCallName() override { return "_purecall"; }
GetDeletedVirtualCallName()113 StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
114
115 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
116 Address Ptr, QualType ElementType,
117 const CXXDestructorDecl *Dtor) override;
118
119 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
120 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
121
122 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
123
124 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
125 const VPtrInfo *Info);
126
127 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
128 CatchTypeInfo
129 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
130
131 /// MSVC needs an extra flag to indicate a catchall.
getCatchAllTypeInfo()132 CatchTypeInfo getCatchAllTypeInfo() override {
133 return CatchTypeInfo{nullptr, 0x40};
134 }
135
136 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
137 void EmitBadTypeidCall(CodeGenFunction &CGF) override;
138 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
139 Address ThisPtr,
140 llvm::Type *StdTypeInfoPtrTy) override;
141
142 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
143 QualType SrcRecordTy) override;
144
145 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
146 QualType SrcRecordTy, QualType DestTy,
147 QualType DestRecordTy,
148 llvm::BasicBlock *CastEnd) override;
149
150 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
151 QualType SrcRecordTy,
152 QualType DestTy) override;
153
154 bool EmitBadCastCall(CodeGenFunction &CGF) override;
canSpeculativelyEmitVTable(const CXXRecordDecl * RD) const155 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
156 return false;
157 }
158
159 llvm::Value *
160 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
161 const CXXRecordDecl *ClassDecl,
162 const CXXRecordDecl *BaseClassDecl) override;
163
164 llvm::BasicBlock *
165 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
166 const CXXRecordDecl *RD) override;
167
168 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
169 const CXXRecordDecl *RD) override;
170
171 void EmitCXXConstructors(const CXXConstructorDecl *D) override;
172
173 // Background on MSVC destructors
174 // ==============================
175 //
176 // Both Itanium and MSVC ABIs have destructor variants. The variant names
177 // roughly correspond in the following way:
178 // Itanium Microsoft
179 // Base -> no name, just ~Class
180 // Complete -> vbase destructor
181 // Deleting -> scalar deleting destructor
182 // vector deleting destructor
183 //
184 // The base and complete destructors are the same as in Itanium, although the
185 // complete destructor does not accept a VTT parameter when there are virtual
186 // bases. A separate mechanism involving vtordisps is used to ensure that
187 // virtual methods of destroyed subobjects are not called.
188 //
189 // The deleting destructors accept an i32 bitfield as a second parameter. Bit
190 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this
191 // pointer points to an array. The scalar deleting destructor assumes that
192 // bit 2 is zero, and therefore does not contain a loop.
193 //
194 // For virtual destructors, only one entry is reserved in the vftable, and it
195 // always points to the vector deleting destructor. The vector deleting
196 // destructor is the most general, so it can be used to destroy objects in
197 // place, delete single heap objects, or delete arrays.
198 //
199 // A TU defining a non-inline destructor is only guaranteed to emit a base
200 // destructor, and all of the other variants are emitted on an as-needed basis
201 // in COMDATs. Because a non-base destructor can be emitted in a TU that
202 // lacks a definition for the destructor, non-base destructors must always
203 // delegate to or alias the base destructor.
204
205 void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
206 SmallVectorImpl<CanQualType> &ArgTys) override;
207
208 /// Non-base dtors should be emitted as delegating thunks in this ABI.
useThunkForDtorVariant(const CXXDestructorDecl * Dtor,CXXDtorType DT) const209 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
210 CXXDtorType DT) const override {
211 return DT != Dtor_Base;
212 }
213
214 void EmitCXXDestructors(const CXXDestructorDecl *D) override;
215
216 const CXXRecordDecl *
getThisArgumentTypeForMethod(const CXXMethodDecl * MD)217 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
218 MD = MD->getCanonicalDecl();
219 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
220 MicrosoftVTableContext::MethodVFTableLocation ML =
221 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
222 // The vbases might be ordered differently in the final overrider object
223 // and the complete object, so the "this" argument may sometimes point to
224 // memory that has no particular type (e.g. past the complete object).
225 // In this case, we just use a generic pointer type.
226 // FIXME: might want to have a more precise type in the non-virtual
227 // multiple inheritance case.
228 if (ML.VBase || !ML.VFPtrOffset.isZero())
229 return nullptr;
230 }
231 return MD->getParent();
232 }
233
234 Address
235 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
236 Address This,
237 bool VirtualCall) override;
238
239 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
240 FunctionArgList &Params) override;
241
242 llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
243 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
244
245 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
246
247 unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
248 const CXXConstructorDecl *D,
249 CXXCtorType Type, bool ForVirtualBase,
250 bool Delegating,
251 CallArgList &Args) override;
252
253 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
254 CXXDtorType Type, bool ForVirtualBase,
255 bool Delegating, Address This) override;
256
257 void emitVTableBitSetEntries(VPtrInfo *Info, const CXXRecordDecl *RD,
258 llvm::GlobalVariable *VTable);
259
260 void emitVTableDefinitions(CodeGenVTables &CGVT,
261 const CXXRecordDecl *RD) override;
262
263 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
264 CodeGenFunction::VPtr Vptr) override;
265
266 /// Don't initialize vptrs if dynamic class
267 /// is marked with with the 'novtable' attribute.
doStructorsInitializeVPtrs(const CXXRecordDecl * VTableClass)268 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
269 return !VTableClass->hasAttr<MSNoVTableAttr>();
270 }
271
272 llvm::Constant *
273 getVTableAddressPoint(BaseSubobject Base,
274 const CXXRecordDecl *VTableClass) override;
275
276 llvm::Value *getVTableAddressPointInStructor(
277 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
278 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
279
280 llvm::Constant *
281 getVTableAddressPointForConstExpr(BaseSubobject Base,
282 const CXXRecordDecl *VTableClass) override;
283
284 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
285 CharUnits VPtrOffset) override;
286
287 llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
288 Address This, llvm::Type *Ty,
289 SourceLocation Loc) override;
290
291 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
292 const CXXDestructorDecl *Dtor,
293 CXXDtorType DtorType,
294 Address This,
295 const CXXMemberCallExpr *CE) override;
296
adjustCallArgsForDestructorThunk(CodeGenFunction & CGF,GlobalDecl GD,CallArgList & CallArgs)297 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
298 CallArgList &CallArgs) override {
299 assert(GD.getDtorType() == Dtor_Deleting &&
300 "Only deleting destructor thunks are available in this ABI");
301 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
302 getContext().IntTy);
303 }
304
305 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
306
307 llvm::GlobalVariable *
308 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
309 llvm::GlobalVariable::LinkageTypes Linkage);
310
311 llvm::GlobalVariable *
getAddrOfVirtualDisplacementMap(const CXXRecordDecl * SrcRD,const CXXRecordDecl * DstRD)312 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
313 const CXXRecordDecl *DstRD) {
314 SmallString<256> OutName;
315 llvm::raw_svector_ostream Out(OutName);
316 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
317 StringRef MangledName = OutName.str();
318
319 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
320 return VDispMap;
321
322 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
323 unsigned NumEntries = 1 + SrcRD->getNumVBases();
324 SmallVector<llvm::Constant *, 4> Map(NumEntries,
325 llvm::UndefValue::get(CGM.IntTy));
326 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
327 bool AnyDifferent = false;
328 for (const auto &I : SrcRD->vbases()) {
329 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
330 if (!DstRD->isVirtuallyDerivedFrom(VBase))
331 continue;
332
333 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
334 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
335 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
336 AnyDifferent |= SrcVBIndex != DstVBIndex;
337 }
338 // This map would be useless, don't use it.
339 if (!AnyDifferent)
340 return nullptr;
341
342 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
343 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
344 llvm::GlobalValue::LinkageTypes Linkage =
345 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
346 ? llvm::GlobalValue::LinkOnceODRLinkage
347 : llvm::GlobalValue::InternalLinkage;
348 auto *VDispMap = new llvm::GlobalVariable(
349 CGM.getModule(), VDispMapTy, /*Constant=*/true, Linkage,
350 /*Initializer=*/Init, MangledName);
351 return VDispMap;
352 }
353
354 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
355 llvm::GlobalVariable *GV) const;
356
setThunkLinkage(llvm::Function * Thunk,bool ForVTable,GlobalDecl GD,bool ReturnAdjustment)357 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
358 GlobalDecl GD, bool ReturnAdjustment) override {
359 // Never dllimport/dllexport thunks.
360 Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
361
362 GVALinkage Linkage =
363 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
364
365 if (Linkage == GVA_Internal)
366 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
367 else if (ReturnAdjustment)
368 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
369 else
370 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
371 }
372
373 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
374 const ThisAdjustment &TA) override;
375
376 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
377 const ReturnAdjustment &RA) override;
378
379 void EmitThreadLocalInitFuncs(
380 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
381 ArrayRef<llvm::Function *> CXXThreadLocalInits,
382 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
383
usesThreadWrapperFunction() const384 bool usesThreadWrapperFunction() const override { return false; }
385 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
386 QualType LValType) override;
387
388 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
389 llvm::GlobalVariable *DeclPtr,
390 bool PerformInit) override;
391 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
392 llvm::Constant *Dtor, llvm::Constant *Addr) override;
393
394 // ==== Notes on array cookies =========
395 //
396 // MSVC seems to only use cookies when the class has a destructor; a
397 // two-argument usual array deallocation function isn't sufficient.
398 //
399 // For example, this code prints "100" and "1":
400 // struct A {
401 // char x;
402 // void *operator new[](size_t sz) {
403 // printf("%u\n", sz);
404 // return malloc(sz);
405 // }
406 // void operator delete[](void *p, size_t sz) {
407 // printf("%u\n", sz);
408 // free(p);
409 // }
410 // };
411 // int main() {
412 // A *p = new A[100];
413 // delete[] p;
414 // }
415 // Whereas it prints "104" and "104" if you give A a destructor.
416
417 bool requiresArrayCookie(const CXXDeleteExpr *expr,
418 QualType elementType) override;
419 bool requiresArrayCookie(const CXXNewExpr *expr) override;
420 CharUnits getArrayCookieSizeImpl(QualType type) override;
421 Address InitializeArrayCookie(CodeGenFunction &CGF,
422 Address NewPtr,
423 llvm::Value *NumElements,
424 const CXXNewExpr *expr,
425 QualType ElementType) override;
426 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
427 Address allocPtr,
428 CharUnits cookieSize) override;
429
430 friend struct MSRTTIBuilder;
431
isImageRelative() const432 bool isImageRelative() const {
433 return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
434 }
435
436 // 5 routines for constructing the llvm types for MS RTTI structs.
getTypeDescriptorType(StringRef TypeInfoString)437 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
438 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
439 TDTypeName += llvm::utostr(TypeInfoString.size());
440 llvm::StructType *&TypeDescriptorType =
441 TypeDescriptorTypeMap[TypeInfoString.size()];
442 if (TypeDescriptorType)
443 return TypeDescriptorType;
444 llvm::Type *FieldTypes[] = {
445 CGM.Int8PtrPtrTy,
446 CGM.Int8PtrTy,
447 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
448 TypeDescriptorType =
449 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
450 return TypeDescriptorType;
451 }
452
getImageRelativeType(llvm::Type * PtrType)453 llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
454 if (!isImageRelative())
455 return PtrType;
456 return CGM.IntTy;
457 }
458
getBaseClassDescriptorType()459 llvm::StructType *getBaseClassDescriptorType() {
460 if (BaseClassDescriptorType)
461 return BaseClassDescriptorType;
462 llvm::Type *FieldTypes[] = {
463 getImageRelativeType(CGM.Int8PtrTy),
464 CGM.IntTy,
465 CGM.IntTy,
466 CGM.IntTy,
467 CGM.IntTy,
468 CGM.IntTy,
469 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
470 };
471 BaseClassDescriptorType = llvm::StructType::create(
472 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
473 return BaseClassDescriptorType;
474 }
475
getClassHierarchyDescriptorType()476 llvm::StructType *getClassHierarchyDescriptorType() {
477 if (ClassHierarchyDescriptorType)
478 return ClassHierarchyDescriptorType;
479 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
480 ClassHierarchyDescriptorType = llvm::StructType::create(
481 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
482 llvm::Type *FieldTypes[] = {
483 CGM.IntTy,
484 CGM.IntTy,
485 CGM.IntTy,
486 getImageRelativeType(
487 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
488 };
489 ClassHierarchyDescriptorType->setBody(FieldTypes);
490 return ClassHierarchyDescriptorType;
491 }
492
getCompleteObjectLocatorType()493 llvm::StructType *getCompleteObjectLocatorType() {
494 if (CompleteObjectLocatorType)
495 return CompleteObjectLocatorType;
496 CompleteObjectLocatorType = llvm::StructType::create(
497 CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
498 llvm::Type *FieldTypes[] = {
499 CGM.IntTy,
500 CGM.IntTy,
501 CGM.IntTy,
502 getImageRelativeType(CGM.Int8PtrTy),
503 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
504 getImageRelativeType(CompleteObjectLocatorType),
505 };
506 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
507 if (!isImageRelative())
508 FieldTypesRef = FieldTypesRef.drop_back();
509 CompleteObjectLocatorType->setBody(FieldTypesRef);
510 return CompleteObjectLocatorType;
511 }
512
getImageBase()513 llvm::GlobalVariable *getImageBase() {
514 StringRef Name = "__ImageBase";
515 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
516 return GV;
517
518 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
519 /*isConstant=*/true,
520 llvm::GlobalValue::ExternalLinkage,
521 /*Initializer=*/nullptr, Name);
522 }
523
getImageRelativeConstant(llvm::Constant * PtrVal)524 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
525 if (!isImageRelative())
526 return PtrVal;
527
528 if (PtrVal->isNullValue())
529 return llvm::Constant::getNullValue(CGM.IntTy);
530
531 llvm::Constant *ImageBaseAsInt =
532 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
533 llvm::Constant *PtrValAsInt =
534 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
535 llvm::Constant *Diff =
536 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
537 /*HasNUW=*/true, /*HasNSW=*/true);
538 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
539 }
540
541 private:
getMangleContext()542 MicrosoftMangleContext &getMangleContext() {
543 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
544 }
545
getZeroInt()546 llvm::Constant *getZeroInt() {
547 return llvm::ConstantInt::get(CGM.IntTy, 0);
548 }
549
getAllOnesInt()550 llvm::Constant *getAllOnesInt() {
551 return llvm::Constant::getAllOnesValue(CGM.IntTy);
552 }
553
554 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
555
556 void
557 GetNullMemberPointerFields(const MemberPointerType *MPT,
558 llvm::SmallVectorImpl<llvm::Constant *> &fields);
559
560 /// \brief Shared code for virtual base adjustment. Returns the offset from
561 /// the vbptr to the virtual base. Optionally returns the address of the
562 /// vbptr itself.
563 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
564 Address Base,
565 llvm::Value *VBPtrOffset,
566 llvm::Value *VBTableOffset,
567 llvm::Value **VBPtr = nullptr);
568
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,Address Base,int32_t VBPtrOffset,int32_t VBTableOffset,llvm::Value ** VBPtr=nullptr)569 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
570 Address Base,
571 int32_t VBPtrOffset,
572 int32_t VBTableOffset,
573 llvm::Value **VBPtr = nullptr) {
574 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
575 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
576 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
577 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
578 }
579
580 std::pair<Address, llvm::Value *>
581 performBaseAdjustment(CodeGenFunction &CGF, Address Value,
582 QualType SrcRecordTy);
583
584 /// \brief Performs a full virtual base adjustment. Used to dereference
585 /// pointers to members of virtual bases.
586 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
587 const CXXRecordDecl *RD, Address Base,
588 llvm::Value *VirtualBaseAdjustmentOffset,
589 llvm::Value *VBPtrOffset /* optional */);
590
591 /// \brief Emits a full member pointer with the fields common to data and
592 /// function member pointers.
593 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
594 bool IsMemberFunction,
595 const CXXRecordDecl *RD,
596 CharUnits NonVirtualBaseAdjustment,
597 unsigned VBTableIndex);
598
599 bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
600 llvm::Constant *MP);
601
602 /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
603 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
604
605 /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
606 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
607
608 /// \brief Generate a thunk for calling a virtual member function MD.
