1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm> // std::sort
29
30 using namespace clang;
31 using namespace CodeGen;
32
33 // Helper for coercing an aggregate argument or return value into an
34 // integer array of the same size (including padding).
35 //
36 // This is needed for RenderScript on ARM targets. The RenderScript
37 // compiler assumes that the size of the argument / return value in
38 // the IR is the same as the size of the corresponding qualified
39 // type. It is necessary to coerce the aggregate type into an
40 // array. We cannot pass a struct directly as an argument because
41 // clang's struct passing logic breaks up the struct into its
42 // constitutent fields.
43 //
44 // Ty - The argument / return value type
45 // Context - The associated ASTContext
46 // LLVMContext - The associated LLVMContext
coerceToIntArray(QualType Ty,ASTContext & Context,llvm::LLVMContext & LLVMContext)47 static ABIArgInfo coerceToIntArray(QualType Ty,
48 ASTContext &Context,
49 llvm::LLVMContext &LLVMContext) {
50 // Alignment and Size are measured in bits.
51 const uint64_t Size = Context.getTypeSize(Ty);
52 const uint64_t Alignment = Context.getTypeAlign(Ty);
53 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
54 const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
55 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
56 }
57
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)58 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
59 llvm::Value *Array,
60 llvm::Value *Value,
61 unsigned FirstIndex,
62 unsigned LastIndex) {
63 // Alternatively, we could emit this as a loop in the source.
64 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
65 llvm::Value *Cell =
66 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
67 Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
68 }
69 }
70
isAggregateTypeForABI(QualType T)71 static bool isAggregateTypeForABI(QualType T) {
72 return !CodeGenFunction::hasScalarEvaluationKind(T) ||
73 T->isMemberFunctionPointerType();
74 }
75
76 ABIArgInfo
getNaturalAlignIndirect(QualType Ty,bool ByRef,bool Realign,llvm::Type * Padding) const77 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
78 llvm::Type *Padding) const {
79 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
80 ByRef, Realign, Padding);
81 }
82
83 ABIArgInfo
getNaturalAlignIndirectInReg(QualType Ty,bool Realign) const84 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
85 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
86 /*ByRef*/ false, Realign);
87 }
88
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const89 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
90 QualType Ty) const {
91 return Address::invalid();
92 }
93
~ABIInfo()94 ABIInfo::~ABIInfo() {}
95
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)96 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
97 CGCXXABI &CXXABI) {
98 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
99 if (!RD)
100 return CGCXXABI::RAA_Default;
101 return CXXABI.getRecordArgABI(RD);
102 }
103
getRecordArgABI(QualType T,CGCXXABI & CXXABI)104 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
105 CGCXXABI &CXXABI) {
106 const RecordType *RT = T->getAs<RecordType>();
107 if (!RT)
108 return CGCXXABI::RAA_Default;
109 return getRecordArgABI(RT, CXXABI);
110 }
111
112 /// Pass transparent unions as if they were the type of the first element. Sema
113 /// should ensure that all elements of the union have the same "machine type".
useFirstFieldIfTransparentUnion(QualType Ty)114 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
115 if (const RecordType *UT = Ty->getAsUnionType()) {
116 const RecordDecl *UD = UT->getDecl();
117 if (UD->hasAttr<TransparentUnionAttr>()) {
118 assert(!UD->field_empty() && "sema created an empty transparent union");
119 return UD->field_begin()->getType();
120 }
121 }
122 return Ty;
123 }
124
getCXXABI() const125 CGCXXABI &ABIInfo::getCXXABI() const {
126 return CGT.getCXXABI();
127 }
128
getContext() const129 ASTContext &ABIInfo::getContext() const {
130 return CGT.getContext();
131 }
132
getVMContext() const133 llvm::LLVMContext &ABIInfo::getVMContext() const {
134 return CGT.getLLVMContext();
135 }
136
getDataLayout() const137 const llvm::DataLayout &ABIInfo::getDataLayout() const {
138 return CGT.getDataLayout();
139 }
140
getTarget() const141 const TargetInfo &ABIInfo::getTarget() const {
142 return CGT.getTarget();
143 }
144
isHomogeneousAggregateBaseType(QualType Ty) const145 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
146 return false;
147 }
148
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const149 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
150 uint64_t Members) const {
151 return false;
152 }
153
shouldSignExtUnsignedType(QualType Ty) const154 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
155 return false;
156 }
157
dump() const158 void ABIArgInfo::dump() const {
159 raw_ostream &OS = llvm::errs();
160 OS << "(ABIArgInfo Kind=";
161 switch (TheKind) {
162 case Direct:
163 OS << "Direct Type=";
164 if (llvm::Type *Ty = getCoerceToType())
165 Ty->print(OS);
166 else
167 OS << "null";
168 break;
169 case Extend:
170 OS << "Extend";
171 break;
172 case Ignore:
173 OS << "Ignore";
174 break;
175 case InAlloca:
176 OS << "InAlloca Offset=" << getInAllocaFieldIndex();
177 break;
178 case Indirect:
179 OS << "Indirect Align=" << getIndirectAlign().getQuantity()
180 << " ByVal=" << getIndirectByVal()
181 << " Realign=" << getIndirectRealign();
182 break;
183 case Expand:
184 OS << "Expand";
185 break;
186 }
187 OS << ")\n";
188 }
189
190 // Dynamically round a pointer up to a multiple of the given alignment.
emitRoundPointerUpToAlignment(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits Align)191 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
192 llvm::Value *Ptr,
193 CharUnits Align) {
194 llvm::Value *PtrAsInt = Ptr;
195 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
196 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
197 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
198 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
199 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
200 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
201 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
202 Ptr->getType(),
203 Ptr->getName() + ".aligned");
204 return PtrAsInt;
205 }
206
207 /// Emit va_arg for a platform using the common void* representation,
208 /// where arguments are simply emitted in an array of slots on the stack.