609 llvm::Function *EmitVirtualMemPtrThunk(
610 const CXXMethodDecl *MD,
611 const MicrosoftVTableContext::MethodVFTableLocation &ML);
612
613 public:
614 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
615
616 bool isZeroInitializable(const MemberPointerType *MPT) override;
617
isMemberPointerConvertible(const MemberPointerType * MPT) const618 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
619 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
620 return RD->hasAttr<MSInheritanceAttr>();
621 }
622
623 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
624
625 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
626 CharUnits offset) override;
627 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
628 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
629
630 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
631 llvm::Value *L,
632 llvm::Value *R,
633 const MemberPointerType *MPT,
634 bool Inequality) override;
635
636 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
637 llvm::Value *MemPtr,
638 const MemberPointerType *MPT) override;
639
640 llvm::Value *
641 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
642 Address Base, llvm::Value *MemPtr,
643 const MemberPointerType *MPT) override;
644
645 llvm::Value *EmitNonNullMemberPointerConversion(
646 const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
647 CastKind CK, CastExpr::path_const_iterator PathBegin,
648 CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
649 CGBuilderTy &Builder);
650
651 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
652 const CastExpr *E,
653 llvm::Value *Src) override;
654
655 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
656 llvm::Constant *Src) override;
657
658 llvm::Constant *EmitMemberPointerConversion(
659 const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
660 CastKind CK, CastExpr::path_const_iterator PathBegin,
661 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
662
663 llvm::Value *
664 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
665 Address This, llvm::Value *&ThisPtrForCall,
666 llvm::Value *MemPtr,
667 const MemberPointerType *MPT) override;
668
669 void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
670
getCatchableTypeType()671 llvm::StructType *getCatchableTypeType() {
672 if (CatchableTypeType)
673 return CatchableTypeType;
674 llvm::Type *FieldTypes[] = {
675 CGM.IntTy, // Flags
676 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
677 CGM.IntTy, // NonVirtualAdjustment
678 CGM.IntTy, // OffsetToVBPtr
679 CGM.IntTy, // VBTableIndex
680 CGM.IntTy, // Size
681 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor
682 };
683 CatchableTypeType = llvm::StructType::create(
684 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
685 return CatchableTypeType;
686 }
687
getCatchableTypeArrayType(uint32_t NumEntries)688 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
689 llvm::StructType *&CatchableTypeArrayType =
690 CatchableTypeArrayTypeMap[NumEntries];
691 if (CatchableTypeArrayType)
692 return CatchableTypeArrayType;
693
694 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
695 CTATypeName += llvm::utostr(NumEntries);
696 llvm::Type *CTType =
697 getImageRelativeType(getCatchableTypeType()->getPointerTo());
698 llvm::Type *FieldTypes[] = {
699 CGM.IntTy, // NumEntries
700 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
701 };
702 CatchableTypeArrayType =
703 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
704 return CatchableTypeArrayType;
705 }
706
getThrowInfoType()707 llvm::StructType *getThrowInfoType() {
708 if (ThrowInfoType)
709 return ThrowInfoType;
710 llvm::Type *FieldTypes[] = {
711 CGM.IntTy, // Flags
712 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
713 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
714 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray
715 };
716 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
717 "eh.ThrowInfo");
718 return ThrowInfoType;
719 }
720
getThrowFn()721 llvm::Constant *getThrowFn() {
722 // _CxxThrowException is passed an exception object and a ThrowInfo object
723 // which describes the exception.
724 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
725 llvm::FunctionType *FTy =
726 llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
727 auto *Fn = cast<llvm::Function>(
728 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
729 // _CxxThrowException is stdcall on 32-bit x86 platforms.
730 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
731 Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
732 return Fn;
733 }
734
735 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
736 CXXCtorType CT);
737
738 llvm::Constant *getCatchableType(QualType T,
739 uint32_t NVOffset = 0,
740 int32_t VBPtrOffset = -1,
741 uint32_t VBIndex = 0);
742
743 llvm::GlobalVariable *getCatchableTypeArray(QualType T);
744
745 llvm::GlobalVariable *getThrowInfo(QualType T) override;
746
747 private:
748 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
749 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
750 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
751 /// \brief All the vftables that have been referenced.
752 VFTablesMapTy VFTablesMap;
753 VTablesMapTy VTablesMap;
754
755 /// \brief This set holds the record decls we've deferred vtable emission for.
756 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
757
758
759 /// \brief All the vbtables which have been referenced.
760 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
761
762 /// Info on the global variable used to guard initialization of static locals.
763 /// The BitIndex field is only used for externally invisible declarations.
764 struct GuardInfo {
GuardInfo__anone5681bf50111::MicrosoftCXXABI::GuardInfo765 GuardInfo() : Guard(nullptr), BitIndex(0) {}
766 llvm::GlobalVariable *Guard;
767 unsigned BitIndex;
768 };
769
770 /// Map from DeclContext to the current guard variable. We assume that the
771 /// AST is visited in source code order.
772 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
773 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
774 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
775
776 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
777 llvm::StructType *BaseClassDescriptorType;
778 llvm::StructType *ClassHierarchyDescriptorType;
779 llvm::StructType *CompleteObjectLocatorType;
780
781 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
782
783 llvm::StructType *CatchableTypeType;
784 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
785 llvm::StructType *ThrowInfoType;
786 };
787
788 }
789
790 CGCXXABI::RecordArgABI
getRecordArgABI(const CXXRecordDecl * RD) const791 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
792 switch (CGM.getTarget().getTriple().getArch()) {
793 default:
794 // FIXME: Implement for other architectures.
795 return RAA_Default;
796
797 case llvm::Triple::x86:
798 // All record arguments are passed in memory on x86. Decide whether to
799 // construct the object directly in argument memory, or to construct the
800 // argument elsewhere and copy the bytes during the call.
801
802 // If C++ prohibits us from making a copy, construct the arguments directly
803 // into argument memory.
804 if (!canCopyArgument(RD))
805 return RAA_DirectInMemory;
806
807 // Otherwise, construct the argument into a temporary and copy the bytes
808 // into the outgoing argument memory.
809 return RAA_Default;
810
811 case llvm::Triple::x86_64:
812 // Win64 passes objects with non-trivial copy ctors indirectly.
813 if (RD->hasNonTrivialCopyConstructor())
814 return RAA_Indirect;
815
816 // If an object has a destructor, we'd really like to pass it indirectly
817 // because it allows us to elide copies. Unfortunately, MSVC makes that
818 // impossible for small types, which it will pass in a single register or
819 // stack slot. Most objects with dtors are large-ish, so handle that early.
820 // We can't call out all large objects as being indirect because there are
821 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
822 // how we pass large POD types.
823 if (RD->hasNonTrivialDestructor() &&
824 getContext().getTypeSize(RD->getTypeForDecl()) > 64)
825 return RAA_Indirect;
826
827 // We have a trivial copy constructor or no copy constructors, but we have
828 // to make sure it isn't deleted.
829 bool CopyDeleted = false;
830 for (const CXXConstructorDecl *CD : RD->ctors()) {
831 if (CD->isCopyConstructor()) {
832 assert(CD->isTrivial());
833 // We had at least one undeleted trivial copy ctor. Return directly.
834 if (!CD->isDeleted())
835 return RAA_Default;
836 CopyDeleted = true;
837 }
838 }
839
840 // The trivial copy constructor was deleted. Return indirectly.
841 if (CopyDeleted)
842 return RAA_Indirect;
843
844 // There were no copy ctors. Return in RAX.
845 return RAA_Default;
846 }
847
848 llvm_unreachable("invalid enum");
849 }
850
emitVirtualObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,Address Ptr,QualType ElementType,const CXXDestructorDecl * Dtor)851 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
852 const CXXDeleteExpr *DE,
853 Address Ptr,
854 QualType ElementType,
855 const CXXDestructorDecl *Dtor) {
856 // FIXME: Provide a source location here even though there's no
857 // CXXMemberCallExpr for dtor call.
858 bool UseGlobalDelete = DE->isGlobalDelete();
859 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
860 llvm::Value *MDThis =
861 EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
862 if (UseGlobalDelete)
863 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
864 }
865
emitRethrow(CodeGenFunction & CGF,bool isNoReturn)866 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
867 llvm::Value *Args[] = {
868 llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
869 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
870 auto *Fn = getThrowFn();
871 if (isNoReturn)
872 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
873 else
874 CGF.EmitRuntimeCallOrInvoke(Fn, Args);
875 }
876
877 namespace {
878 struct CatchRetScope final : EHScopeStack::Cleanup {
879 llvm::CatchPadInst *CPI;
880
CatchRetScope__anone5681bf50211::CatchRetScope881 CatchRetScope(llvm::CatchPadInst *CPI) : CPI(CPI) {}
882
Emit__anone5681bf50211::CatchRetScope883 void Emit(CodeGenFunction &CGF, Flags flags) override {
884 llvm::BasicBlock *BB = CGF.createBasicBlock("catchret.dest");
885 CGF.Builder.CreateCatchRet(CPI, BB);
886 CGF.EmitBlock(BB);
887 }
888 };
889 }
890
emitBeginCatch(CodeGenFunction & CGF,const CXXCatchStmt * S)891 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
892 const CXXCatchStmt *S) {
893 // In the MS ABI, the runtime handles the copy, and the catch handler is
894 // responsible for destruction.
895 VarDecl *CatchParam = S->getExceptionDecl();
896 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
897 llvm::CatchPadInst *CPI =
898 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
899 CGF.CurrentFuncletPad = CPI;
900
901 // If this is a catch-all or the catch parameter is unnamed, we don't need to
902 // emit an alloca to the object.
903 if (!CatchParam || !CatchParam->getDeclName()) {
904 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
905 return;
906 }
907
908 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
909 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
910 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
911 CGF.EmitAutoVarCleanups(var);
912 }
913
914 /// We need to perform a generic polymorphic operation (like a typeid
915 /// or a cast), which requires an object with a vfptr. Adjust the
916 /// address to point to an object with a vfptr.
917 std::pair<Address, llvm::Value *>
performBaseAdjustment(CodeGenFunction & CGF,Address Value,QualType SrcRecordTy)918 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
919 QualType SrcRecordTy) {
920 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
921 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
922 const ASTContext &Context = getContext();
923
924 // If the class itself has a vfptr, great. This check implicitly
925 // covers non-virtual base subobjects: a class with its own virtual
926 // functions would be a candidate to be a primary base.
927 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
928 return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
929
930 // Okay, one of the vbases must have a vfptr, or else this isn't
931 // actually a polymorphic class.
932 const CXXRecordDecl *PolymorphicBase = nullptr;
933 for (auto &Base : SrcDecl->vbases()) {
934 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
935 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
936 PolymorphicBase = BaseDecl;
937 break;
938 }
939 }
940 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
941
942 llvm::Value *Offset =
943 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
944 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
945 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
946 CharUnits VBaseAlign =
947 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
948 return std::make_pair(Address(Ptr, VBaseAlign), Offset);
949 }
950
shouldTypeidBeNullChecked(bool IsDeref,QualType SrcRecordTy)951 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
952 QualType SrcRecordTy) {
953 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
954 return IsDeref &&
955 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
956 }
957
emitRTtypeidCall(CodeGenFunction & CGF,llvm::Value * Argument)958 static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
959 llvm::Value *Argument) {
960 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
961 llvm::FunctionType *FTy =
962 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
963 llvm::Value *Args[] = {Argument};
964 llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
965 return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
966 }
967
EmitBadTypeidCall(CodeGenFunction & CGF)968 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
969 llvm::CallSite Call =
970 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
971 Call.setDoesNotReturn();
972 CGF.Builder.CreateUnreachable();
973 }
974
EmitTypeid(CodeGenFunction & CGF,QualType SrcRecordTy,Address ThisPtr,llvm::Type * StdTypeInfoPtrTy)975 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
976 QualType SrcRecordTy,
977 Address ThisPtr,
978 llvm::Type *StdTypeInfoPtrTy) {
979 llvm::Value *Offset;
980 std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
981 auto Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()).getInstruction();
982 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
983 }
984
shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,QualType SrcRecordTy)985 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
986 QualType SrcRecordTy) {
987 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
988 return SrcIsPtr &&
989 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
990 }
991
EmitDynamicCastCall(CodeGenFunction & CGF,Address This,QualType SrcRecordTy,QualType DestTy,QualType DestRecordTy,llvm::BasicBlock * CastEnd)992 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
993 CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
994 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
995 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
996
997 llvm::Value *SrcRTTI =
998 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
999 llvm::Value *DestRTTI =
1000 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1001
1002 llvm::Value *Offset;
1003 std::tie(This, Offset) = performBaseAdjustment(CGF, This, SrcRecordTy);
1004 llvm::Value *ThisPtr = This.getPointer();
1005
1006 // PVOID __RTDynamicCast(
1007 // PVOID inptr,
1008 // LONG VfDelta,
1009 // PVOID SrcType,
1010 // PVOID TargetType,
1011 // BOOL isReference)
1012 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
1013 CGF.Int8PtrTy, CGF.Int32Ty};
1014 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
1015 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1016 "__RTDynamicCast");
1017 llvm::Value *Args[] = {
1018 ThisPtr, Offset, SrcRTTI, DestRTTI,
1019 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
1020 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
1021 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
1022 }
1023
1024 llvm::Value *
EmitDynamicCastToVoid(CodeGenFunction & CGF,Address Value,QualType SrcRecordTy,QualType DestTy)1025 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
1026 QualType SrcRecordTy,
1027 QualType DestTy) {
1028 llvm::Value *Offset;
1029 std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
1030
1031 // PVOID __RTCastToVoid(
1032 // PVOID inptr)
1033 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1034 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
1035 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1036 "__RTCastToVoid");
1037 llvm::Value *Args[] = {Value.getPointer()};
1038 return CGF.EmitRuntimeCall(Function, Args);
1039 }
1040
EmitBadCastCall(CodeGenFunction & CGF)1041 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1042 return false;
1043 }
1044
GetVirtualBaseClassOffset(CodeGenFunction & CGF,Address This,const CXXRecordDecl * ClassDecl,const CXXRecordDecl * BaseClassDecl)1045 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1046 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1047 const CXXRecordDecl *BaseClassDecl) {
1048 const ASTContext &Context = getContext();
1049 int64_t VBPtrChars =
1050 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1051 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1052 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1053 CharUnits VBTableChars =
1054 IntSize *
1055 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1056 llvm::Value *VBTableOffset =
1057 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1058
1059 llvm::Value *VBPtrToNewBase =
1060 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1061 VBPtrToNewBase =
1062 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1063 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1064 }
1065
HasThisReturn(GlobalDecl GD) const1066 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1067 return isa<CXXConstructorDecl>(GD.getDecl());
1068 }
1069
isDeletingDtor(GlobalDecl GD)1070 static bool isDeletingDtor(GlobalDecl GD) {
1071 return isa<CXXDestructorDecl>(GD.getDecl()) &&
1072 GD.getDtorType() == Dtor_Deleting;
1073 }
1074
hasMostDerivedReturn(GlobalDecl GD) const1075 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1076 return isDeletingDtor(GD);
1077 }
1078
classifyReturnType(CGFunctionInfo & FI) const1079 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1080 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1081 if (!RD)
1082 return false;
1083
1084 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1085 if (FI.isInstanceMethod()) {
1086 // If it's an instance method, aggregates are always returned indirectly via
1087 // the second parameter.
1088 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1089 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
1090 return true;
1091 } else if (!RD->isPOD()) {
1092 // If it's a free function, non-POD types are returned indirectly.
1093 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1094 return true;
1095 }
1096
1097 // Otherwise, use the C ABI rules.
1098 return false;
1099 }
1100
1101 llvm::BasicBlock *
EmitCtorCompleteObjectHandler(CodeGenFunction & CGF,const CXXRecordDecl * RD)1102 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1103 const CXXRecordDecl *RD) {
1104 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1105 assert(IsMostDerivedClass &&
1106 "ctor for a class with virtual bases must have an implicit parameter");
1107 llvm::Value *IsCompleteObject =
1108 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1109
1110 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1111 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1112 CGF.Builder.CreateCondBr(IsCompleteObject,
1113 CallVbaseCtorsBB, SkipVbaseCtorsBB);
1114
1115 CGF.EmitBlock(CallVbaseCtorsBB);
1116
1117 // Fill in the vbtable pointers here.
1118 EmitVBPtrStores(CGF, RD);
1119
1120 // CGF will put the base ctor calls in this basic block for us later.
1121
1122 return SkipVbaseCtorsBB;
1123 }
1124
initializeHiddenVirtualInheritanceMembers(CodeGenFunction & CGF,const CXXRecordDecl * RD)1125 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1126 CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1127 // In most cases, an override for a vbase virtual method can adjust
1128 // the "this" parameter by applying a constant offset.
1129 // However, this is not enough while a constructor or a destructor of some
1130 // class X is being executed if all the following conditions are met:
1131 // - X has virtual bases, (1)
1132 // - X overrides a virtual method M of a vbase Y, (2)
1133 // - X itself is a vbase of the most derived class.
1134 //
1135 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1136 // which holds the extra amount of "this" adjustment we must do when we use
1137 // the X vftables (i.e. during X ctor or dtor).
1138 // Outside the ctors and dtors, the values of vtorDisps are zero.
1139
1140 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1141 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1142 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1143 CGBuilderTy &Builder = CGF.Builder;
1144
1145 unsigned AS = getThisAddress(CGF).getAddressSpace();
1146 llvm::Value *Int8This = nullptr; // Initialize lazily.
1147
1148 for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
1149 I != E; ++I) {
1150 if (!I->second.hasVtorDisp())
1151 continue;
1152
1153 llvm::Value *VBaseOffset =
1154 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, I->first);
1155 // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
1156 // just to Trunc back immediately.
1157 VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
1158 uint64_t ConstantVBaseOffset =
1159 Layout.getVBaseClassOffset(I->first).getQuantity();
1160
1161 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1162 llvm::Value *VtorDispValue = Builder.CreateSub(
1163 VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
1164 "vtordisp.value");
1165
1166 if (!Int8This)
1167 Int8This = Builder.CreateBitCast(getThisValue(CGF),
1168 CGF.Int8Ty->getPointerTo(AS));
1169 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
1170 // vtorDisp is always the 32-bits before the vbase in the class layout.
1171 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
1172 VtorDispPtr = Builder.CreateBitCast(
1173 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
1174
1175 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1176 CharUnits::fromQuantity(4));
1177 }
1178 }
1179
hasDefaultCXXMethodCC(ASTContext & Context,const CXXMethodDecl * MD)1180 static bool hasDefaultCXXMethodCC(ASTContext &Context,
1181 const CXXMethodDecl *MD) {
1182 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1183 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1184 CallingConv ActualCallingConv =
1185 MD->getType()->getAs<FunctionProtoType>()->getCallConv();
1186 return ExpectedCallingConv == ActualCallingConv;
1187 }
1188
EmitCXXConstructors(const CXXConstructorDecl * D)1189 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1190 // There's only one constructor type in this ABI.
1191 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1192
1193 // Exported default constructors either have a simple call-site where they use
1194 // the typical calling convention and have a single 'this' pointer for an
1195 // argument -or- they get a wrapper function which appropriately thunks to the
1196 // real default constructor. This thunk is the default constructor closure.
1197 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
1198 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1199 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1200 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1201 Fn->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1202 }
1203 }
1204
EmitVBPtrStores(CodeGenFunction & CGF,const CXXRecordDecl * RD)1205 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1206 const CXXRecordDecl *RD) {
1207 Address This = getThisAddress(CGF);
1208 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
1209 const ASTContext &Context = getContext();
1210 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1211
1212 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1213 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1214 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1215 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1216 const ASTRecordLayout &SubobjectLayout =
1217 Context.getASTRecordLayout(VBT->BaseWithVPtr);
1218 CharUnits Offs = VBT->NonVirtualOffset;
1219 Offs += SubobjectLayout.getVBPtrOffset();
1220 if (VBT->getVBaseWithVPtr())
1221 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1222 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1223 llvm::Value *GVPtr =
1224 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1225 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
1226 "vbptr." + VBT->ReusingBase->getName());
1227 CGF.Builder.CreateStore(GVPtr, VBPtr);
1228 }
1229 }
1230
1231 void
buildStructorSignature(const CXXMethodDecl * MD,StructorType T,SmallVectorImpl<CanQualType> & ArgTys)1232 MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
1233 SmallVectorImpl<CanQualType> &ArgTys) {
1234 // TODO: 'for base' flag
1235 if (T == StructorType::Deleting) {
1236 // The scalar deleting destructor takes an implicit int parameter.
1237 ArgTys.push_back(getContext().IntTy);
1238 }
1239 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
1240 if (!CD)
1241 return;
1242
1243 // All parameters are already in place except is_most_derived, which goes
1244 // after 'this' if it's variadic and last if it's not.
1245
1246 const CXXRecordDecl *Class = CD->getParent();
1247 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1248 if (Class->getNumVBases()) {
1249 if (FPT->isVariadic())
1250 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1251 else
1252 ArgTys.push_back(getContext().IntTy);
1253 }
1254 }
1255
EmitCXXDestructors(const CXXDestructorDecl * D)1256 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1257 // The TU defining a dtor is only guaranteed to emit a base destructor. All
1258 // other destructor variants are delegating thunks.
1259 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1260 }
1261
1262 CharUnits
getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD)1263 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1264 GD = GD.getCanonicalDecl();
1265 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1266
1267 GlobalDecl LookupGD = GD;
1268 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1269 // Complete destructors take a pointer to the complete object as a
1270 // parameter, thus don't need this adjustment.
1271 if (GD.getDtorType() == Dtor_Complete)
1272 return CharUnits();
1273
1274 // There's no Dtor_Base in vftable but it shares the this adjustment with
1275 // the deleting one, so look it up instead.
1276 LookupGD = GlobalDecl(DD, Dtor_Deleting);
1277 }
1278
1279 MicrosoftVTableContext::MethodVFTableLocation ML =
1280 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1281 CharUnits Adjustment = ML.VFPtrOffset;
1282
1283 // Normal virtual instance methods need to adjust from the vfptr that first
1284 // defined the virtual method to the virtual base subobject, but destructors
1285 // do not. The vector deleting destructor thunk applies this adjustment for
1286 // us if necessary.
1287 if (isa<CXXDestructorDecl>(MD))
1288 Adjustment = CharUnits::Zero();
1289
1290 if (ML.VBase) {
1291 const ASTRecordLayout &DerivedLayout =
1292 getContext().getASTRecordLayout(MD->getParent());
1293 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1294 }
1295
1296 return Adjustment;
1297 }
1298
adjustThisArgumentForVirtualFunctionCall(CodeGenFunction & CGF,GlobalDecl GD,Address This,bool VirtualCall)1299 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1300 CodeGenFunction &CGF, GlobalDecl GD, Address This,
1301 bool VirtualCall) {
1302 if (!VirtualCall) {
1303 // If the call of a virtual function is not virtual, we just have to
1304 // compensate for the adjustment the virtual function does in its prologue.
1305 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1306 if (Adjustment.isZero())
1307 return This;
1308
1309 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
1310 assert(Adjustment.isPositive());
1311 return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1312 }
1313
1314 GD = GD.getCanonicalDecl();
1315 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1316
1317 GlobalDecl LookupGD = GD;
1318 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1319 // Complete dtors take a pointer to the complete object,
1320 // thus don't need adjustment.
1321 if (GD.getDtorType() == Dtor_Complete)
1322 return This;
1323
1324 // There's only Dtor_Deleting in vftable but it shares the this adjustment
1325 // with the base one, so look up the deleting one instead.
1326 LookupGD = GlobalDecl(DD, Dtor_Deleting);
1327 }
1328 MicrosoftVTableContext::MethodVFTableLocation ML =
1329 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1330
1331 CharUnits StaticOffset = ML.VFPtrOffset;
1332
1333 // Base destructors expect 'this' to point to the beginning of the base
1334 // subobject, not the first vfptr that happens to contain the virtual dtor.
1335 // However, we still need to apply the virtual base adjustment.
1336 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1337 StaticOffset = CharUnits::Zero();
1338
1339 Address Result = This;
1340 if (ML.VBase) {
1341 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1342
1343 const CXXRecordDecl *Derived = MD->getParent();
1344 const CXXRecordDecl *VBase = ML.VBase;
1345 llvm::Value *VBaseOffset =
1346 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1347 llvm::Value *VBasePtr =
1348 CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
1349 CharUnits VBaseAlign =
1350 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1351 Result = Address(VBasePtr, VBaseAlign);
1352 }
1353 if (!StaticOffset.isZero()) {
1354 assert(StaticOffset.isPositive());
1355 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1356 if (ML.VBase) {
1357 // Non-virtual adjustment might result in a pointer outside the allocated
1358 // object, e.g. if the final overrider class is laid out after the virtual
1359 // base that declares a method in the most derived class.
1360 // FIXME: Update the code that emits this adjustment in thunks prologues.
1361 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1362 } else {
1363 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1364 }
1365 }
1366 return Result;
1367 }
1368
addImplicitStructorParams(CodeGenFunction & CGF,QualType & ResTy,FunctionArgList & Params)1369 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1370 QualType &ResTy,
1371 FunctionArgList &Params) {
1372 ASTContext &Context = getContext();
1373 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1374 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1375 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1376 ImplicitParamDecl *IsMostDerived
1377 = ImplicitParamDecl::Create(Context, nullptr,
1378 CGF.CurGD.getDecl()->getLocation(),
1379 &Context.Idents.get("is_most_derived"),
1380 Context.IntTy);
1381 // The 'most_derived' parameter goes second if the ctor is variadic and last
1382 // if it's not. Dtors can't be variadic.
1383 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1384 if (FPT->isVariadic())
1385 Params.insert(Params.begin() + 1, IsMostDerived);
1386 else
1387 Params.push_back(IsMostDerived);
1388 getStructorImplicitParamDecl(CGF) = IsMostDerived;
1389 } else if (isDeletingDtor(CGF.CurGD)) {
1390 ImplicitParamDecl *ShouldDelete
1391 = ImplicitParamDecl::Create(Context, nullptr,
1392 CGF.CurGD.getDecl()->getLocation(),
1393 &Context.Idents.get("should_call_delete"),
1394 Context.IntTy);
1395 Params.push_back(ShouldDelete);
1396 getStructorImplicitParamDecl(CGF) = ShouldDelete;
1397 }
1398 }
1399
adjustThisParameterInVirtualFunctionPrologue(CodeGenFunction & CGF,GlobalDecl GD,llvm::Value * This)1400 llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
1401 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
1402 // In this ABI, every virtual function takes a pointer to one of the
1403 // subobjects that first defines it as the 'this' parameter, rather than a
1404 // pointer to the final overrider subobject. Thus, we need to adjust it back
1405 // to the final overrider subobject before use.
1406 // See comments in the MicrosoftVFTableContext implementation for the details.
1407 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1408 if (Adjustment.isZero())
1409 return This;
1410
1411 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1412 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1413 *thisTy = This->getType();
1414
1415 This = CGF.Builder.CreateBitCast(This, charPtrTy);
1416 assert(Adjustment.isPositive());
1417 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1418 -Adjustment.getQuantity());
1419 return CGF.Builder.CreateBitCast(This, thisTy);
1420 }
1421
EmitInstanceFunctionProlog(CodeGenFunction & CGF)1422 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1423 EmitThisParam(CGF);
1424
1425 /// If this is a function that the ABI specifies returns 'this', initialize
1426 /// the return slot to 'this' at the start of the function.
1427 ///
1428 /// Unlike the setting of return types, this is done within the ABI
1429 /// implementation instead of by clients of CGCXXABI because:
1430 /// 1) getThisValue is currently protected
1431 /// 2) in theory, an ABI could implement 'this' returns some other way;
1432 /// HasThisReturn only specifies a contract, not the implementation
1433 if (HasThisReturn(CGF.CurGD))
1434 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1435 else if (hasMostDerivedReturn(CGF.CurGD))
1436 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1437 CGF.ReturnValue);
1438
1439 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1440 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1441 assert(getStructorImplicitParamDecl(CGF) &&
1442 "no implicit parameter for a constructor with virtual bases?");
1443 getStructorImplicitParamValue(CGF)
1444 = CGF.Builder.CreateLoad(
1445 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1446 "is_most_derived");
1447 }
1448
1449 if (isDeletingDtor(CGF.CurGD)) {
1450 assert(getStructorImplicitParamDecl(CGF) &&
1451 "no implicit parameter for a deleting destructor?");
1452 getStructorImplicitParamValue(CGF)
1453 = CGF.Builder.CreateLoad(
1454 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1455 "should_call_delete");
1456 }
1457 }
1458
addImplicitConstructorArgs(CodeGenFunction & CGF,const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,CallArgList & Args)1459 unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
1460 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1461 bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1462 assert(Type == Ctor_Complete || Type == Ctor_Base);
1463
1464 // Check if we need a 'most_derived' parameter.
1465 if (!D->getParent()->getNumVBases())
1466 return 0;
1467
1468 // Add the 'most_derived' argument second if we are variadic or last if not.
1469 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1470 llvm::Value *MostDerivedArg =
1471 llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1472 RValue RV = RValue::get(MostDerivedArg);
1473 if (MostDerivedArg) {
1474 if (FPT->isVariadic())
1475 Args.insert(Args.begin() + 1,
1476 CallArg(RV, getContext().IntTy, /*needscopy=*/false));
1477 else
1478 Args.add(RV, getContext().IntTy);
1479 }
1480
1481 return 1; // Added one arg.
1482 }
1483
EmitDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,Address This)1484 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1485 const CXXDestructorDecl *DD,
1486 CXXDtorType Type, bool ForVirtualBase,
1487 bool Delegating, Address This) {
1488 llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
1489
1490 if (DD->isVirtual()) {
1491 assert(Type != CXXDtorType::Dtor_Deleting &&
1492 "The deleting destructor should only be called via a virtual call");
1493 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1494 This, false);
1495 }
1496
1497 CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This.getPointer(),
1498 /*ImplicitParam=*/nullptr,
1499 /*ImplicitParamTy=*/QualType(), nullptr,
1500 getFromDtorType(Type));
1501 }
1502
emitVTableBitSetEntries(VPtrInfo * Info,const CXXRecordDecl * RD,llvm::GlobalVariable * VTable)1503 void MicrosoftCXXABI::emitVTableBitSetEntries(VPtrInfo *Info,
1504 const CXXRecordDecl *RD,
1505 llvm::GlobalVariable *VTable) {
1506 if (!getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIVCall) &&
1507 !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFINVCall) &&
1508 !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIDerivedCast) &&
1509 !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIUnrelatedCast))
1510 return;
1511
1512 llvm::NamedMDNode *BitsetsMD =
1513 CGM.getModule().getOrInsertNamedMetadata("llvm.bitsets");
1514
1515 // The location of the first virtual function pointer in the virtual table,
1516 // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1517 // disabled, or sizeof(void*) if RTTI is enabled.
1518 CharUnits AddressPoint =
1519 getContext().getLangOpts().RTTIData
1520 ? getContext().toCharUnitsFromBits(
1521 getContext().getTargetInfo().getPointerWidth(0))
1522 : CharUnits::Zero();
1523
1524 if (Info->PathToBaseWithVPtr.empty()) {
1525 if (!CGM.IsCFIBlacklistedRecord(RD))
1526 CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, RD);
1527 return;
1528 }
1529
1530 // Add a bitset entry for the least derived base belonging to this vftable.
1531 if (!CGM.IsCFIBlacklistedRecord(Info->PathToBaseWithVPtr.back()))
1532 CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint,
1533 Info->PathToBaseWithVPtr.back());
1534
1535 // Add a bitset entry for each derived class that is laid out at the same
1536 // offset as the least derived base.
1537 for (unsigned I = Info->PathToBaseWithVPtr.size() - 1; I != 0; --I) {
1538 const CXXRecordDecl *DerivedRD = Info->PathToBaseWithVPtr[I - 1];
1539 const CXXRecordDecl *BaseRD = Info->PathToBaseWithVPtr[I];
1540
1541 const ASTRecordLayout &Layout =
1542 getContext().getASTRecordLayout(DerivedRD);
1543 CharUnits Offset;
1544 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1545 if (VBI == Layout.getVBaseOffsetsMap().end())
1546 Offset = Layout.getBaseClassOffset(BaseRD);
1547 else
1548 Offset = VBI->second.VBaseOffset;
1549 if (!Offset.isZero())
1550 return;
1551 if (!CGM.IsCFIBlacklistedRecord(DerivedRD))
1552 CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, DerivedRD);
1553 }
1554
1555 // Finally do the same for the most derived class.
1556 if (Info->FullOffsetInMDC.isZero() && !CGM.IsCFIBlacklistedRecord(RD))
1557 CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, RD);
1558 }
1559
emitVTableDefinitions(CodeGenVTables & CGVT,const CXXRecordDecl * RD)1560 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1561 const CXXRecordDecl *RD) {
1562 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1563 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1564
1565 for (VPtrInfo *Info : VFPtrs) {
1566 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1567 if (VTable->hasInitializer())
1568 continue;
1569
1570 llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
1571 ? getMSCompleteObjectLocator(RD, Info)
1572 : nullptr;
1573
1574 const VTableLayout &VTLayout =
1575 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1576 llvm::Constant *Init = CGVT.CreateVTableInitializer(
1577 RD, VTLayout.vtable_component_begin(),
1578 VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
1579 VTLayout.getNumVTableThunks(), RTTI);
1580
1581 VTable->setInitializer(Init);
1582
1583 emitVTableBitSetEntries(Info, RD, VTable);
1584 }
1585 }
1586
isVirtualOffsetNeededForVTableField(CodeGenFunction & CGF,CodeGenFunction::VPtr Vptr)1587 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1588 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1589 return Vptr.NearestVBase != nullptr;
1590 }
1591
getVTableAddressPointInStructor(CodeGenFunction & CGF,const CXXRecordDecl * VTableClass,BaseSubobject Base,const CXXRecordDecl * NearestVBase)1592 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1593 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1594 const CXXRecordDecl *NearestVBase) {
1595 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1596 if (!VTableAddressPoint) {
1597 assert(Base.getBase()->getNumVBases() &&
1598 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1599 }
1600 return VTableAddressPoint;
1601 }
1602
mangleVFTableName(MicrosoftMangleContext & MangleContext,const CXXRecordDecl * RD,const VPtrInfo * VFPtr,SmallString<256> & Name)1603 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1604 const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
1605 SmallString<256> &Name) {
1606 llvm::raw_svector_ostream Out(Name);
1607 MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
1608 }
1609
1610 llvm::Constant *
getVTableAddressPoint(BaseSubobject Base,const CXXRecordDecl * VTableClass)1611 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1612 const CXXRecordDecl *VTableClass) {
1613 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1614 VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1615 return VFTablesMap[ID];
1616 }
1617
getVTableAddressPointForConstExpr(BaseSubobject Base,const CXXRecordDecl * VTableClass)1618 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1619 BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1620 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1621 assert(VFTable && "Couldn't find a vftable for the given base?");
1622 return VFTable;
1623 }
1624
getAddrOfVTable(const CXXRecordDecl * RD,CharUnits VPtrOffset)1625 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1626 CharUnits VPtrOffset) {
1627 // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1628 // shouldn't be used in the given record type. We want to cache this result in
1629 // VFTablesMap, thus a simple zero check is not sufficient.
1630
1631 VFTableIdTy ID(RD, VPtrOffset);
1632 VTablesMapTy::iterator I;
1633 bool Inserted;
1634 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1635 if (!Inserted)
1636 return I->second;
1637
1638 llvm::GlobalVariable *&VTable = I->second;
1639
1640 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1641 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1642
1643 if (DeferredVFTables.insert(RD).second) {
1644 // We haven't processed this record type before.
1645 // Queue up this v-table for possible deferred emission.
1646 CGM.addDeferredVTable(RD);
1647
1648 #ifndef NDEBUG
1649 // Create all the vftables at once in order to make sure each vftable has
1650 // a unique mangled name.