209 ///
210 /// This version implements the core direct-value passing rules.
211 ///
212 /// \param SlotSize - The size and alignment of a stack slot.
213 /// Each argument will be allocated to a multiple of this number of
214 /// slots, and all the slots will be aligned to this value.
215 /// \param AllowHigherAlign - The slot alignment is not a cap;
216 /// an argument type with an alignment greater than the slot size
217 /// will be emitted on a higher-alignment address, potentially
218 /// leaving one or more empty slots behind as padding. If this
219 /// is false, the returned address might be less-aligned than
220 /// DirectAlign.
emitVoidPtrDirectVAArg(CodeGenFunction & CGF,Address VAListAddr,llvm::Type * DirectTy,CharUnits DirectSize,CharUnits DirectAlign,CharUnits SlotSize,bool AllowHigherAlign)221 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
222 Address VAListAddr,
223 llvm::Type *DirectTy,
224 CharUnits DirectSize,
225 CharUnits DirectAlign,
226 CharUnits SlotSize,
227 bool AllowHigherAlign) {
228 // Cast the element type to i8* if necessary. Some platforms define
229 // va_list as a struct containing an i8* instead of just an i8*.
230 if (VAListAddr.getElementType() != CGF.Int8PtrTy)
231 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
232
233 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
234
235 // If the CC aligns values higher than the slot size, do so if needed.
236 Address Addr = Address::invalid();
237 if (AllowHigherAlign && DirectAlign > SlotSize) {
238 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
239 DirectAlign);
240 } else {
241 Addr = Address(Ptr, SlotSize);
242 }
243
244 // Advance the pointer past the argument, then store that back.
245 CharUnits FullDirectSize = DirectSize.RoundUpToAlignment(SlotSize);
246 llvm::Value *NextPtr =
247 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
248 "argp.next");
249 CGF.Builder.CreateStore(NextPtr, VAListAddr);
250
251 // If the argument is smaller than a slot, and this is a big-endian
252 // target, the argument will be right-adjusted in its slot.
253 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
254 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
255 }
256
257 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
258 return Addr;
259 }
260
261 /// Emit va_arg for a platform using the common void* representation,
262 /// where arguments are simply emitted in an array of slots on the stack.
263 ///
264 /// \param IsIndirect - Values of this type are passed indirectly.
265 /// \param ValueInfo - The size and alignment of this type, generally
266 /// computed with getContext().getTypeInfoInChars(ValueTy).
267 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
268 /// Each argument will be allocated to a multiple of this number of
269 /// slots, and all the slots will be aligned to this value.
270 /// \param AllowHigherAlign - The slot alignment is not a cap;
271 /// an argument type with an alignment greater than the slot size
272 /// will be emitted on a higher-alignment address, potentially
273 /// leaving one or more empty slots behind as padding.
emitVoidPtrVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType ValueTy,bool IsIndirect,std::pair<CharUnits,CharUnits> ValueInfo,CharUnits SlotSizeAndAlign,bool AllowHigherAlign)274 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
275 QualType ValueTy, bool IsIndirect,
276 std::pair<CharUnits, CharUnits> ValueInfo,
277 CharUnits SlotSizeAndAlign,
278 bool AllowHigherAlign) {
279 // The size and alignment of the value that was passed directly.
280 CharUnits DirectSize, DirectAlign;
281 if (IsIndirect) {
282 DirectSize = CGF.getPointerSize();
283 DirectAlign = CGF.getPointerAlign();
284 } else {
285 DirectSize = ValueInfo.first;
286 DirectAlign = ValueInfo.second;
287 }
288
289 // Cast the address we've calculated to the right type.
290 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
291 if (IsIndirect)
292 DirectTy = DirectTy->getPointerTo(0);
293
294 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
295 DirectSize, DirectAlign,
296 SlotSizeAndAlign,
297 AllowHigherAlign);
298
299 if (IsIndirect) {
300 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
301 }
302
303 return Addr;
304
305 }
306
emitMergePHI(CodeGenFunction & CGF,Address Addr1,llvm::BasicBlock * Block1,Address Addr2,llvm::BasicBlock * Block2,const llvm::Twine & Name="")307 static Address emitMergePHI(CodeGenFunction &CGF,
308 Address Addr1, llvm::BasicBlock *Block1,
309 Address Addr2, llvm::BasicBlock *Block2,
310 const llvm::Twine &Name = "") {
311 assert(Addr1.getType() == Addr2.getType());
312 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
313 PHI->addIncoming(Addr1.getPointer(), Block1);
314 PHI->addIncoming(Addr2.getPointer(), Block2);
315 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
316 return Address(PHI, Align);
317 }
318
~TargetCodeGenInfo()319 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
320
321 // If someone can figure out a general rule for this, that would be great.