1651 llvm::StringSet<> ObservedMangledNames;
1652 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1653 SmallString<256> Name;
1654 mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
1655 if (!ObservedMangledNames.insert(Name.str()).second)
1656 llvm_unreachable("Already saw this mangling before?");
1657 }
1658 #endif
1659 }
1660
1661 VPtrInfo *const *VFPtrI =
1662 std::find_if(VFPtrs.begin(), VFPtrs.end(), [&](VPtrInfo *VPI) {
1663 return VPI->FullOffsetInMDC == VPtrOffset;
1664 });
1665 if (VFPtrI == VFPtrs.end()) {
1666 VFTablesMap[ID] = nullptr;
1667 return nullptr;
1668 }
1669 VPtrInfo *VFPtr = *VFPtrI;
1670
1671 SmallString<256> VFTableName;
1672 mangleVFTableName(getMangleContext(), RD, VFPtr, VFTableName);
1673
1674 llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
1675 bool VFTableComesFromAnotherTU =
1676 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1677 llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1678 bool VTableAliasIsRequred =
1679 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1680
1681 if (llvm::GlobalValue *VFTable =
1682 CGM.getModule().getNamedGlobal(VFTableName)) {
1683 VFTablesMap[ID] = VFTable;
1684 VTable = VTableAliasIsRequred
1685 ? cast<llvm::GlobalVariable>(
1686 cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
1687 : cast<llvm::GlobalVariable>(VFTable);
1688 return VTable;
1689 }
1690
1691 uint64_t NumVTableSlots =
1692 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC)
1693 .getNumVTableComponents();
1694 llvm::GlobalValue::LinkageTypes VTableLinkage =
1695 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1696
1697 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1698
1699 llvm::ArrayType *VTableType =
1700 llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
1701
1702 // Create a backing variable for the contents of VTable. The VTable may
1703 // or may not include space for a pointer to RTTI data.
1704 llvm::GlobalValue *VFTable;
1705 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1706 /*isConstant=*/true, VTableLinkage,
1707 /*Initializer=*/nullptr, VTableName);
1708 VTable->setUnnamedAddr(true);
1709
1710 llvm::Comdat *C = nullptr;
1711 if (!VFTableComesFromAnotherTU &&
1712 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1713 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1714 VTableAliasIsRequred)))
1715 C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1716
1717 // Only insert a pointer into the VFTable for RTTI data if we are not
1718 // importing it. We never reference the RTTI data directly so there is no
1719 // need to make room for it.
1720 if (VTableAliasIsRequred) {
1721 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
1722 llvm::ConstantInt::get(CGM.IntTy, 1)};
1723 // Create a GEP which points just after the first entry in the VFTable,
1724 // this should be the location of the first virtual method.
1725 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1726 VTable->getValueType(), VTable, GEPIndices);
1727 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1728 VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1729 if (C)
1730 C->setSelectionKind(llvm::Comdat::Largest);
1731 }
1732 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1733 /*AddressSpace=*/0, VFTableLinkage,
1734 VFTableName.str(), VTableGEP,
1735 &CGM.getModule());
1736 VFTable->setUnnamedAddr(true);
1737 } else {
1738 // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1739 // be referencing any RTTI data.
1740 // The GlobalVariable will end up being an appropriate definition of the
1741 // VFTable.
1742 VFTable = VTable;
1743 }
1744 if (C)
1745 VTable->setComdat(C);
1746
1747 if (RD->hasAttr<DLLImportAttr>())
1748 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1749 else if (RD->hasAttr<DLLExportAttr>())
1750 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1751
1752 VFTablesMap[ID] = VFTable;
1753 return VTable;
1754 }
1755
1756 // Compute the identity of the most derived class whose virtual table is located
1757 // at the given offset into RD.
getClassAtVTableLocation(ASTContext & Ctx,const CXXRecordDecl * RD,CharUnits Offset)1758 static const CXXRecordDecl *getClassAtVTableLocation(ASTContext &Ctx,
1759 const CXXRecordDecl *RD,
1760 CharUnits Offset) {
1761 if (Offset.isZero())
1762 return RD;
1763
1764 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
1765 const CXXRecordDecl *MaxBase = nullptr;
1766 CharUnits MaxBaseOffset;
1767 for (auto &&B : RD->bases()) {
1768 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
1769 CharUnits BaseOffset = Layout.getBaseClassOffset(Base);
1770 if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) {
1771 MaxBase = Base;
1772 MaxBaseOffset = BaseOffset;
1773 }
1774 }
1775 for (auto &&B : RD->vbases()) {
1776 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
1777 CharUnits BaseOffset = Layout.getVBaseClassOffset(Base);
1778 if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) {
1779 MaxBase = Base;
1780 MaxBaseOffset = BaseOffset;
1781 }
1782 }
1783 assert(MaxBase);
1784 return getClassAtVTableLocation(Ctx, MaxBase, Offset - MaxBaseOffset);
1785 }
1786
1787 // Compute the identity of the most derived class whose virtual table is located
1788 // at the MethodVFTableLocation ML.
1789 static const CXXRecordDecl *
getClassAtVTableLocation(ASTContext & Ctx,GlobalDecl GD,MicrosoftVTableContext::MethodVFTableLocation & ML)1790 getClassAtVTableLocation(ASTContext &Ctx, GlobalDecl GD,
1791 MicrosoftVTableContext::MethodVFTableLocation &ML) {
1792 const CXXRecordDecl *RD = ML.VBase;
1793 if (!RD)
1794 RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
1795
1796 return getClassAtVTableLocation(Ctx, RD, ML.VFPtrOffset);
1797 }
1798
getVirtualFunctionPointer(CodeGenFunction & CGF,GlobalDecl GD,Address This,llvm::Type * Ty,SourceLocation Loc)1799 llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1800 GlobalDecl GD,
1801 Address This,
1802 llvm::Type *Ty,
1803 SourceLocation Loc) {
1804 GD = GD.getCanonicalDecl();
1805 CGBuilderTy &Builder = CGF.Builder;
1806
1807 Ty = Ty->getPointerTo()->getPointerTo();
1808 Address VPtr =
1809 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1810
1811 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1812 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());
1813
1814 MicrosoftVTableContext::MethodVFTableLocation ML =
1815 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1816 if (CGF.SanOpts.has(SanitizerKind::CFIVCall))
1817 CGF.EmitVTablePtrCheck(getClassAtVTableLocation(getContext(), GD, ML),
1818 VTable, CodeGenFunction::CFITCK_VCall, Loc);
1819
1820 llvm::Value *VFuncPtr =
1821 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1822 return Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
1823 }
1824
EmitVirtualDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor,CXXDtorType DtorType,Address This,const CXXMemberCallExpr * CE)1825 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1826 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1827 Address This, const CXXMemberCallExpr *CE) {
1828 assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1829 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1830
1831 // We have only one destructor in the vftable but can get both behaviors
1832 // by passing an implicit int parameter.
1833 GlobalDecl GD(Dtor, Dtor_Deleting);
1834 const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
1835 Dtor, StructorType::Deleting);
1836 llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1837 llvm::Value *Callee = getVirtualFunctionPointer(
1838 CGF, GD, This, Ty, CE ? CE->getLocStart() : SourceLocation());
1839
1840 ASTContext &Context = getContext();
1841 llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1842 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1843 DtorType == Dtor_Deleting);
1844
1845 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1846 RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(),
1847 This.getPointer(),
1848 ImplicitParam, Context.IntTy, CE,
1849 StructorType::Deleting);
1850 return RV.getScalarVal();
1851 }
1852
1853 const VBTableGlobals &
enumerateVBTables(const CXXRecordDecl * RD)1854 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1855 // At this layer, we can key the cache off of a single class, which is much
1856 // easier than caching each vbtable individually.
1857 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1858 bool Added;
1859 std::tie(Entry, Added) =
1860 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1861 VBTableGlobals &VBGlobals = Entry->second;
1862 if (!Added)
1863 return VBGlobals;
1864
1865 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1866 VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1867
1868 // Cache the globals for all vbtables so we don't have to recompute the
1869 // mangled names.
1870 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1871 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1872 E = VBGlobals.VBTables->end();
1873 I != E; ++I) {
1874 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1875 }
1876
1877 return VBGlobals;
1878 }
1879
EmitVirtualMemPtrThunk(const CXXMethodDecl * MD,const MicrosoftVTableContext::MethodVFTableLocation & ML)1880 llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
1881 const CXXMethodDecl *MD,
1882 const MicrosoftVTableContext::MethodVFTableLocation &ML) {
1883 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1884 "can't form pointers to ctors or virtual dtors");
1885
1886 // Calculate the mangled name.
1887 SmallString<256> ThunkName;
1888 llvm::raw_svector_ostream Out(ThunkName);
1889 getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
1890
1891 // If the thunk has been generated previously, just return it.
1892 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1893 return cast<llvm::Function>(GV);
1894
1895 // Create the llvm::Function.
1896 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
1897 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1898 llvm::Function *ThunkFn =
1899 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1900 ThunkName.str(), &CGM.getModule());
1901 assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
1902
1903 ThunkFn->setLinkage(MD->isExternallyVisible()
1904 ? llvm::GlobalValue::LinkOnceODRLinkage
1905 : llvm::GlobalValue::InternalLinkage);
1906 if (MD->isExternallyVisible())
1907 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
1908
1909 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
1910 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
1911
1912 // Add the "thunk" attribute so that LLVM knows that the return type is
1913 // meaningless. These thunks can be used to call functions with differing
1914 // return types, and the caller is required to cast the prototype
1915 // appropriately to extract the correct value.
1916 ThunkFn->addFnAttr("thunk");
1917
1918 // These thunks can be compared, so they are not unnamed.
1919 ThunkFn->setUnnamedAddr(false);
1920
1921 // Start codegen.
1922 CodeGenFunction CGF(CGM);
1923 CGF.CurGD = GlobalDecl(MD);
1924 CGF.CurFuncIsThunk = true;
1925
1926 // Build FunctionArgs, but only include the implicit 'this' parameter
1927 // declaration.
1928 FunctionArgList FunctionArgs;
1929 buildThisParam(CGF, FunctionArgs);
1930
1931 // Start defining the function.
1932 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
1933 FunctionArgs, MD->getLocation(), SourceLocation());
1934 EmitThisParam(CGF);
1935
1936 // Load the vfptr and then callee from the vftable. The callee should have
1937 // adjusted 'this' so that the vfptr is at offset zero.
1938 llvm::Value *VTable = CGF.GetVTablePtr(
1939 getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());
1940
1941 llvm::Value *VFuncPtr =
1942 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1943 llvm::Value *Callee =
1944 CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
1945
1946 CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
1947
1948 return ThunkFn;
1949 }
1950
emitVirtualInheritanceTables(const CXXRecordDecl * RD)1951 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
1952 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1953 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1954 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1955 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1956 if (GV->isDeclaration())
1957 emitVBTableDefinition(*VBT, RD, GV);
1958 }
1959 }
1960
1961 llvm::GlobalVariable *
getAddrOfVBTable(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable::LinkageTypes Linkage)1962 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
1963 llvm::GlobalVariable::LinkageTypes Linkage) {
1964 SmallString<256> OutName;
1965 llvm::raw_svector_ostream Out(OutName);
1966 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
1967 StringRef Name = OutName.str();
1968
1969 llvm::ArrayType *VBTableType =
1970 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
1971
1972 assert(!CGM.getModule().getNamedGlobal(Name) &&
1973 "vbtable with this name already exists: mangling bug?");
1974 llvm::GlobalVariable *GV =
1975 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
1976 GV->setUnnamedAddr(true);
1977
1978 if (RD->hasAttr<DLLImportAttr>())
1979 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1980 else if (RD->hasAttr<DLLExportAttr>())
1981 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1982
1983 if (!GV->hasExternalLinkage())
1984 emitVBTableDefinition(VBT, RD, GV);
1985
1986 return GV;
1987 }
1988
emitVBTableDefinition(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable * GV) const1989 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
1990 const CXXRecordDecl *RD,
1991 llvm::GlobalVariable *GV) const {
1992 const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
1993
1994 assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
1995 "should only emit vbtables for classes with vbtables");
1996
1997 const ASTRecordLayout &BaseLayout =
1998 getContext().getASTRecordLayout(VBT.BaseWithVPtr);
1999 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2000
2001 SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
2002 nullptr);
2003
2004 // The offset from ReusingBase's vbptr to itself always leads.
2005 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2006 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2007
2008 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2009 for (const auto &I : ReusingBase->vbases()) {
2010 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2011 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2012 assert(!Offset.isNegative());
2013
2014 // Make it relative to the subobject vbptr.
2015 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2016 if (VBT.getVBaseWithVPtr())
2017 CompleteVBPtrOffset +=
2018 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2019 Offset -= CompleteVBPtrOffset;
2020
2021 unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
2022 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2023 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2024 }
2025
2026 assert(Offsets.size() ==
2027 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
2028 ->getElementType())->getNumElements());
2029 llvm::ArrayType *VBTableType =
2030 llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2031 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2032 GV->setInitializer(Init);
2033 }
2034
performThisAdjustment(CodeGenFunction & CGF,Address This,const ThisAdjustment & TA)2035 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2036 Address This,
2037 const ThisAdjustment &TA) {
2038 if (TA.isEmpty())
2039 return This.getPointer();
2040
2041 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
2042
2043 llvm::Value *V;
2044 if (TA.Virtual.isEmpty()) {
2045 V = This.getPointer();
2046 } else {
2047 assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2048 // Adjust the this argument based on the vtordisp value.
2049 Address VtorDispPtr =
2050 CGF.Builder.CreateConstInBoundsByteGEP(This,
2051 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2052 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
2053 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2054 V = CGF.Builder.CreateGEP(This.getPointer(),
2055 CGF.Builder.CreateNeg(VtorDisp));
2056
2057 // Unfortunately, having applied the vtordisp means that we no
2058 // longer really have a known alignment for the vbptr step.
2059 // We'll assume the vbptr is pointer-aligned.
2060
2061 if (TA.Virtual.Microsoft.VBPtrOffset) {
2062 // If the final overrider is defined in a virtual base other than the one
2063 // that holds the vfptr, we have to use a vtordispex thunk which looks up
2064 // the vbtable of the derived class.
2065 assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2066 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2067 llvm::Value *VBPtr;
2068 llvm::Value *VBaseOffset =
2069 GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
2070 -TA.Virtual.Microsoft.VBPtrOffset,
2071 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2072 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2073 }
2074 }
2075
2076 if (TA.NonVirtual) {
2077 // Non-virtual adjustment might result in a pointer outside the allocated
2078 // object, e.g. if the final overrider class is laid out after the virtual
2079 // base that declares a method in the most derived class.
2080 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
2081 }
2082
2083 // Don't need to bitcast back, the call CodeGen will handle this.
2084 return V;
2085 }
2086
2087 llvm::Value *
performReturnAdjustment(CodeGenFunction & CGF,Address Ret,const ReturnAdjustment & RA)2088 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2089 const ReturnAdjustment &RA) {
2090 if (RA.isEmpty())
2091 return Ret.getPointer();
2092
2093 auto OrigTy = Ret.getType();
2094 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
2095
2096 llvm::Value *V = Ret.getPointer();
2097 if (RA.Virtual.Microsoft.VBIndex) {
2098 assert(RA.Virtual.Microsoft.VBIndex > 0);
2099 int32_t IntSize = CGF.getIntSize().getQuantity();
2100 llvm::Value *VBPtr;
2101 llvm::Value *VBaseOffset =
2102 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2103 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2104 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2105 }
2106
2107 if (RA.NonVirtual)
2108 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2109
2110 // Cast back to the original type.
2111 return CGF.Builder.CreateBitCast(V, OrigTy);
2112 }
2113
requiresArrayCookie(const CXXDeleteExpr * expr,QualType elementType)2114 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2115 QualType elementType) {
2116 // Microsoft seems to completely ignore the possibility of a
2117 // two-argument usual deallocation function.
2118 return elementType.isDestructedType();
2119 }
2120
requiresArrayCookie(const CXXNewExpr * expr)2121 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2122 // Microsoft seems to completely ignore the possibility of a
2123 // two-argument usual deallocation function.
2124 return expr->getAllocatedType().isDestructedType();
2125 }
2126
getArrayCookieSizeImpl(QualType type)2127 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2128 // The array cookie is always a size_t; we then pad that out to the
2129 // alignment of the element type.
2130 ASTContext &Ctx = getContext();
2131 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2132 Ctx.getTypeAlignInChars(type));
2133 }
2134
readArrayCookieImpl(CodeGenFunction & CGF,Address allocPtr,CharUnits cookieSize)2135 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2136 Address allocPtr,
2137 CharUnits cookieSize) {
2138 Address numElementsPtr =
2139 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
2140 return CGF.Builder.CreateLoad(numElementsPtr);
2141 }
2142
InitializeArrayCookie(CodeGenFunction & CGF,Address newPtr,llvm::Value * numElements,const CXXNewExpr * expr,QualType elementType)2143 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2144 Address newPtr,
2145 llvm::Value *numElements,
2146 const CXXNewExpr *expr,
2147 QualType elementType) {
2148 assert(requiresArrayCookie(expr));
2149
2150 // The size of the cookie.
2151 CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2152
2153 // Compute an offset to the cookie.
2154 Address cookiePtr = newPtr;
2155
2156 // Write the number of elements into the appropriate slot.
2157 Address numElementsPtr
2158 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
2159 CGF.Builder.CreateStore(numElements, numElementsPtr);
2160
2161 // Finally, compute a pointer to the actual data buffer by skipping
2162 // over the cookie completely.
2163 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2164 }
2165
emitGlobalDtorWithTLRegDtor(CodeGenFunction & CGF,const VarDecl & VD,llvm::Constant * Dtor,llvm::Constant * Addr)2166 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2167 llvm::Constant *Dtor,
2168 llvm::Constant *Addr) {
2169 // Create a function which calls the destructor.
2170 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2171
2172 // extern "C" int __tlregdtor(void (*f)(void));
2173 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2174 CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
2175
2176 llvm::Constant *TLRegDtor =
2177 CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
2178 if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
2179 TLRegDtorFn->setDoesNotThrow();
2180
2181 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2182 }
2183
registerGlobalDtor(CodeGenFunction & CGF,const VarDecl & D,llvm::Constant * Dtor,llvm::Constant * Addr)2184 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2185 llvm::Constant *Dtor,
2186 llvm::Constant *Addr) {
2187 if (D.getTLSKind())
2188 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2189
2190 // The default behavior is to use atexit.
2191 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2192 }
2193
EmitThreadLocalInitFuncs(CodeGenModule & CGM,ArrayRef<const VarDecl * > CXXThreadLocals,ArrayRef<llvm::Function * > CXXThreadLocalInits,ArrayRef<const VarDecl * > CXXThreadLocalInitVars)2194 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2195 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2196 ArrayRef<llvm::Function *> CXXThreadLocalInits,
2197 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2198 // This will create a GV in the .CRT$XDU section. It will point to our
2199 // initialization function. The CRT will call all of these function
2200 // pointers at start-up time and, eventually, at thread-creation time.
2201 auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2202 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2203 CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
2204 llvm::GlobalVariable::InternalLinkage, InitFunc,
2205 Twine(InitFunc->getName(), "$initializer$"));
2206 InitFuncPtr->setSection(".CRT$XDU");
2207 // This variable has discardable linkage, we have to add it to @llvm.used to
2208 // ensure it won't get discarded.
2209 CGM.addUsedGlobal(InitFuncPtr);
2210 return InitFuncPtr;
2211 };
2212
2213 std::vector<llvm::Function *> NonComdatInits;
2214 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2215 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2216 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2217 llvm::Function *F = CXXThreadLocalInits[I];
2218
2219 // If the GV is already in a comdat group, then we have to join it.
2220 if (llvm::Comdat *C = GV->getComdat())
2221 AddToXDU(F)->setComdat(C);
2222 else
2223 NonComdatInits.push_back(F);
2224 }
2225
2226 if (!NonComdatInits.empty()) {
2227 llvm::FunctionType *FTy =
2228 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2229 llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
2230 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2231 SourceLocation(), /*TLS=*/true);
2232 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2233
2234 AddToXDU(InitFunc);
2235 }
2236 }
2237
EmitThreadLocalVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType LValType)2238 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2239 const VarDecl *VD,
2240 QualType LValType) {
2241 CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
2242 return LValue();
2243 }
2244
getInitThreadEpochPtr(CodeGenModule & CGM)2245 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2246 StringRef VarName("_Init_thread_epoch");
2247 CharUnits Align = CGM.getIntAlign();
2248 if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2249 return ConstantAddress(GV, Align);
2250 auto *GV = new llvm::GlobalVariable(
2251 CGM.getModule(), CGM.IntTy,
2252 /*Constant=*/false, llvm::GlobalVariable::ExternalLinkage,
2253 /*Initializer=*/nullptr, VarName,
2254 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2255 GV->setAlignment(Align.getQuantity());
2256 return ConstantAddress(GV, Align);
2257 }
2258
getInitThreadHeaderFn(CodeGenModule & CGM)2259 static llvm::Constant *getInitThreadHeaderFn(CodeGenModule &CGM) {
2260 llvm::FunctionType *FTy =
2261 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2262 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2263 return CGM.CreateRuntimeFunction(
2264 FTy, "_Init_thread_header",
2265 llvm::AttributeSet::get(CGM.getLLVMContext(),
2266 llvm::AttributeSet::FunctionIndex,
2267 llvm::Attribute::NoUnwind));
2268 }
2269
getInitThreadFooterFn(CodeGenModule & CGM)2270 static llvm::Constant *getInitThreadFooterFn(CodeGenModule &CGM) {
2271 llvm::FunctionType *FTy =
2272 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2273 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2274 return CGM.CreateRuntimeFunction(
2275 FTy, "_Init_thread_footer",
2276 llvm::AttributeSet::get(CGM.getLLVMContext(),
2277 llvm::AttributeSet::FunctionIndex,
2278 llvm::Attribute::NoUnwind));
2279 }
2280
getInitThreadAbortFn(CodeGenModule & CGM)2281 static llvm::Constant *getInitThreadAbortFn(CodeGenModule &CGM) {
2282 llvm::FunctionType *FTy =
2283 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2284 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2285 return CGM.CreateRuntimeFunction(
2286 FTy, "_Init_thread_abort",
2287 llvm::AttributeSet::get(CGM.getLLVMContext(),
2288 llvm::AttributeSet::FunctionIndex,
2289 llvm::Attribute::NoUnwind));
2290 }
2291
2292 namespace {
2293 struct ResetGuardBit final : EHScopeStack::Cleanup {
2294 Address Guard;
2295 unsigned GuardNum;
ResetGuardBit__anone5681bf50511::ResetGuardBit2296 ResetGuardBit(Address Guard, unsigned GuardNum)
2297 : Guard(Guard), GuardNum(GuardNum) {}
2298
Emit__anone5681bf50511::ResetGuardBit2299 void Emit(CodeGenFunction &CGF, Flags flags) override {
2300 // Reset the bit in the mask so that the static variable may be
2301 // reinitialized.
2302 CGBuilderTy &Builder = CGF.Builder;
2303 llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2304 llvm::ConstantInt *Mask =
2305 llvm::ConstantInt::get(CGF.IntTy, ~(1U << GuardNum));
2306 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2307 }
2308 };
2309
2310 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2311 llvm::Value *Guard;
CallInitThreadAbort__anone5681bf50511::CallInitThreadAbort2312 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2313
Emit__anone5681bf50511::CallInitThreadAbort2314 void Emit(CodeGenFunction &CGF, Flags flags) override {
2315 // Calling _Init_thread_abort will reset the guard's state.
2316 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2317 }
2318 };
2319 }
2320
EmitGuardedInit(CodeGenFunction & CGF,const VarDecl & D,llvm::GlobalVariable * GV,bool PerformInit)2321 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2322 llvm::GlobalVariable *GV,
2323 bool PerformInit) {
2324 // MSVC only uses guards for static locals.
2325 if (!D.isStaticLocal()) {
2326 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2327 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2328 llvm::Function *F = CGF.CurFn;
2329 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2330 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2331 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2332 return;
2333 }
2334
2335 bool ThreadlocalStatic = D.getTLSKind();
2336 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2337
2338 // Thread-safe static variables which aren't thread-specific have a
2339 // per-variable guard.
2340 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2341
2342 CGBuilderTy &Builder = CGF.Builder;
2343 llvm::IntegerType *GuardTy = CGF.Int32Ty;
2344 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2345 CharUnits GuardAlign = CharUnits::fromQuantity(4);
2346
2347 // Get the guard variable for this function if we have one already.
2348 GuardInfo *GI = nullptr;
2349 if (ThreadlocalStatic)
2350 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2351 else if (!ThreadsafeStatic)
2352 GI = &GuardVariableMap[D.getDeclContext()];
2353
2354 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2355 unsigned GuardNum;
2356 if (D.isExternallyVisible()) {
2357 // Externally visible variables have to be numbered in Sema to properly
2358 // handle unreachable VarDecls.
2359 GuardNum = getContext().getStaticLocalNumber(&D);
2360 assert(GuardNum > 0);
2361 GuardNum--;
2362 } else if (HasPerVariableGuard) {
2363 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2364 } else {
2365 // Non-externally visible variables are numbered here in CodeGen.
2366 GuardNum = GI->BitIndex++;
2367 }
2368
2369 if (!HasPerVariableGuard && GuardNum >= 32) {
2370 if (D.isExternallyVisible())
2371 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2372 GuardNum %= 32;
2373 GuardVar = nullptr;
2374 }
2375
2376 if (!GuardVar) {
2377 // Mangle the name for the guard.
2378 SmallString<256> GuardName;
2379 {
2380 llvm::raw_svector_ostream Out(GuardName);
2381 if (HasPerVariableGuard)
2382 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2383 Out);
2384 else
2385 getMangleContext().mangleStaticGuardVariable(&D, Out);
2386 }
2387
2388 // Create the guard variable with a zero-initializer. Just absorb linkage,
2389 // visibility and dll storage class from the guarded variable.
2390 GuardVar =
2391 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2392 GV->getLinkage(), Zero, GuardName.str());
2393 GuardVar->setVisibility(GV->getVisibility());
2394 GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2395 GuardVar->setAlignment(GuardAlign.getQuantity());
2396 if (GuardVar->isWeakForLinker())
2397 GuardVar->setComdat(
2398 CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2399 if (D.getTLSKind())
2400 GuardVar->setThreadLocal(true);
2401 if (GI && !HasPerVariableGuard)
2402 GI->Guard = GuardVar;
2403 }
2404
2405 ConstantAddress GuardAddr(GuardVar, GuardAlign);
2406
2407 assert(GuardVar->getLinkage() == GV->getLinkage() &&
2408 "static local from the same function had different linkage");
2409
2410 if (!HasPerVariableGuard) {
2411 // Pseudo code for the test:
2412 // if (!(GuardVar & MyGuardBit)) {
2413 // GuardVar |= MyGuardBit;
2414 // ... initialize the object ...;
2415 // }
2416
2417 // Test our bit from the guard variable.
2418 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << GuardNum);
2419 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2420 llvm::Value *IsInitialized =
2421 Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
2422 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2423 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2424 Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
2425
2426 // Set our bit in the guard variable and emit the initializer and add a global
2427 // destructor if appropriate.
2428 CGF.EmitBlock(InitBlock);
2429 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2430 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2431 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2432 CGF.PopCleanupBlock();
2433 Builder.CreateBr(EndBlock);
2434
2435 // Continue.
2436 CGF.EmitBlock(EndBlock);
2437 } else {
2438 // Pseudo code for the test:
2439 // if (TSS > _Init_thread_epoch) {
2440 // _Init_thread_header(&TSS);
2441 // if (TSS == -1) {
2442 // ... initialize the object ...;
2443 // _Init_thread_footer(&TSS);
2444 // }
2445 // }
2446 //
2447 // The algorithm is almost identical to what can be found in the appendix
2448 // found in N2325.
2449
2450 // This BasicBLock determines whether or not we have any work to do.
2451 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2452 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2453 llvm::LoadInst *InitThreadEpoch =
2454 Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2455 llvm::Value *IsUninitialized =
2456 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2457 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2458 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2459 Builder.CreateCondBr(IsUninitialized, AttemptInitBlock, EndBlock);
2460
2461 // This BasicBlock attempts to determine whether or not this thread is
2462 // responsible for doing the initialization.
2463 CGF.EmitBlock(AttemptInitBlock);
2464 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2465 GuardAddr.getPointer());
2466 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2467 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2468 llvm::Value *ShouldDoInit =
2469 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2470 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2471 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2472
2473 // Ok, we ended up getting selected as the initializing thread.
2474 CGF.EmitBlock(InitBlock);
2475 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2476 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2477 CGF.PopCleanupBlock();
2478 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2479 GuardAddr.getPointer());
2480 Builder.CreateBr(EndBlock);
2481
2482 CGF.EmitBlock(EndBlock);
2483 }
2484 }
2485
isZeroInitializable(const MemberPointerType * MPT)2486 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2487 // Null-ness for function memptrs only depends on the first field, which is
2488 // the function pointer. The rest don't matter, so we can zero initialize.
2489 if (MPT->isMemberFunctionPointer())
2490 return true;
2491
2492 // The virtual base adjustment field is always -1 for null, so if we have one
2493 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a
2494 // valid field offset.
2495 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2496 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2497 return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
2498 RD->nullFieldOffsetIsZero());
2499 }
2500
2501 llvm::Type *
ConvertMemberPointerType(const MemberPointerType * MPT)2502 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2503 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2504 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2505 llvm::SmallVector<llvm::Type *, 4> fields;
2506 if (MPT->isMemberFunctionPointer())
2507 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk
2508 else
2509 fields.push_back(CGM.IntTy); // FieldOffset
2510
2511 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2512 Inheritance))
2513 fields.push_back(CGM.IntTy);
2514 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2515 fields.push_back(CGM.IntTy);
2516 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2517 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset
2518
2519 if (fields.size() == 1)
2520 return fields[0];
2521 return llvm::StructType::get(CGM.getLLVMContext(), fields);
2522 }
2523
2524 void MicrosoftCXXABI::
GetNullMemberPointerFields(const MemberPointerType * MPT,llvm::SmallVectorImpl<llvm::Constant * > & fields)2525 GetNullMemberPointerFields(const MemberPointerType *MPT,
2526 llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2527 assert(fields.empty());
2528 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2529 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2530 if (MPT->isMemberFunctionPointer()) {
2531 // FunctionPointerOrVirtualThunk
2532 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2533 } else {
2534 if (RD->nullFieldOffsetIsZero())
2535 fields.push_back(getZeroInt()); // FieldOffset
2536 else
2537 fields.push_back(getAllOnesInt()); // FieldOffset
2538 }
2539
2540 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2541 Inheritance))
2542 fields.push_back(getZeroInt());
2543 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2544 fields.push_back(getZeroInt());
2545 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2546 fields.push_back(getAllOnesInt());
2547 }
2548
2549 llvm::Constant *
EmitNullMemberPointer(const MemberPointerType * MPT)2550 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2551 llvm::SmallVector<llvm::Constant *, 4> fields;
2552 GetNullMemberPointerFields(MPT, fields);
2553 if (fields.size() == 1)
2554 return fields[0];
2555 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2556 assert(Res->getType() == ConvertMemberPointerType(MPT));
2557 return Res;
2558 }
2559
2560 llvm::Constant *
EmitFullMemberPointer(llvm::Constant * FirstField,bool IsMemberFunction,const CXXRecordDecl * RD,CharUnits NonVirtualBaseAdjustment,unsigned VBTableIndex)2561 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2562 bool IsMemberFunction,
2563 const CXXRecordDecl *RD,
2564 CharUnits NonVirtualBaseAdjustment,
2565 unsigned VBTableIndex) {
2566 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2567
2568 // Single inheritance class member pointer are represented as scalars instead
2569 // of aggregates.
2570 if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
2571 return FirstField;
2572
2573 llvm::SmallVector<llvm::Constant *, 4> fields;
2574 fields.push_back(FirstField);
2575
2576 if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
2577 fields.push_back(llvm::ConstantInt::get(
2578 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2579
2580 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
2581 CharUnits Offs = CharUnits::Zero();
2582 if (VBTableIndex)
2583 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2584 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2585 }
2586
2587 // The rest of the fields are adjusted by conversions to a more derived class.
2588 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2589 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2590
2591 return llvm::ConstantStruct::getAnon(fields);
2592 }
2593
2594 llvm::Constant *
EmitMemberDataPointer(const MemberPointerType * MPT,CharUnits offset)2595 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2596 CharUnits offset) {
2597 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2598 if (RD->getMSInheritanceModel() ==
2599 MSInheritanceAttr::Keyword_virtual_inheritance)
2600 offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2601 llvm::Constant *FirstField =
2602 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2603 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2604 CharUnits::Zero(), /*VBTableIndex=*/0);
2605 }
2606
EmitMemberPointer(const APValue & MP,QualType MPType)2607 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2608 QualType MPType) {
2609 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2610 const ValueDecl *MPD = MP.getMemberPointerDecl();
2611 if (!MPD)
2612 return EmitNullMemberPointer(DstTy);
2613
2614 ASTContext &Ctx = getContext();
2615 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2616
2617 llvm::Constant *C;
2618 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2619 C = EmitMemberFunctionPointer(MD);
2620 } else {
2621 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2622 C = EmitMemberDataPointer(DstTy, FieldOffset);
2623 }
2624
2625 if (!MemberPointerPath.empty()) {
2626 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2627 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2628 const MemberPointerType *SrcTy =
2629 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2630 ->castAs<MemberPointerType>();
2631
2632 bool DerivedMember = MP.isMemberPointerToDerivedMember();
2633 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2634 const CXXRecordDecl *PrevRD = SrcRD;
2635 for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2636 const CXXRecordDecl *Base = nullptr;
2637 const CXXRecordDecl *Derived = nullptr;
2638 if (DerivedMember) {
2639 Base = PathElem;
2640 Derived = PrevRD;
2641 } else {
2642 Base = PrevRD;
2643 Derived = PathElem;
2644 }
2645 for (const CXXBaseSpecifier &BS : Derived->bases())
2646 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2647 Base->getCanonicalDecl())
2648 DerivedToBasePath.push_back(&BS);
2649 PrevRD = PathElem;
2650 }
2651 assert(DerivedToBasePath.size() == MemberPointerPath.size());
2652
2653 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2654 : CK_BaseToDerivedMemberPointer;
2655 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2656 DerivedToBasePath.end(), C);
2657 }
2658 return C;
2659 }
2660
2661 llvm::Constant *
EmitMemberFunctionPointer(const CXXMethodDecl * MD)2662 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2663 assert(MD->isInstance() && "Member function must not be static!");
2664
2665 MD = MD->getCanonicalDecl();
2666 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2667 const CXXRecordDecl *RD = MD->getParent()->getMostRecentDecl();
2668 CodeGenTypes &Types = CGM.getTypes();
2669
2670 unsigned VBTableIndex = 0;
2671 llvm::Constant *FirstField;
2672 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2673 if (!MD->isVirtual()) {
2674 llvm::Type *Ty;
2675 // Check whether the function has a computable LLVM signature.