322 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const323 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
324 // Verified for:
325 // x86-64 FreeBSD, Linux, Darwin
326 // x86-32 FreeBSD, Linux, Darwin
327 // PowerPC Linux, Darwin
328 // ARM Darwin (*not* EABI)
329 // AArch64 Linux
330 return 32;
331 }
332
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const333 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
334 const FunctionNoProtoType *fnType) const {
335 // The following conventions are known to require this to be false:
336 // x86_stdcall
337 // MIPS
338 // For everything else, we just prefer false unless we opt out.
339 return false;
340 }
341
342 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const343 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
344 llvm::SmallString<24> &Opt) const {
345 // This assumes the user is passing a library name like "rt" instead of a
346 // filename like "librt.a/so", and that they don't care whether it's static or
347 // dynamic.
348 Opt = "-l";
349 Opt += Lib;
350 }
351
352 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
353
354 /// isEmptyField - Return true iff a the field is "empty", that is it
355 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)356 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
357 bool AllowArrays) {
358 if (FD->isUnnamedBitfield())
359 return true;
360
361 QualType FT = FD->getType();
362
363 // Constant arrays of empty records count as empty, strip them off.
364 // Constant arrays of zero length always count as empty.
365 if (AllowArrays)
366 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
367 if (AT->getSize() == 0)
368 return true;
369 FT = AT->getElementType();
370 }
371
372 const RecordType *RT = FT->getAs<RecordType>();
373 if (!RT)
374 return false;
375
376 // C++ record fields are never empty, at least in the Itanium ABI.
377 //
378 // FIXME: We should use a predicate for whether this behavior is true in the
379 // current ABI.
380 if (isa<CXXRecordDecl>(RT->getDecl()))
381 return false;
382
383 return isEmptyRecord(Context, FT, AllowArrays);
384 }
385
386 /// isEmptyRecord - Return true iff a structure contains only empty
387 /// fields. Note that a structure with a flexible array member is not
388 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)389 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
390 const RecordType *RT = T->getAs<RecordType>();
391 if (!RT)
392 return 0;
393 const RecordDecl *RD = RT->getDecl();
394 if (RD->hasFlexibleArrayMember())
395 return false;
396
397 // If this is a C++ record, check the bases first.
398 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
399 for (const auto &I : CXXRD->bases())
400 if (!isEmptyRecord(Context, I.getType(), true))
401 return false;
402
403 for (const auto *I : RD->fields())
404 if (!isEmptyField(Context, I, AllowArrays))
405 return false;
406 return true;
407 }
408
409 /// isSingleElementStruct - Determine if a structure is a "single
410 /// element struct", i.e. it has exactly one non-empty field or
411 /// exactly one field which is itself a single element
412 /// struct. Structures with flexible array members are never
413 /// considered single element structs.
414 ///
415 /// \return The field declaration for the single non-empty field, if
416 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)417 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
418 const RecordType *RT = T->getAs<RecordType>();
419 if (!RT)
420 return nullptr;
421
422 const RecordDecl *RD = RT->getDecl();
423 if (RD->hasFlexibleArrayMember())
424 return nullptr;
425
426 const Type *Found = nullptr;
427
428 // If this is a C++ record, check the bases first.
429 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
430 for (const auto &I : CXXRD->bases()) {
431 // Ignore empty records.
432 if (isEmptyRecord(Context, I.getType(), true))
433 continue;
434
435 // If we already found an element then this isn't a single-element struct.
436 if (Found)
437 return nullptr;
438
439 // If this is non-empty and not a single element struct, the composite
440 // cannot be a single element struct.
441 Found = isSingleElementStruct(I.getType(), Context);
442 if (!Found)
443 return nullptr;
444 }
445 }
446
447 // Check for single element.
448 for (const auto *FD : RD->fields()) {
449 QualType FT = FD->getType();
450
451 // Ignore empty fields.
452 if (isEmptyField(Context, FD, true))
453 continue;
454
455 // If we already found an element then this isn't a single-element
456 // struct.
457 if (Found)
458 return nullptr;
459
460 // Treat single element arrays as the element.
461 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
462 if (AT->getSize().getZExtValue() != 1)
463 break;
464 FT = AT->getElementType();
465 }
466
467 if (!isAggregateTypeForABI(FT)) {
468 Found = FT.getTypePtr();
469 } else {
470 Found = isSingleElementStruct(FT, Context);
471 if (!Found)
472 return nullptr;
473 }
474 }
475
476 // We don't consider a struct a single-element struct if it has
477 // padding beyond the element type.
478 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
479 return nullptr;
480
481 return Found;
482 }
483
is32Or64BitBasicType(QualType Ty,ASTContext & Context)484 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
485 // Treat complex types as the element type.