2676 if (Types.isFuncTypeConvertible(FPT)) {
2677 // The function has a computable LLVM signature; use the correct type.
2678 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2679 } else {
2680 // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2681 // function type is incomplete.
2682 Ty = CGM.PtrDiffTy;
2683 }
2684 FirstField = CGM.GetAddrOfFunction(MD, Ty);
2685 } else {
2686 auto &VTableContext = CGM.getMicrosoftVTableContext();
2687 MicrosoftVTableContext::MethodVFTableLocation ML =
2688 VTableContext.getMethodVFTableLocation(MD);
2689 FirstField = EmitVirtualMemPtrThunk(MD, ML);
2690 // Include the vfptr adjustment if the method is in a non-primary vftable.
2691 NonVirtualBaseAdjustment += ML.VFPtrOffset;
2692 if (ML.VBase)
2693 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2694 }
2695
2696 if (VBTableIndex == 0 &&
2697 RD->getMSInheritanceModel() ==
2698 MSInheritanceAttr::Keyword_virtual_inheritance)
2699 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2700
2701 // The rest of the fields are common with data member pointers.
2702 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2703 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2704 NonVirtualBaseAdjustment, VBTableIndex);
2705 }
2706
2707 /// Member pointers are the same if they're either bitwise identical *or* both
2708 /// null. Null-ness for function members is determined by the first field,
2709 /// while for data member pointers we must compare all fields.
2710 llvm::Value *
EmitMemberPointerComparison(CodeGenFunction & CGF,llvm::Value * L,llvm::Value * R,const MemberPointerType * MPT,bool Inequality)2711 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2712 llvm::Value *L,
2713 llvm::Value *R,
2714 const MemberPointerType *MPT,
2715 bool Inequality) {
2716 CGBuilderTy &Builder = CGF.Builder;
2717
2718 // Handle != comparisons by switching the sense of all boolean operations.
2719 llvm::ICmpInst::Predicate Eq;
2720 llvm::Instruction::BinaryOps And, Or;
2721 if (Inequality) {
2722 Eq = llvm::ICmpInst::ICMP_NE;
2723 And = llvm::Instruction::Or;
2724 Or = llvm::Instruction::And;
2725 } else {
2726 Eq = llvm::ICmpInst::ICMP_EQ;
2727 And = llvm::Instruction::And;
2728 Or = llvm::Instruction::Or;
2729 }
2730
2731 // If this is a single field member pointer (single inheritance), this is a
2732 // single icmp.
2733 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2734 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2735 if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
2736 Inheritance))
2737 return Builder.CreateICmp(Eq, L, R);
2738
2739 // Compare the first field.
2740 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2741 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2742 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2743
2744 // Compare everything other than the first field.
2745 llvm::Value *Res = nullptr;
2746 llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2747 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2748 llvm::Value *LF = Builder.CreateExtractValue(L, I);
2749 llvm::Value *RF = Builder.CreateExtractValue(R, I);
2750 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2751 if (Res)
2752 Res = Builder.CreateBinOp(And, Res, Cmp);
2753 else
2754 Res = Cmp;
2755 }
2756
2757 // Check if the first field is 0 if this is a function pointer.
2758 if (MPT->isMemberFunctionPointer()) {
2759 // (l1 == r1 && ...) || l0 == 0
2760 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2761 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2762 Res = Builder.CreateBinOp(Or, Res, IsZero);
2763 }
2764
2765 // Combine the comparison of the first field, which must always be true for
2766 // this comparison to succeeed.
2767 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2768 }
2769
2770 llvm::Value *
EmitMemberPointerIsNotNull(CodeGenFunction & CGF,llvm::Value * MemPtr,const MemberPointerType * MPT)2771 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2772 llvm::Value *MemPtr,
2773 const MemberPointerType *MPT) {
2774 CGBuilderTy &Builder = CGF.Builder;
2775 llvm::SmallVector<llvm::Constant *, 4> fields;
2776 // We only need one field for member functions.
2777 if (MPT->isMemberFunctionPointer())
2778 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2779 else
2780 GetNullMemberPointerFields(MPT, fields);
2781 assert(!fields.empty());
2782 llvm::Value *FirstField = MemPtr;
2783 if (MemPtr->getType()->isStructTy())
2784 FirstField = Builder.CreateExtractValue(MemPtr, 0);
2785 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2786
2787 // For function member pointers, we only need to test the function pointer
2788 // field. The other fields if any can be garbage.
2789 if (MPT->isMemberFunctionPointer())
2790 return Res;
2791
2792 // Otherwise, emit a series of compares and combine the results.
2793 for (int I = 1, E = fields.size(); I < E; ++I) {
2794 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2795 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2796 Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2797 }
2798 return Res;
2799 }
2800
MemberPointerConstantIsNull(const MemberPointerType * MPT,llvm::Constant * Val)2801 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2802 llvm::Constant *Val) {
2803 // Function pointers are null if the pointer in the first field is null.
2804 if (MPT->isMemberFunctionPointer()) {
2805 llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2806 Val->getAggregateElement(0U) : Val;
2807 return FirstField->isNullValue();
2808 }
2809
2810 // If it's not a function pointer and it's zero initializable, we can easily
2811 // check zero.
2812 if (isZeroInitializable(MPT) && Val->isNullValue())
2813 return true;
2814
2815 // Otherwise, break down all the fields for comparison. Hopefully these
2816 // little Constants are reused, while a big null struct might not be.
2817 llvm::SmallVector<llvm::Constant *, 4> Fields;
2818 GetNullMemberPointerFields(MPT, Fields);
2819 if (Fields.size() == 1) {
2820 assert(Val->getType()->isIntegerTy());
2821 return Val == Fields[0];
2822 }
2823
2824 unsigned I, E;
2825 for (I = 0, E = Fields.size(); I != E; ++I) {
2826 if (Val->getAggregateElement(I) != Fields[I])
2827 break;
2828 }
2829 return I == E;
2830 }
2831
2832 llvm::Value *
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,Address This,llvm::Value * VBPtrOffset,llvm::Value * VBTableOffset,llvm::Value ** VBPtrOut)2833 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2834 Address This,
2835 llvm::Value *VBPtrOffset,
2836 llvm::Value *VBTableOffset,
2837 llvm::Value **VBPtrOut) {
2838 CGBuilderTy &Builder = CGF.Builder;
2839 // Load the vbtable pointer from the vbptr in the instance.
2840 This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
2841 llvm::Value *VBPtr =
2842 Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
2843 if (VBPtrOut) *VBPtrOut = VBPtr;
2844 VBPtr = Builder.CreateBitCast(VBPtr,
2845 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
2846
2847 CharUnits VBPtrAlign;
2848 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
2849 VBPtrAlign = This.getAlignment().alignmentAtOffset(
2850 CharUnits::fromQuantity(CI->getSExtValue()));
2851 } else {
2852 VBPtrAlign = CGF.getPointerAlign();
2853 }
2854
2855 llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");
2856
2857 // Translate from byte offset to table index. It improves analyzability.
2858 llvm::Value *VBTableIndex = Builder.CreateAShr(
2859 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2860 "vbtindex", /*isExact=*/true);
2861
2862 // Load an i32 offset from the vb-table.
2863 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2864 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2865 return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
2866 "vbase_offs");
2867 }
2868
2869 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
2870 // it.
AdjustVirtualBase(CodeGenFunction & CGF,const Expr * E,const CXXRecordDecl * RD,Address Base,llvm::Value * VBTableOffset,llvm::Value * VBPtrOffset)2871 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
2872 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
2873 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
2874 CGBuilderTy &Builder = CGF.Builder;
2875 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
2876 llvm::BasicBlock *OriginalBB = nullptr;
2877 llvm::BasicBlock *SkipAdjustBB = nullptr;
2878 llvm::BasicBlock *VBaseAdjustBB = nullptr;
2879
2880 // In the unspecified inheritance model, there might not be a vbtable at all,
2881 // in which case we need to skip the virtual base lookup. If there is a
2882 // vbtable, the first entry is a no-op entry that gives back the original
2883 // base, so look for a virtual base adjustment offset of zero.
2884 if (VBPtrOffset) {
2885 OriginalBB = Builder.GetInsertBlock();
2886 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
2887 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
2888 llvm::Value *IsVirtual =
2889 Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
2890 "memptr.is_vbase");
2891 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
2892 CGF.EmitBlock(VBaseAdjustBB);
2893 }
2894
2895 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
2896 // know the vbptr offset.
2897 if (!VBPtrOffset) {
2898 CharUnits offs = CharUnits::Zero();
2899 if (!RD->hasDefinition()) {
2900 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
2901 unsigned DiagID = Diags.getCustomDiagID(
2902 DiagnosticsEngine::Error,
2903 "member pointer representation requires a "
2904 "complete class type for %0 to perform this expression");
2905 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
2906 } else if (RD->getNumVBases())
2907 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2908 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
2909 }
2910 llvm::Value *VBPtr = nullptr;
2911 llvm::Value *VBaseOffs =
2912 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
2913 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
2914
2915 // Merge control flow with the case where we didn't have to adjust.
2916 if (VBaseAdjustBB) {
2917 Builder.CreateBr(SkipAdjustBB);
2918 CGF.EmitBlock(SkipAdjustBB);
2919 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
2920 Phi->addIncoming(Base.getPointer(), OriginalBB);
2921 Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
2922 return Phi;
2923 }
2924 return AdjustedBase;
2925 }
2926
EmitMemberDataPointerAddress(CodeGenFunction & CGF,const Expr * E,Address Base,llvm::Value * MemPtr,const MemberPointerType * MPT)2927 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
2928 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
2929 const MemberPointerType *MPT) {
2930 assert(MPT->isMemberDataPointer());
2931 unsigned AS = Base.getAddressSpace();
2932 llvm::Type *PType =
2933 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
2934 CGBuilderTy &Builder = CGF.Builder;
2935 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2936 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2937
2938 // Extract the fields we need, regardless of model. We'll apply them if we
2939 // have them.
2940 llvm::Value *FieldOffset = MemPtr;
2941 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2942 llvm::Value *VBPtrOffset = nullptr;
2943 if (MemPtr->getType()->isStructTy()) {
2944 // We need to extract values.
2945 unsigned I = 0;
2946 FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
2947 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2948 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2949 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2950 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2951 }
2952
2953 llvm::Value *Addr;
2954 if (VirtualBaseAdjustmentOffset) {
2955 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
2956 VBPtrOffset);
2957 } else {
2958 Addr = Base.getPointer();
2959 }
2960
2961 // Cast to char*.
2962 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
2963
2964 // Apply the offset, which we assume is non-null.
2965 Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");
2966
2967 // Cast the address to the appropriate pointer type, adopting the address
2968 // space of the base pointer.
2969 return Builder.CreateBitCast(Addr, PType);
2970 }
2971
2972 llvm::Value *
EmitMemberPointerConversion(CodeGenFunction & CGF,const CastExpr * E,llvm::Value * Src)2973 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
2974 const CastExpr *E,
2975 llvm::Value *Src) {
2976 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
2977 E->getCastKind() == CK_BaseToDerivedMemberPointer ||
2978 E->getCastKind() == CK_ReinterpretMemberPointer);
2979
2980 // Use constant emission if we can.
2981 if (isa<llvm::Constant>(Src))
2982 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
2983
2984 // We may be adding or dropping fields from the member pointer, so we need
2985 // both types and the inheritance models of both records.
2986 const MemberPointerType *SrcTy =
2987 E->getSubExpr()->getType()->castAs<MemberPointerType>();
2988 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2989 bool IsFunc = SrcTy->isMemberFunctionPointer();
2990
2991 // If the classes use the same null representation, reinterpret_cast is a nop.
2992 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
2993 if (IsReinterpret && IsFunc)
2994 return Src;
2995
2996 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
2997 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
2998 if (IsReinterpret &&
2999 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3000 return Src;
3001
3002 CGBuilderTy &Builder = CGF.Builder;
3003
3004 // Branch past the conversion if Src is null.
3005 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3006 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3007
3008 // C++ 5.2.10p9: The null member pointer value is converted to the null member
3009 // pointer value of the destination type.
3010 if (IsReinterpret) {
3011 // For reinterpret casts, sema ensures that src and dst are both functions
3012 // or data and have the same size, which means the LLVM types should match.
3013 assert(Src->getType() == DstNull->getType());
3014 return Builder.CreateSelect(IsNotNull, Src, DstNull);
3015 }
3016
3017 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3018 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3019 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3020 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3021 CGF.EmitBlock(ConvertBB);
3022
3023 llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3024 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3025 Builder);
3026
3027 Builder.CreateBr(ContinueBB);
3028
3029 // In the continuation, choose between DstNull and Dst.
3030 CGF.EmitBlock(ContinueBB);
3031 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3032 Phi->addIncoming(DstNull, OriginalBB);
3033 Phi->addIncoming(Dst, ConvertBB);
3034 return Phi;
3035 }
3036
EmitNonNullMemberPointerConversion(const MemberPointerType * SrcTy,const MemberPointerType * DstTy,CastKind CK,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,llvm::Value * Src,CGBuilderTy & Builder)3037 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3038 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3039 CastExpr::path_const_iterator PathBegin,
3040 CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3041 CGBuilderTy &Builder) {
3042 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3043 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3044 MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
3045 MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
3046 bool IsFunc = SrcTy->isMemberFunctionPointer();
3047 bool IsConstant = isa<llvm::Constant>(Src);
3048
3049 // Decompose src.
3050 llvm::Value *FirstField = Src;
3051 llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3052 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3053 llvm::Value *VBPtrOffset = getZeroInt();
3054 if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
3055 // We need to extract values.
3056 unsigned I = 0;
3057 FirstField = Builder.CreateExtractValue(Src, I++);
3058 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
3059 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3060 if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
3061 VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3062 if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
3063 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3064 }
3065
3066 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3067 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3068 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3069
3070 // For data pointers, we adjust the field offset directly. For functions, we
3071 // have a separate field.
3072 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3073
3074 // The virtual inheritance model has a quirk: the virtual base table is always
3075 // referenced when dereferencing a member pointer even if the member pointer
3076 // is non-virtual. This is accounted for by adjusting the non-virtual offset
3077 // to point backwards to the top of the MDC from the first VBase. Undo this
3078 // adjustment to normalize the member pointer.
3079 llvm::Value *SrcVBIndexEqZero =
3080 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3081 if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
3082 if (int64_t SrcOffsetToFirstVBase =
3083 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3084 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3085 SrcVBIndexEqZero,
3086 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3087 getZeroInt());
3088 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3089 }
3090 }
3091
3092 // A non-zero vbindex implies that we are dealing with a source member in a
3093 // floating virtual base in addition to some non-virtual offset. If the
3094 // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3095 // fixed, base. The difference between these two cases is that the vbindex +
3096 // nvoffset *always* point to the member regardless of what context they are
3097 // evaluated in so long as the vbindex is adjusted. A member inside a fixed
3098 // base requires explicit nv adjustment.
3099 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3100 CGM.IntTy,
3101 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3102 .getQuantity());
3103
3104 llvm::Value *NVDisp;
3105 if (IsDerivedToBase)
3106 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3107 else
3108 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3109
3110 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3111
3112 // Update the vbindex to an appropriate value in the destination because
3113 // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3114 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3115 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) &&
3116 MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) {
3117 if (llvm::GlobalVariable *VDispMap =
3118 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3119 llvm::Value *VBIndex = Builder.CreateExactUDiv(
3120 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3121 if (IsConstant) {
3122 llvm::Constant *Mapping = VDispMap->getInitializer();
3123 VirtualBaseAdjustmentOffset =
3124 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3125 } else {
3126 llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3127 VirtualBaseAdjustmentOffset =
3128 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
3129 CharUnits::fromQuantity(4));
3130 }
3131
3132 DstVBIndexEqZero =
3133 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3134 }
3135 }
3136
3137 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize
3138 // it to the offset of the vbptr.
3139 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) {
3140 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3141 CGM.IntTy,
3142 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3143 VBPtrOffset =
3144 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3145 }
3146
3147 // Likewise, apply a similar adjustment so that dereferencing the member
3148 // pointer correctly accounts for the distance between the start of the first
3149 // virtual base and the top of the MDC.
3150 if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
3151 if (int64_t DstOffsetToFirstVBase =
3152 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3153 llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3154 DstVBIndexEqZero,
3155 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3156 getZeroInt());
3157 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3158 }
3159 }
3160
3161 // Recompose dst from the null struct and the adjusted fields from src.
3162 llvm::Value *Dst;
3163 if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
3164 Dst = FirstField;
3165 } else {
3166 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3167 unsigned Idx = 0;
3168 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3169 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
3170 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3171 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
3172 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3173 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
3174 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3175 }
3176 return Dst;
3177 }
3178
3179 llvm::Constant *
EmitMemberPointerConversion(const CastExpr * E,llvm::Constant * Src)3180 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3181 llvm::Constant *Src) {
3182 const MemberPointerType *SrcTy =
3183 E->getSubExpr()->getType()->castAs<MemberPointerType>();
3184 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3185
3186 CastKind CK = E->getCastKind();
3187
3188 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3189 E->path_end(), Src);
3190 }
3191
EmitMemberPointerConversion(const MemberPointerType * SrcTy,const MemberPointerType * DstTy,CastKind CK,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,llvm::Constant * Src)3192 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3193 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3194 CastExpr::path_const_iterator PathBegin,
3195 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3196 assert(CK == CK_DerivedToBaseMemberPointer ||
3197 CK == CK_BaseToDerivedMemberPointer ||
3198 CK == CK_ReinterpretMemberPointer);
3199 // If src is null, emit a new null for dst. We can't return src because dst
3200 // might have a new representation.