486 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
487 Ty = CTy->getElementType();
488
489 // Check for a type which we know has a simple scalar argument-passing
490 // convention without any padding. (We're specifically looking for 32
491 // and 64-bit integer and integer-equivalents, float, and double.)
492 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
493 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
494 return false;
495
496 uint64_t Size = Context.getTypeSize(Ty);
497 return Size == 32 || Size == 64;
498 }
499
500 /// canExpandIndirectArgument - Test whether an argument type which is to be
501 /// passed indirectly (on the stack) would have the equivalent layout if it was
502 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
503 /// inhibiting optimizations.
504 ///
505 // FIXME: This predicate is missing many cases, currently it just follows
506 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
507 // should probably make this smarter, or better yet make the LLVM backend
508 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)509 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
510 // We can only expand structure types.
511 const RecordType *RT = Ty->getAs<RecordType>();
512 if (!RT)
513 return false;
514
515 // We can only expand (C) structures.
516 //
517 // FIXME: This needs to be generalized to handle classes as well.
518 const RecordDecl *RD = RT->getDecl();
519 if (!RD->isStruct())
520 return false;
521
522 // We try to expand CLike CXXRecordDecl.
523 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
524 if (!CXXRD->isCLike())
525 return false;
526 }
527
528 uint64_t Size = 0;
529
530 for (const auto *FD : RD->fields()) {
531 if (!is32Or64BitBasicType(FD->getType(), Context))
532 return false;
533
534 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
535 // how to expand them yet, and the predicate for telling if a bitfield still
536 // counts as "basic" is more complicated than what we were doing previously.
537 if (FD->isBitField())
538 return false;
539
540 Size += Context.getTypeSize(FD->getType());
541 }
542
543 // Make sure there are not any holes in the struct.
544 if (Size != Context.getTypeSize(Ty))
545 return false;
546
547 return true;
548 }
549
550 namespace {
551 /// DefaultABIInfo - The default implementation for ABI specific
552 /// details. This implementation provides information which results in
553 /// self-consistent and sensible LLVM IR generation, but does not
554 /// conform to any particular ABI.
555 class DefaultABIInfo : public ABIInfo {
556 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)557 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
558
559 ABIArgInfo classifyReturnType(QualType RetTy) const;
560 ABIArgInfo classifyArgumentType(QualType RetTy) const;
561
computeInfo(CGFunctionInfo & FI) const562 void computeInfo(CGFunctionInfo &FI) const override {
563 if (!getCXXABI().classifyReturnType(FI))
564 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
565 for (auto &I : FI.arguments())
566 I.info = classifyArgumentType(I.type);
567 }
568
569 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
570 QualType Ty) const override;
571 };
572
573 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
574 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)575 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
576 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
577 };
578
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const579 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
580 QualType Ty) const {
581 return Address::invalid();
582 }
583
classifyArgumentType(QualType Ty) const584 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
585 Ty = useFirstFieldIfTransparentUnion(Ty);
586
587 if (isAggregateTypeForABI(Ty)) {
588 // Records with non-trivial destructors/copy-constructors should not be
589 // passed by value.
590 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
591 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
592
593 return getNaturalAlignIndirect(Ty);
594 }
595
596 // Treat an enum type as its underlying type.
597 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
598 Ty = EnumTy->getDecl()->getIntegerType();
599
600 return (Ty->isPromotableIntegerType() ?
601 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
602 }
603
classifyReturnType(QualType RetTy) const604 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
605 if (RetTy->isVoidType())
606 return ABIArgInfo::getIgnore();
607
608 if (isAggregateTypeForABI(RetTy))
609 return getNaturalAlignIndirect(RetTy);
610
611 // Treat an enum type as its underlying type.
612 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
613 RetTy = EnumTy->getDecl()->getIntegerType();
614
615 return (RetTy->isPromotableIntegerType() ?
616 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
617 }
618
619 //===----------------------------------------------------------------------===//
620 // WebAssembly ABI Implementation
621 //
622 // This is a very simple ABI that relies a lot on DefaultABIInfo.
623 //===----------------------------------------------------------------------===//
624
625 class WebAssemblyABIInfo final : public DefaultABIInfo {
626 public:
WebAssemblyABIInfo(CodeGen::CodeGenTypes & CGT)627 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
628 : DefaultABIInfo(CGT) {}
629
630 private:
631 ABIArgInfo classifyReturnType(QualType RetTy) const;
632 ABIArgInfo classifyArgumentType(QualType Ty) const;
633
634 // DefaultABIInfo's classifyReturnType and classifyArgumentType are
635 // non-virtual, but computeInfo is virtual, so we overload that.
computeInfo(CGFunctionInfo & FI) const636 void computeInfo(CGFunctionInfo &FI) const override {
637 if (!getCXXABI().classifyReturnType(FI))
638 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
639 for (auto &Arg : FI.arguments())
640 Arg.info = classifyArgumentType(Arg.type);
641 }
642 };
643
644 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
645 public:
WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)646 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
647 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
648 };
649
650 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const651 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
652 Ty = useFirstFieldIfTransparentUnion(Ty);
653
654 if (isAggregateTypeForABI(Ty)) {
655 // Records with non-trivial destructors/copy-constructors should not be
656 // passed by value.
657 if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
658 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
659 // Ignore empty structs/unions.
660 if (isEmptyRecord(getContext(), Ty, true))
661 return ABIArgInfo::getIgnore();
662 // Lower single-element structs to just pass a regular value. TODO: We
663 // could do reasonable-size multiple-element structs too, using getExpand(),
664 // though watch out for things like bitfields.
665 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
666 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
667 }
668
669 // Otherwise just do the default thing.
670 return DefaultABIInfo::classifyArgumentType(Ty);
671 }
672
classifyReturnType(QualType RetTy) const673 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
674 if (isAggregateTypeForABI(RetTy)) {
675 // Records with non-trivial destructors/copy-constructors should not be
676 // returned by value.
677 if (!getRecordArgABI(RetTy, getCXXABI())) {
678 // Ignore empty structs/unions.
679 if (isEmptyRecord(getContext(), RetTy, true))
680 return ABIArgInfo::getIgnore();
681 // Lower single-element structs to just return a regular value. TODO: We
682 // could do reasonable-size multiple-element structs too, using
683 // ABIArgInfo::getDirect().
684 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
685 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
686 }
687 }
688
689 // Otherwise just do the default thing.
690 return DefaultABIInfo::classifyReturnType(RetTy);
691 }
692
693 //===----------------------------------------------------------------------===//
694 // le32/PNaCl bitcode ABI Implementation
695 //
696 // This is a simplified version of the x86_32 ABI. Arguments and return values
697 // are always passed on the stack.
698 //===----------------------------------------------------------------------===//
699
700 class PNaClABIInfo : public ABIInfo {
701 public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)702 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
703
704 ABIArgInfo classifyReturnType(QualType RetTy) const;
705 ABIArgInfo classifyArgumentType(QualType RetTy) const;
706
707 void computeInfo(CGFunctionInfo &FI) const override;
708 Address EmitVAArg(CodeGenFunction &CGF,
709 Address VAListAddr, QualType Ty) const override;
710 };
711
712 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
713 public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)714 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
715 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
716 };
717
computeInfo(CGFunctionInfo & FI) const718 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
719 if (!getCXXABI().classifyReturnType(FI))
720 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
721
722 for (auto &I : FI.arguments())
723 I.info = classifyArgumentType(I.type);
724 }
725
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const726 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
727 QualType Ty) const {
728 return Address::invalid();
729 }
730
731 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const732 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
733 if (isAggregateTypeForABI(Ty)) {
734 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
735 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
736 return getNaturalAlignIndirect(Ty);
737 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
738 // Treat an enum type as its underlying type.
739 Ty = EnumTy->getDecl()->getIntegerType();
740 } else if (Ty->isFloatingType()) {
741 // Floating-point types don't go inreg.
742 return ABIArgInfo::getDirect();
743 }
744
745 return (Ty->isPromotableIntegerType() ?
746 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
747 }
748
classifyReturnType(QualType RetTy) const749 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
750 if (RetTy->isVoidType())
751 return ABIArgInfo::getIgnore();
752
753 // In the PNaCl ABI we always return records/structures on the stack.
754 if (isAggregateTypeForABI(RetTy))
755 return getNaturalAlignIndirect(RetTy);
756
757 // Treat an enum type as its underlying type.
758 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
759 RetTy = EnumTy->getDecl()->getIntegerType();
760
761 return (RetTy->isPromotableIntegerType() ?
762 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
763 }
764
765 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)766 bool IsX86_MMXType(llvm::Type *IRType) {
767 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
768 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
769 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
770 IRType->getScalarSizeInBits() != 64;
771 }
772
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)773 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
774 StringRef Constraint,
775 llvm::Type* Ty) {
776 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
777 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
778 // Invalid MMX constraint
779 return nullptr;
780 }
781
782 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
783 }
784
785 // No operation needed
786 return Ty;
787 }
788
789 /// Returns true if this type can be passed in SSE registers with the
790 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorTypeForVectorCall(ASTContext & Context,QualType Ty)791 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
792 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
793 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
794 return true;
795 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
796 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
797 // registers specially.
798 unsigned VecSize = Context.getTypeSize(VT);
799 if (VecSize == 128 || VecSize == 256 || VecSize == 512)
800 return true;
801 }
802 return false;
803 }
804
805 /// Returns true if this aggregate is small enough to be passed in SSE registers
806 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorCallAggregateSmallEnough(uint64_t NumMembers)807 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
808 return NumMembers <= 4;
809 }
810
811 //===----------------------------------------------------------------------===//
812 // X86-32 ABI Implementation
813 //===----------------------------------------------------------------------===//
814
815 /// \brief Similar to llvm::CCState, but for Clang.
816 struct CCState {
CCState__anona890a3f30111::CCState817 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
818
819 unsigned CC;
820 unsigned FreeRegs;
821 unsigned FreeSSERegs;
822 };
823
824 /// X86_32ABIInfo - The X86-32 ABI information.