3201 if (MemberPointerConstantIsNull(SrcTy, Src))
3202 return EmitNullMemberPointer(DstTy);
3203
3204 // We don't need to do anything for reinterpret_casts of non-null member
3205 // pointers. We should only get here when the two type representations have
3206 // the same size.
3207 if (CK == CK_ReinterpretMemberPointer)
3208 return Src;
3209
3210 CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3211 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3212 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3213
3214 return Dst;
3215 }
3216
EmitLoadOfMemberFunctionPointer(CodeGenFunction & CGF,const Expr * E,Address This,llvm::Value * & ThisPtrForCall,llvm::Value * MemPtr,const MemberPointerType * MPT)3217 llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3218 CodeGenFunction &CGF, const Expr *E, Address This,
3219 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3220 const MemberPointerType *MPT) {
3221 assert(MPT->isMemberFunctionPointer());
3222 const FunctionProtoType *FPT =
3223 MPT->getPointeeType()->castAs<FunctionProtoType>();
3224 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3225 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
3226 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
3227 CGBuilderTy &Builder = CGF.Builder;
3228
3229 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
3230
3231 // Extract the fields we need, regardless of model. We'll apply them if we
3232 // have them.
3233 llvm::Value *FunctionPointer = MemPtr;
3234 llvm::Value *NonVirtualBaseAdjustment = nullptr;
3235 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3236 llvm::Value *VBPtrOffset = nullptr;
3237 if (MemPtr->getType()->isStructTy()) {
3238 // We need to extract values.
3239 unsigned I = 0;
3240 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3241 if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
3242 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3243 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
3244 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3245 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
3246 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3247 }
3248
3249 if (VirtualBaseAdjustmentOffset) {
3250 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3251 VirtualBaseAdjustmentOffset, VBPtrOffset);
3252 } else {
3253 ThisPtrForCall = This.getPointer();
3254 }
3255
3256 if (NonVirtualBaseAdjustment) {
3257 // Apply the adjustment and cast back to the original struct type.
3258 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
3259 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
3260 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
3261 "this.adjusted");
3262 }
3263
3264 return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
3265 }
3266
CreateMicrosoftCXXABI(CodeGenModule & CGM)3267 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3268 return new MicrosoftCXXABI(CGM);
3269 }
3270
3271 // MS RTTI Overview:
3272 // The run time type information emitted by cl.exe contains 5 distinct types of
3273 // structures. Many of them reference each other.
3274 //
3275 // TypeInfo: Static classes that are returned by typeid.
3276 //
3277 // CompleteObjectLocator: Referenced by vftables. They contain information
3278 // required for dynamic casting, including OffsetFromTop. They also contain
3279 // a reference to the TypeInfo for the type and a reference to the
3280 // CompleteHierarchyDescriptor for the type.
3281 //
3282 // ClassHieararchyDescriptor: Contains information about a class hierarchy.
3283 // Used during dynamic_cast to walk a class hierarchy. References a base
3284 // class array and the size of said array.
3285 //
3286 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is
3287 // somewhat of a misnomer because the most derived class is also in the list
3288 // as well as multiple copies of virtual bases (if they occur multiple times
3289 // in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for
3290 // every path in the hierarchy, in pre-order depth first order. Note, we do
3291 // not declare a specific llvm type for BaseClassArray, it's merely an array
3292 // of BaseClassDescriptor pointers.
3293 //
3294 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
3295 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3296 // BaseClassArray is. It contains information about a class within a
3297 // hierarchy such as: is this base is ambiguous and what is its offset in the
3298 // vbtable. The names of the BaseClassDescriptors have all of their fields
3299 // mangled into them so they can be aggressively deduplicated by the linker.
3300
getTypeInfoVTable(CodeGenModule & CGM)3301 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3302 StringRef MangledName("\01??_7type_info@@6B@");
3303 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3304 return VTable;
3305 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3306 /*Constant=*/true,
3307 llvm::GlobalVariable::ExternalLinkage,
3308 /*Initializer=*/nullptr, MangledName);
3309 }
3310
3311 namespace {
3312
3313 /// \brief A Helper struct that stores information about a class in a class
3314 /// hierarchy. The information stored in these structs struct is used during
3315 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3316 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3317 // implicit depth first pre-order tree connectivity. getFirstChild and
3318 // getNextSibling allow us to walk the tree efficiently.
3319 struct MSRTTIClass {
3320 enum {
3321 IsPrivateOnPath = 1 | 8,
3322 IsAmbiguous = 2,
3323 IsPrivate = 4,
3324 IsVirtual = 16,
3325 HasHierarchyDescriptor = 64
3326 };
MSRTTIClass__anone5681bf50611::MSRTTIClass3327 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3328 uint32_t initialize(const MSRTTIClass *Parent,
3329 const CXXBaseSpecifier *Specifier);
3330
getFirstChild__anone5681bf50611::MSRTTIClass3331 MSRTTIClass *getFirstChild() { return this + 1; }
getNextChild__anone5681bf50611::MSRTTIClass3332 static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3333 return Child + 1 + Child->NumBases;
3334 }
3335
3336 const CXXRecordDecl *RD, *VirtualRoot;
3337 uint32_t Flags, NumBases, OffsetInVBase;
3338 };
3339
3340 /// \brief Recursively initialize the base class array.
initialize(const MSRTTIClass * Parent,const CXXBaseSpecifier * Specifier)3341 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3342 const CXXBaseSpecifier *Specifier) {
3343 Flags = HasHierarchyDescriptor;
3344 if (!Parent) {
3345 VirtualRoot = nullptr;
3346 OffsetInVBase = 0;
3347 } else {
3348 if (Specifier->getAccessSpecifier() != AS_public)
3349 Flags |= IsPrivate | IsPrivateOnPath;
3350 if (Specifier->isVirtual()) {
3351 Flags |= IsVirtual;
3352 VirtualRoot = RD;
3353 OffsetInVBase = 0;
3354 } else {
3355 if (Parent->Flags & IsPrivateOnPath)
3356 Flags |= IsPrivateOnPath;
3357 VirtualRoot = Parent->VirtualRoot;
3358 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3359 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3360 }
3361 }
3362 NumBases = 0;
3363 MSRTTIClass *Child = getFirstChild();
3364 for (const CXXBaseSpecifier &Base : RD->bases()) {
3365 NumBases += Child->initialize(this, &Base) + 1;
3366 Child = getNextChild(Child);
3367 }
3368 return NumBases;
3369 }
3370
getLinkageForRTTI(QualType Ty)3371 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3372 switch (Ty->getLinkage()) {
3373 case NoLinkage:
3374 case InternalLinkage:
3375 case UniqueExternalLinkage:
3376 return llvm::GlobalValue::InternalLinkage;
3377
3378 case VisibleNoLinkage:
3379 case ExternalLinkage:
3380 return llvm::GlobalValue::LinkOnceODRLinkage;
3381 }
3382 llvm_unreachable("Invalid linkage!");
3383 }
3384
3385 /// \brief An ephemeral helper class for building MS RTTI types. It caches some
3386 /// calls to the module and information about the most derived class in a
3387 /// hierarchy.
3388 struct MSRTTIBuilder {
3389 enum {
3390 HasBranchingHierarchy = 1,
3391 HasVirtualBranchingHierarchy = 2,
3392 HasAmbiguousBases = 4
3393 };
3394
MSRTTIBuilder__anone5681bf50611::MSRTTIBuilder3395 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3396 : CGM(ABI.CGM), Context(CGM.getContext()),
3397 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3398 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3399 ABI(ABI) {}
3400
3401 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3402 llvm::GlobalVariable *
3403 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3404 llvm::GlobalVariable *getClassHierarchyDescriptor();
3405 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
3406
3407 CodeGenModule &CGM;
3408 ASTContext &Context;
3409 llvm::LLVMContext &VMContext;
3410 llvm::Module &Module;
3411 const CXXRecordDecl *RD;
3412 llvm::GlobalVariable::LinkageTypes Linkage;
3413 MicrosoftCXXABI &ABI;
3414 };
3415
3416 } // namespace
3417
3418 /// \brief Recursively serializes a class hierarchy in pre-order depth first
3419 /// order.
serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> & Classes,const CXXRecordDecl * RD)3420 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3421 const CXXRecordDecl *RD) {
3422 Classes.push_back(MSRTTIClass(RD));
3423 for (const CXXBaseSpecifier &Base : RD->bases())
3424 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3425 }
3426
3427 /// \brief Find ambiguity among base classes.
3428 static void
detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> & Classes)3429 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3430 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3431 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3432 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3433 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3434 if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3435 !VirtualBases.insert(Class->RD).second) {
3436 Class = MSRTTIClass::getNextChild(Class);
3437 continue;
3438 }
3439 if (!UniqueBases.insert(Class->RD).second)
3440 AmbiguousBases.insert(Class->RD);
3441 Class++;
3442 }
3443 if (AmbiguousBases.empty())
3444 return;
3445 for (MSRTTIClass &Class : Classes)
3446 if (AmbiguousBases.count(Class.RD))
3447 Class.Flags |= MSRTTIClass::IsAmbiguous;
3448 }
3449
getClassHierarchyDescriptor()3450 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3451 SmallString<256> MangledName;
3452 {
3453 llvm::raw_svector_ostream Out(MangledName);
3454 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3455 }
3456
3457 // Check to see if we've already declared this ClassHierarchyDescriptor.
3458 if (auto CHD = Module.getNamedGlobal(MangledName))
3459 return CHD;
3460
3461 // Serialize the class hierarchy and initialize the CHD Fields.
3462 SmallVector<MSRTTIClass, 8> Classes;
3463 serializeClassHierarchy(Classes, RD);
3464 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3465 detectAmbiguousBases(Classes);
3466 int Flags = 0;
3467 for (auto Class : Classes) {
3468 if (Class.RD->getNumBases() > 1)
3469 Flags |= HasBranchingHierarchy;
3470 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We
3471 // believe the field isn't actually used.
3472 if (Class.Flags & MSRTTIClass::IsAmbiguous)
3473 Flags |= HasAmbiguousBases;
3474 }
3475 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3476 Flags |= HasVirtualBranchingHierarchy;
3477 // These gep indices are used to get the address of the first element of the
3478 // base class array.
3479 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3480 llvm::ConstantInt::get(CGM.IntTy, 0)};
3481
3482 // Forward-declare the class hierarchy descriptor
3483 auto Type = ABI.getClassHierarchyDescriptorType();
3484 auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3485 /*Initializer=*/nullptr,
3486 MangledName);
3487 if (CHD->isWeakForLinker())
3488 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3489
3490 auto *Bases = getBaseClassArray(Classes);
3491
3492 // Initialize the base class ClassHierarchyDescriptor.
3493 llvm::Constant *Fields[] = {
3494 llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
3495 llvm::ConstantInt::get(CGM.IntTy, Flags),
3496 llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3497 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3498 Bases->getValueType(), Bases,
3499 llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3500 };
3501 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3502 return CHD;
3503 }
3504
3505 llvm::GlobalVariable *
getBaseClassArray(SmallVectorImpl<MSRTTIClass> & Classes)3506 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3507 SmallString<256> MangledName;
3508 {
3509 llvm::raw_svector_ostream Out(MangledName);
3510 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3511 }
3512
3513 // Forward-declare the base class array.
3514 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3515 // mode) bytes of padding. We provide a pointer sized amount of padding by
3516 // adding +1 to Classes.size(). The sections have pointer alignment and are
3517 // marked pick-any so it shouldn't matter.
3518 llvm::Type *PtrType = ABI.getImageRelativeType(
3519 ABI.getBaseClassDescriptorType()->getPointerTo());
3520 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3521 auto *BCA =
3522 new llvm::GlobalVariable(Module, ArrType,
3523 /*Constant=*/true, Linkage,
3524 /*Initializer=*/nullptr, MangledName);
3525 if (BCA->isWeakForLinker())
3526 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3527
3528 // Initialize the BaseClassArray.
3529 SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3530 for (MSRTTIClass &Class : Classes)
3531 BaseClassArrayData.push_back(
3532 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3533 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3534 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3535 return BCA;
3536 }
3537
3538 llvm::GlobalVariable *
getBaseClassDescriptor(const MSRTTIClass & Class)3539 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3540 // Compute the fields for the BaseClassDescriptor. They are computed up front
3541 // because they are mangled into the name of the object.
3542 uint32_t OffsetInVBTable = 0;
3543 int32_t VBPtrOffset = -1;
3544 if (Class.VirtualRoot) {
3545 auto &VTableContext = CGM.getMicrosoftVTableContext();
3546 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3547 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3548 }
3549
3550 SmallString<256> MangledName;
3551 {
3552 llvm::raw_svector_ostream Out(MangledName);
3553 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3554 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3555 Class.Flags, Out);
3556 }
3557
3558 // Check to see if we've already declared this object.
3559 if (auto BCD = Module.getNamedGlobal(MangledName))
3560 return BCD;
3561
3562 // Forward-declare the base class descriptor.
3563 auto Type = ABI.getBaseClassDescriptorType();
3564 auto BCD =
3565 new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3566 /*Initializer=*/nullptr, MangledName);
3567 if (BCD->isWeakForLinker())
3568 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3569
3570 // Initialize the BaseClassDescriptor.
3571 llvm::Constant *Fields[] = {
3572 ABI.getImageRelativeConstant(
3573 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3574 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3575 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3576 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3577 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3578 llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3579 ABI.getImageRelativeConstant(
3580 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3581 };
3582 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3583 return BCD;
3584 }
3585
3586 llvm::GlobalVariable *
getCompleteObjectLocator(const VPtrInfo * Info)3587 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
3588 SmallString<256> MangledName;
3589 {
3590 llvm::raw_svector_ostream Out(MangledName);
3591 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
3592 }
3593
3594 // Check to see if we've already computed this complete object locator.
3595 if (auto COL = Module.getNamedGlobal(MangledName))
3596 return COL;
3597
3598 // Compute the fields of the complete object locator.
3599 int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
3600 int VFPtrOffset = 0;
3601 // The offset includes the vtordisp if one exists.
3602 if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
3603 if (Context.getASTRecordLayout(RD)
3604 .getVBaseOffsetsMap()
3605 .find(VBase)
3606 ->second.hasVtorDisp())
3607 VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
3608
3609 // Forward-declare the complete object locator.
3610 llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3611 auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3612 /*Initializer=*/nullptr, MangledName);
3613
3614 // Initialize the CompleteObjectLocator.
3615 llvm::Constant *Fields[] = {
3616 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3617 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3618 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3619 ABI.getImageRelativeConstant(
3620 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3621 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3622 ABI.getImageRelativeConstant(COL),
3623 };
3624 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3625 if (!ABI.isImageRelative())
3626 FieldsRef = FieldsRef.drop_back();
3627 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3628 if (COL->isWeakForLinker())
3629 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3630 return COL;
3631 }
3632
decomposeTypeForEH(ASTContext & Context,QualType T,bool & IsConst,bool & IsVolatile)3633 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3634 bool &IsConst, bool &IsVolatile) {
3635 T = Context.getExceptionObjectType(T);
3636
3637 // C++14 [except.handle]p3:
3638 // A handler is a match for an exception object of type E if [...]
3639 // - the handler is of type cv T or const T& where T is a pointer type and
3640 // E is a pointer type that can be converted to T by [...]
3641 // - a qualification conversion
3642 IsConst = false;
3643 IsVolatile = false;
3644 QualType PointeeType = T->getPointeeType();
3645 if (!PointeeType.isNull()) {
3646 IsConst = PointeeType.isConstQualified();
3647 IsVolatile = PointeeType.isVolatileQualified();
3648 }
3649
3650 // Member pointer types like "const int A::*" are represented by having RTTI
3651 // for "int A::*" and separately storing the const qualifier.
3652 if (const auto *MPTy = T->getAs<MemberPointerType>())
3653 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3654 MPTy->getClass());
3655
3656 // Pointer types like "const int * const *" are represented by having RTTI
3657 // for "const int **" and separately storing the const qualifier.
3658 if (T->isPointerType())
3659 T = Context.getPointerType(PointeeType.getUnqualifiedType());
3660
3661 return T;
3662 }
3663
3664 CatchTypeInfo
getAddrOfCXXCatchHandlerType(QualType Type,QualType CatchHandlerType)3665 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3666 QualType CatchHandlerType) {
3667 // TypeDescriptors for exceptions never have qualified pointer types,
3668 // qualifiers are stored seperately in order to support qualification
3669 // conversions.
3670 bool IsConst, IsVolatile;
3671 Type = decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile);
3672
3673 bool IsReference = CatchHandlerType->isReferenceType();
3674
3675 uint32_t Flags = 0;
3676 if (IsConst)
3677 Flags |= 1;
3678 if (IsVolatile)
3679 Flags |= 2;
3680 if (IsReference)
3681 Flags |= 8;
3682
3683 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3684 Flags};
3685 }
3686
3687 /// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a
3688 /// llvm::GlobalVariable * because different type descriptors have different
3689 /// types, and need to be abstracted. They are abstracting by casting the
3690 /// address to an Int8PtrTy.
getAddrOfRTTIDescriptor(QualType Type)3691 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3692 SmallString<256> MangledName;
3693 {
3694 llvm::raw_svector_ostream Out(MangledName);
3695 getMangleContext().mangleCXXRTTI(Type, Out);
3696 }
3697
3698 // Check to see if we've already declared this TypeDescriptor.