825 class X86_32ABIInfo : public ABIInfo {
826 enum Class {
827 Integer,
828 Float
829 };
830
831 static const unsigned MinABIStackAlignInBytes = 4;
832
833 bool IsDarwinVectorABI;
834 bool IsRetSmallStructInRegABI;
835 bool IsWin32StructABI;
836 bool IsSoftFloatABI;
837 bool IsMCUABI;
838 unsigned DefaultNumRegisterParameters;
839
isRegisterSize(unsigned Size)840 static bool isRegisterSize(unsigned Size) {
841 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
842 }
843
isHomogeneousAggregateBaseType(QualType Ty) const844 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
845 // FIXME: Assumes vectorcall is in use.
846 return isX86VectorTypeForVectorCall(getContext(), Ty);
847 }
848
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const849 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
850 uint64_t NumMembers) const override {
851 // FIXME: Assumes vectorcall is in use.
852 return isX86VectorCallAggregateSmallEnough(NumMembers);
853 }
854
855 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
856
857 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
858 /// such that the argument will be passed in memory.
859 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
860
861 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
862
863 /// \brief Return the alignment to use for the given type on the stack.
864 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
865
866 Class classify(QualType Ty) const;
867 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
868 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
869 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
870
871 /// \brief Rewrite the function info so that all memory arguments use
872 /// inalloca.
873 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
874
875 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
876 CharUnits &StackOffset, ABIArgInfo &Info,
877 QualType Type) const;
878
879 public:
880
881 void computeInfo(CGFunctionInfo &FI) const override;
882 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
883 QualType Ty) const override;
884
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)885 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
886 bool RetSmallStructInRegABI, bool Win32StructABI,
887 unsigned NumRegisterParameters, bool SoftFloatABI)
888 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
889 IsRetSmallStructInRegABI(RetSmallStructInRegABI),
890 IsWin32StructABI(Win32StructABI),
891 IsSoftFloatABI(SoftFloatABI),
892 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
893 DefaultNumRegisterParameters(NumRegisterParameters) {}
894 };
895
896 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
897 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)898 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
899 bool RetSmallStructInRegABI, bool Win32StructABI,
900 unsigned NumRegisterParameters, bool SoftFloatABI)
901 : TargetCodeGenInfo(new X86_32ABIInfo(
902 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
903 NumRegisterParameters, SoftFloatABI)) {}
904
905 static bool isStructReturnInRegABI(
906 const llvm::Triple &Triple, const CodeGenOptions &Opts);
907
908 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
909 CodeGen::CodeGenModule &CGM) const override;
910
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const911 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
912 // Darwin uses different dwarf register numbers for EH.
913 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
914 return 4;
915 }
916
917 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
918 llvm::Value *Address) const override;
919
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const920 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
921 StringRef Constraint,
922 llvm::Type* Ty) const override {
923 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
924 }
925
926 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
927 std::string &Constraints,
928 std::vector<llvm::Type *> &ResultRegTypes,
929 std::vector<llvm::Type *> &ResultTruncRegTypes,
930 std::vector<LValue> &ResultRegDests,
931 std::string &AsmString,
932 unsigned NumOutputs) const override;
933
934 llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const935 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
936 unsigned Sig = (0xeb << 0) | // jmp rel8
937 (0x06 << 8) | // .+0x08
938 ('F' << 16) |
939 ('T' << 24);
940 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
941 }
942 };
943
944 }
945
946 /// Rewrite input constraint references after adding some output constraints.
947 /// In the case where there is one output and one input and we add one output,
948 /// we need to replace all operand references greater than or equal to 1:
949 /// mov $0, $1
950 /// mov eax, $1
951 /// The result will be:
952 /// mov $0, $2
953 /// mov eax, $2
rewriteInputConstraintReferences(unsigned FirstIn,unsigned NumNewOuts,std::string & AsmString)954 static void rewriteInputConstraintReferences(unsigned FirstIn,
955 unsigned NumNewOuts,
956 std::string &AsmString) {
957 std::string Buf;
958 llvm::raw_string_ostream OS(Buf);
959 size_t Pos = 0;
960 while (Pos < AsmString.size()) {
961 size_t DollarStart = AsmString.find('$', Pos);
962 if (DollarStart == std::string::npos)
963 DollarStart = AsmString.size();
964 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
965 if (DollarEnd == std::string::npos)
966 DollarEnd = AsmString.size();
967 OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
968 Pos = DollarEnd;
969 size_t NumDollars = DollarEnd - DollarStart;
970 if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
971 // We have an operand reference.
972 size_t DigitStart = Pos;
973 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
974 if (DigitEnd == std::string::npos)
975 DigitEnd = AsmString.size();
976 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
977 unsigned OperandIndex;
978 if (!OperandStr.getAsInteger(10, OperandIndex)) {
979 if (OperandIndex >= FirstIn)
980 OperandIndex += NumNewOuts;
981 OS << OperandIndex;
982 } else {
983 OS << OperandStr;
984 }
985 Pos = DigitEnd;
986 }
987 }
988 AsmString = std::move(OS.str());
989 }
990
991 /// Add output constraints for EAX:EDX because they are return registers.
addReturnRegisterOutputs(CodeGenFunction & CGF,LValue ReturnSlot,std::string & Constraints,std::vector<llvm::Type * > & ResultRegTypes,std::vector<llvm::Type * > & ResultTruncRegTypes,std::vector<LValue> & ResultRegDests,std::string & AsmString,unsigned NumOutputs) const992 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
993 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
994 std::vector<llvm::Type *> &ResultRegTypes,
995 std::vector<llvm::Type *> &ResultTruncRegTypes,
996 std::vector<LValue> &ResultRegDests, std::string &AsmString,
997 unsigned NumOutputs) const {
998 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
999
1000 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1001 // larger.
1002 if (!Constraints.empty())
1003 Constraints += ',';
1004 if (RetWidth <= 32) {
1005 Constraints += "={eax}";
1006 ResultRegTypes.push_back(CGF.Int32Ty);
1007 } else {
1008 // Use the 'A' constraint for EAX:EDX.
1009 Constraints += "=A";
1010 ResultRegTypes.push_back(CGF.Int64Ty);
1011 }
1012
1013 // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1014 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1015 ResultTruncRegTypes.push_back(CoerceTy);
1016
1017 // Coerce the integer by bitcasting the return slot pointer.
1018 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1019 CoerceTy->getPointerTo()));
1020 ResultRegDests.push_back(ReturnSlot);
1021
1022 rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1023 }
1024
1025 /// shouldReturnTypeInRegister - Determine if the given type should be
1026 /// returned in a register (for the Darwin and MCU ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const1027 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1028 ASTContext &Context) const {
1029 uint64_t Size = Context.getTypeSize(Ty);
1030
1031 // Type must be register sized.
1032 if (!isRegisterSize(Size))
1033 return false;
1034
1035 if (Ty->isVectorType()) {
1036 // 64- and 128- bit vectors inside structures are not returned in
1037 // registers.
1038 if (Size == 64 || Size == 128)
1039 return false;
1040
1041 return true;
1042 }
1043
1044 // If this is a builtin, pointer, enum, complex type, member pointer, or
1045 // member function pointer it is ok.
1046 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1047 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1048 Ty->isBlockPointerType() || Ty->isMemberPointerType())
1049 return true;
1050
1051 // Arrays are treated like records.
1052 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1053 return shouldReturnTypeInRegister(AT->getElementType(), Context);
1054
1055 // Otherwise, it must be a record type.
1056 const RecordType *RT = Ty->getAs<RecordType>();
1057 if (!RT) return false;
1058
1059 // FIXME: Traverse bases here too.
1060
1061 // Structure types are passed in register if all fields would be
1062 // passed in a register.
1063 for (const auto *FD : RT->getDecl()->fields()) {
1064 // Empty fields are ignored.
1065 if (isEmptyField(Context, FD, true))
1066 continue;
1067
1068 // Check fields recursively.
1069 if (!shouldReturnTypeInRegister(FD->getType(), Context))
1070 return false;
1071 }
1072 return true;
1073 }
1074
getIndirectReturnResult(QualType RetTy,CCState & State) const1075 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1076 // If the return value is indirect, then the hidden argument is consuming one
1077 // integer register.
1078 if (State.FreeRegs) {
1079 --State.FreeRegs;
1080 return getNaturalAlignIndirectInReg(RetTy);
1081 }
1082 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1083 }
1084
classifyReturnType(QualType RetTy,CCState & State) const1085 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1086 CCState &State) const {
1087 if (RetTy->isVoidType())
1088 return ABIArgInfo::getIgnore();
1089
1090 const Type *Base = nullptr;
1091 uint64_t NumElts = 0;
1092 if (State.CC == llvm::CallingConv::X86_VectorCall &&
1093 isHomogeneousAggregate(RetTy, Base, NumElts)) {
1094 // The LLVM struct type for such an aggregate should lower properly.
1095 return ABIArgInfo::getDirect();
1096 }
1097
1098 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1099 // On Darwin, some vectors are returned in registers.
1100 if (IsDarwinVectorABI) {
1101 uint64_t Size = getContext().getTypeSize(RetTy);
1102
1103 // 128-bit vectors are a special case; they are returned in
1104 // registers and we need to make sure to pick a type the LLVM
1105 // backend will like.
1106 if (Size == 128)
1107 return ABIArgInfo::getDirect(llvm::VectorType::get(
1108 llvm::Type::getInt64Ty(getVMContext()), 2));
1109
1110 // Always return in register if it fits in a general purpose
1111 // register, or if it is 64 bits and has a single element.
1112 if ((Size == 8 || Size == 16 || Size == 32) ||
1113 (Size == 64 && VT->getNumElements() == 1))
1114 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1115 Size));
1116
1117 return getIndirectReturnResult(RetTy, State);
1118 }
1119
1120 return ABIArgInfo::getDirect();
1121 }
1122
1123 if (isAggregateTypeForABI(RetTy)) {
1124 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1125 // Structures with flexible arrays are always indirect.
1126 if (RT->getDecl()->hasFlexibleArrayMember())
1127 return getIndirectReturnResult(RetTy, State);
1128 }
1129
1130 // If specified, structs and unions are always indirect.
1131 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1132 return getIndirectReturnResult(RetTy, State);
1133
1134 // Small structures which are register sized are generally returned
1135 // in a register.