3699 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3700 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3701
3702 // Compute the fields for the TypeDescriptor.
3703 SmallString<256> TypeInfoString;
3704 {
3705 llvm::raw_svector_ostream Out(TypeInfoString);
3706 getMangleContext().mangleCXXRTTIName(Type, Out);
3707 }
3708
3709 // Declare and initialize the TypeDescriptor.
3710 llvm::Constant *Fields[] = {
3711 getTypeInfoVTable(CGM), // VFPtr
3712 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3713 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3714 llvm::StructType *TypeDescriptorType =
3715 getTypeDescriptorType(TypeInfoString);
3716 auto *Var = new llvm::GlobalVariable(
3717 CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
3718 getLinkageForRTTI(Type),
3719 llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3720 MangledName);
3721 if (Var->isWeakForLinker())
3722 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
3723 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
3724 }
3725
3726 /// \brief Gets or a creates a Microsoft CompleteObjectLocator.
3727 llvm::GlobalVariable *
getMSCompleteObjectLocator(const CXXRecordDecl * RD,const VPtrInfo * Info)3728 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3729 const VPtrInfo *Info) {
3730 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3731 }
3732
emitCXXConstructor(CodeGenModule & CGM,const CXXConstructorDecl * ctor,StructorType ctorType)3733 static void emitCXXConstructor(CodeGenModule &CGM,
3734 const CXXConstructorDecl *ctor,
3735 StructorType ctorType) {
3736 // There are no constructor variants, always emit the complete destructor.
3737 llvm::Function *Fn = CGM.codegenCXXStructor(ctor, StructorType::Complete);
3738 CGM.maybeSetTrivialComdat(*ctor, *Fn);
3739 }
3740
emitCXXDestructor(CodeGenModule & CGM,const CXXDestructorDecl * dtor,StructorType dtorType)3741 static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
3742 StructorType dtorType) {
3743 // The complete destructor is equivalent to the base destructor for
3744 // classes with no virtual bases, so try to emit it as an alias.
3745 if (!dtor->getParent()->getNumVBases() &&
3746 (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
3747 bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
3748 GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
3749 if (ProducedAlias) {
3750 if (dtorType == StructorType::Complete)
3751 return;
3752 if (dtor->isVirtual())
3753 CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
3754 }
3755 }
3756
3757 // The base destructor is equivalent to the base destructor of its
3758 // base class if there is exactly one non-virtual base class with a
3759 // non-trivial destructor, there are no fields with a non-trivial
3760 // destructor, and the body of the destructor is trivial.
3761 if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3762 return;
3763
3764 llvm::Function *Fn = CGM.codegenCXXStructor(dtor, dtorType);
3765 if (Fn->isWeakForLinker())
3766 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
3767 }
3768
emitCXXStructor(const CXXMethodDecl * MD,StructorType Type)3769 void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
3770 StructorType Type) {
3771 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
3772 emitCXXConstructor(CGM, CD, Type);
3773 return;
3774 }
3775 emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
3776 }
3777
3778 llvm::Function *
getAddrOfCXXCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)3779 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
3780 CXXCtorType CT) {
3781 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
3782
3783 // Calculate the mangled name.
3784 SmallString<256> ThunkName;
3785 llvm::raw_svector_ostream Out(ThunkName);
3786 getMangleContext().mangleCXXCtor(CD, CT, Out);
3787
3788 // If the thunk has been generated previously, just return it.
3789 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
3790 return cast<llvm::Function>(GV);
3791
3792 // Create the llvm::Function.
3793 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
3794 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
3795 const CXXRecordDecl *RD = CD->getParent();
3796 QualType RecordTy = getContext().getRecordType(RD);
3797 llvm::Function *ThunkFn = llvm::Function::Create(
3798 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
3799 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
3800 FnInfo.getEffectiveCallingConvention()));
3801 if (ThunkFn->isWeakForLinker())
3802 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
3803 bool IsCopy = CT == Ctor_CopyingClosure;
3804
3805 // Start codegen.
3806 CodeGenFunction CGF(CGM);
3807 CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
3808
3809 // Build FunctionArgs.
3810 FunctionArgList FunctionArgs;
3811
3812 // A constructor always starts with a 'this' pointer as its first argument.
3813 buildThisParam(CGF, FunctionArgs);
3814
3815 // Following the 'this' pointer is a reference to the source object that we
3816 // are copying from.
3817 ImplicitParamDecl SrcParam(
3818 getContext(), nullptr, SourceLocation(), &getContext().Idents.get("src"),
3819 getContext().getLValueReferenceType(RecordTy,
3820 /*SpelledAsLValue=*/true));
3821 if (IsCopy)
3822 FunctionArgs.push_back(&SrcParam);
3823
3824 // Constructors for classes which utilize virtual bases have an additional
3825 // parameter which indicates whether or not it is being delegated to by a more
3826 // derived constructor.
3827 ImplicitParamDecl IsMostDerived(getContext(), nullptr, SourceLocation(),
3828 &getContext().Idents.get("is_most_derived"),
3829 getContext().IntTy);
3830 // Only add the parameter to the list if thie class has virtual bases.
3831 if (RD->getNumVBases() > 0)
3832 FunctionArgs.push_back(&IsMostDerived);
3833
3834 // Start defining the function.
3835 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
3836 FunctionArgs, CD->getLocation(), SourceLocation());
3837 EmitThisParam(CGF);
3838 llvm::Value *This = getThisValue(CGF);
3839
3840 llvm::Value *SrcVal =
3841 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
3842 : nullptr;
3843
3844 CallArgList Args;
3845
3846 // Push the this ptr.
3847 Args.add(RValue::get(This), CD->getThisType(getContext()));
3848
3849 // Push the src ptr.
3850 if (SrcVal)
3851 Args.add(RValue::get(SrcVal), SrcParam.getType());
3852
3853 // Add the rest of the default arguments.
3854 std::vector<Stmt *> ArgVec;
3855 for (unsigned I = IsCopy ? 1 : 0, E = CD->getNumParams(); I != E; ++I) {
3856 Stmt *DefaultArg = getContext().getDefaultArgExprForConstructor(CD, I);
3857 assert(DefaultArg && "sema forgot to instantiate default args");
3858 ArgVec.push_back(DefaultArg);
3859 }
3860
3861 CodeGenFunction::RunCleanupsScope Cleanups(CGF);
3862
3863 const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
3864 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
3865
3866 // Insert any ABI-specific implicit constructor arguments.
3867 unsigned ExtraArgs = addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
3868 /*ForVirtualBase=*/false,
3869 /*Delegating=*/false, Args);
3870
3871 // Call the destructor with our arguments.
3872 llvm::Value *CalleeFn = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
3873 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
3874 Args, CD, Ctor_Complete, ExtraArgs);
3875 CGF.EmitCall(CalleeInfo, CalleeFn, ReturnValueSlot(), Args, CD);
3876
3877 Cleanups.ForceCleanup();
3878
3879 // Emit the ret instruction, remove any temporary instructions created for the
3880 // aid of CodeGen.
3881 CGF.FinishFunction(SourceLocation());
3882
3883 return ThunkFn;
3884 }
3885
getCatchableType(QualType T,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBIndex)3886 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
3887 uint32_t NVOffset,
3888 int32_t VBPtrOffset,
3889 uint32_t VBIndex) {
3890 assert(!T->isReferenceType());
3891
3892 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
3893 const CXXConstructorDecl *CD =
3894 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
3895 CXXCtorType CT = Ctor_Complete;
3896 if (CD)
3897 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
3898 CT = Ctor_CopyingClosure;
3899
3900 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
3901 SmallString<256> MangledName;
3902 {
3903 llvm::raw_svector_ostream Out(MangledName);
3904 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
3905 VBPtrOffset, VBIndex, Out);
3906 }
3907 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3908 return getImageRelativeConstant(GV);
3909
3910 // The TypeDescriptor is used by the runtime to determine if a catch handler
3911 // is appropriate for the exception object.
3912 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
3913
3914 // The runtime is responsible for calling the copy constructor if the
3915 // exception is caught by value.
3916 llvm::Constant *CopyCtor;
3917 if (CD) {
3918 if (CT == Ctor_CopyingClosure)
3919 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
3920 else
3921 CopyCtor = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
3922
3923 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
3924 } else {
3925 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
3926 }
3927 CopyCtor = getImageRelativeConstant(CopyCtor);
3928
3929 bool IsScalar = !RD;
3930 bool HasVirtualBases = false;
3931 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
3932 QualType PointeeType = T;
3933 if (T->isPointerType())
3934 PointeeType = T->getPointeeType();
3935 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
3936 HasVirtualBases = RD->getNumVBases() > 0;
3937 if (IdentifierInfo *II = RD->getIdentifier())
3938 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
3939 }
3940
3941 // Encode the relevant CatchableType properties into the Flags bitfield.
3942 // FIXME: Figure out how bits 2 or 8 can get set.
3943 uint32_t Flags = 0;
3944 if (IsScalar)
3945 Flags |= 1;
3946 if (HasVirtualBases)
3947 Flags |= 4;
3948 if (IsStdBadAlloc)
3949 Flags |= 16;
3950
3951 llvm::Constant *Fields[] = {
3952 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
3953 TD, // TypeDescriptor
3954 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment
3955 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
3956 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex
3957 llvm::ConstantInt::get(CGM.IntTy, Size), // Size
3958 CopyCtor // CopyCtor
3959 };
3960 llvm::StructType *CTType = getCatchableTypeType();
3961 auto *GV = new llvm::GlobalVariable(
3962 CGM.getModule(), CTType, /*Constant=*/true, getLinkageForRTTI(T),
3963 llvm::ConstantStruct::get(CTType, Fields), MangledName);
3964 GV->setUnnamedAddr(true);
3965 GV->setSection(".xdata");
3966 if (GV->isWeakForLinker())
3967 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
3968 return getImageRelativeConstant(GV);
3969 }
3970
getCatchableTypeArray(QualType T)3971 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
3972 assert(!T->isReferenceType());
3973
3974 // See if we've already generated a CatchableTypeArray for this type before.
3975 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
3976 if (CTA)
3977 return CTA;
3978
3979 // Ensure that we don't have duplicate entries in our CatchableTypeArray by
3980 // using a SmallSetVector. Duplicates may arise due to virtual bases
3981 // occurring more than once in the hierarchy.
3982 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
3983
3984 // C++14 [except.handle]p3:
3985 // A handler is a match for an exception object of type E if [...]
3986 // - the handler is of type cv T or cv T& and T is an unambiguous public
3987 // base class of E, or
3988 // - the handler is of type cv T or const T& where T is a pointer type and
3989 // E is a pointer type that can be converted to T by [...]
3990 // - a standard pointer conversion (4.10) not involving conversions to
3991 // pointers to private or protected or ambiguous classes
3992 const CXXRecordDecl *MostDerivedClass = nullptr;
3993 bool IsPointer = T->isPointerType();
3994 if (IsPointer)
3995 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
3996 else
3997 MostDerivedClass = T->getAsCXXRecordDecl();
3998
3999 // Collect all the unambiguous public bases of the MostDerivedClass.
4000 if (MostDerivedClass) {
4001 const ASTContext &Context = getContext();
4002 const ASTRecordLayout &MostDerivedLayout =
4003 Context.getASTRecordLayout(MostDerivedClass);
4004 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4005 SmallVector<MSRTTIClass, 8> Classes;
4006 serializeClassHierarchy(Classes, MostDerivedClass);
4007 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4008 detectAmbiguousBases(Classes);
4009 for (const MSRTTIClass &Class : Classes) {
4010 // Skip any ambiguous or private bases.
4011 if (Class.Flags &
4012 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4013 continue;
4014 // Write down how to convert from a derived pointer to a base pointer.
4015 uint32_t OffsetInVBTable = 0;
4016 int32_t VBPtrOffset = -1;
4017 if (Class.VirtualRoot) {
4018 OffsetInVBTable =
4019 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4020 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4021 }
4022
4023 // Turn our record back into a pointer if the exception object is a
4024 // pointer.
4025 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4026 if (IsPointer)
4027 RTTITy = Context.getPointerType(RTTITy);
4028 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4029 VBPtrOffset, OffsetInVBTable));
4030 }
4031 }
4032
4033 // C++14 [except.handle]p3:
4034 // A handler is a match for an exception object of type E if
4035 // - The handler is of type cv T or cv T& and E and T are the same type
4036 // (ignoring the top-level cv-qualifiers)
4037 CatchableTypes.insert(getCatchableType(T));
4038
4039 // C++14 [except.handle]p3:
4040 // A handler is a match for an exception object of type E if
4041 // - the handler is of type cv T or const T& where T is a pointer type and
4042 // E is a pointer type that can be converted to T by [...]
4043 // - a standard pointer conversion (4.10) not involving conversions to
4044 // pointers to private or protected or ambiguous classes
4045 //
4046 // C++14 [conv.ptr]p2:
4047 // A prvalue of type "pointer to cv T," where T is an object type, can be
4048 // converted to a prvalue of type "pointer to cv void".
4049 if (IsPointer && T->getPointeeType()->isObjectType())
4050 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4051
4052 // C++14 [except.handle]p3:
4053 // A handler is a match for an exception object of type E if [...]
4054 // - the handler is of type cv T or const T& where T is a pointer or
4055 // pointer to member type and E is std::nullptr_t.
4056 //
4057 // We cannot possibly list all possible pointer types here, making this
4058 // implementation incompatible with the standard. However, MSVC includes an
4059 // entry for pointer-to-void in this case. Let's do the same.
4060 if (T->isNullPtrType())
4061 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4062
4063 uint32_t NumEntries = CatchableTypes.size();
4064 llvm::Type *CTType =
4065 getImageRelativeType(getCatchableTypeType()->getPointerTo());
4066 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4067 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4068 llvm::Constant *Fields[] = {
4069 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries
4070 llvm::ConstantArray::get(
4071 AT, llvm::makeArrayRef(CatchableTypes.begin(),
4072 CatchableTypes.end())) // CatchableTypes
4073 };
4074 SmallString<256> MangledName;
4075 {
4076 llvm::raw_svector_ostream Out(MangledName);
4077 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4078 }
4079 CTA = new llvm::GlobalVariable(
4080 CGM.getModule(), CTAType, /*Constant=*/true, getLinkageForRTTI(T),
4081 llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4082 CTA->setUnnamedAddr(true);
4083 CTA->setSection(".xdata");
4084 if (CTA->isWeakForLinker())
4085 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4086 return CTA;
4087 }
4088
getThrowInfo(QualType T)4089 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4090 bool IsConst, IsVolatile;
4091 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile);
4092
4093 // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4094 // the exception object may be caught as.
4095 llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4096 // The first field in a CatchableTypeArray is the number of CatchableTypes.
4097 // This is used as a component of the mangled name which means that we need to
4098 // know what it is in order to see if we have previously generated the
4099 // ThrowInfo.
4100 uint32_t NumEntries =
4101 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4102 ->getLimitedValue();
4103
4104 SmallString<256> MangledName;
4105 {
4106 llvm::raw_svector_ostream Out(MangledName);
4107 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, NumEntries,
4108 Out);
4109 }
4110
4111 // Reuse a previously generated ThrowInfo if we have generated an appropriate
4112 // one before.
4113 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4114 return GV;
4115
4116 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4117 // be at least as CV qualified. Encode this requirement into the Flags
4118 // bitfield.
4119 uint32_t Flags = 0;
4120 if (IsConst)
4121 Flags |= 1;
4122 if (IsVolatile)
4123 Flags |= 2;
4124
4125 // The cleanup-function (a destructor) must be called when the exception
4126 // object's lifetime ends.
4127 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4128 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4129 if (CXXDestructorDecl *DtorD = RD->getDestructor())
4130 if (!DtorD->isTrivial())
4131 CleanupFn = llvm::ConstantExpr::getBitCast(
4132 CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete),
4133 CGM.Int8PtrTy);
4134 // This is unused as far as we can tell, initialize it to null.
4135 llvm::Constant *ForwardCompat =
4136 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4137 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
4138 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
4139 llvm::StructType *TIType = getThrowInfoType();
4140 llvm::Constant *Fields[] = {
4141 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4142 getImageRelativeConstant(CleanupFn), // CleanupFn
4143 ForwardCompat, // ForwardCompat
4144 PointerToCatchableTypes // CatchableTypeArray
4145 };
4146 auto *GV = new llvm::GlobalVariable(
4147 CGM.getModule(), TIType, /*Constant=*/true, getLinkageForRTTI(T),
4148 llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
4149 GV->setUnnamedAddr(true);
4150 GV->setSection(".xdata");
4151 if (GV->isWeakForLinker())
4152 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4153 return GV;
4154 }
4155
emitThrow(CodeGenFunction & CGF,const CXXThrowExpr * E)4156 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4157 const Expr *SubExpr = E->getSubExpr();
4158 QualType ThrowType = SubExpr->getType();
4159 // The exception object lives on the stack and it's address is passed to the
4160 // runtime function.
4161 Address AI = CGF.CreateMemTemp(ThrowType);
4162 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4163 /*IsInit=*/true);
4164
4165 // The so-called ThrowInfo is used to describe how the exception object may be
4166 // caught.
4167 llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4168
4169 // Call into the runtime to throw the exception.
4170 llvm::Value *Args[] = {
4171 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
4172 TI
4173 };
4174 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4175 }
4176