1136 if (shouldReturnTypeInRegister(RetTy, getContext())) {
1137 uint64_t Size = getContext().getTypeSize(RetTy);
1138
1139 // As a special-case, if the struct is a "single-element" struct, and
1140 // the field is of type "float" or "double", return it in a
1141 // floating-point register. (MSVC does not apply this special case.)
1142 // We apply a similar transformation for pointer types to improve the
1143 // quality of the generated IR.
1144 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1145 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1146 || SeltTy->hasPointerRepresentation())
1147 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1148
1149 // FIXME: We should be able to narrow this integer in cases with dead
1150 // padding.
1151 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1152 }
1153
1154 return getIndirectReturnResult(RetTy, State);
1155 }
1156
1157 // Treat an enum type as its underlying type.
1158 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1159 RetTy = EnumTy->getDecl()->getIntegerType();
1160
1161 return (RetTy->isPromotableIntegerType() ?
1162 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1163 }
1164
isSSEVectorType(ASTContext & Context,QualType Ty)1165 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1166 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1167 }
1168
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)1169 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1170 const RecordType *RT = Ty->getAs<RecordType>();
1171 if (!RT)
1172 return 0;
1173 const RecordDecl *RD = RT->getDecl();
1174
1175 // If this is a C++ record, check the bases first.
1176 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1177 for (const auto &I : CXXRD->bases())
1178 if (!isRecordWithSSEVectorType(Context, I.getType()))
1179 return false;
1180
1181 for (const auto *i : RD->fields()) {
1182 QualType FT = i->getType();
1183
1184 if (isSSEVectorType(Context, FT))
1185 return true;
1186
1187 if (isRecordWithSSEVectorType(Context, FT))
1188 return true;
1189 }
1190
1191 return false;
1192 }
1193
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const1194 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1195 unsigned Align) const {
1196 // Otherwise, if the alignment is less than or equal to the minimum ABI
1197 // alignment, just use the default; the backend will handle this.
1198 if (Align <= MinABIStackAlignInBytes)
1199 return 0; // Use default alignment.
1200
1201 // On non-Darwin, the stack type alignment is always 4.
1202 if (!IsDarwinVectorABI) {
1203 // Set explicit alignment, since we may need to realign the top.
1204 return MinABIStackAlignInBytes;
1205 }
1206
1207 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1208 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1209 isRecordWithSSEVectorType(getContext(), Ty)))
1210 return 16;
1211
1212 return MinABIStackAlignInBytes;
1213 }
1214
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const1215 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1216 CCState &State) const {
1217 if (!ByVal) {
1218 if (State.FreeRegs) {
1219 --State.FreeRegs; // Non-byval indirects just use one pointer.
1220 return getNaturalAlignIndirectInReg(Ty);
1221 }
1222 return getNaturalAlignIndirect(Ty, false);
1223 }
1224
1225 // Compute the byval alignment.
1226 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1227 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1228 if (StackAlign == 0)
1229 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1230
1231 // If the stack alignment is less than the type alignment, realign the
1232 // argument.
1233 bool Realign = TypeAlign > StackAlign;
1234 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1235 /*ByVal=*/true, Realign);
1236 }
1237
classify(QualType Ty) const1238 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1239 const Type *T = isSingleElementStruct(Ty, getContext());
1240 if (!T)
1241 T = Ty.getTypePtr();
1242
1243 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1244 BuiltinType::Kind K = BT->getKind();
1245 if (K == BuiltinType::Float || K == BuiltinType::Double)
1246 return Float;
1247 }
1248 return Integer;
1249 }
1250
shouldUseInReg(QualType Ty,CCState & State,bool & NeedsPadding) const1251 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
1252 bool &NeedsPadding) const {
1253 NeedsPadding = false;
1254 if (!IsSoftFloatABI) {
1255 Class C = classify(Ty);
1256 if (C == Float)
1257 return false;
1258 }
1259
1260 unsigned Size = getContext().getTypeSize(Ty);
1261 unsigned SizeInRegs = (Size + 31) / 32;
1262
1263 if (SizeInRegs == 0)
1264 return false;
1265
1266 if (!IsMCUABI) {
1267 if (SizeInRegs > State.FreeRegs) {
1268 State.FreeRegs = 0;
1269 return false;
1270 }
1271 } else {
1272 // The MCU psABI allows passing parameters in-reg even if there are
1273 // earlier parameters that are passed on the stack. Also,
1274 // it does not allow passing >8-byte structs in-register,
1275 // even if there are 3 free registers available.
1276 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1277 return false;
1278 }
1279
1280 State.FreeRegs -= SizeInRegs;
1281
1282 if (State.CC == llvm::CallingConv::X86_FastCall ||
1283 State.CC == llvm::CallingConv::X86_VectorCall) {
1284 if (Size > 32)
1285 return false;
1286
1287 if (Ty->isIntegralOrEnumerationType())
1288 return true;
1289
1290 if (Ty->isPointerType())
1291 return true;
1292
1293 if (Ty->isReferenceType())
1294 return true;
1295
1296 if (State.FreeRegs)
1297 NeedsPadding = true;
1298
1299 return false;
1300 }
1301
1302 return true;
1303 }
1304
classifyArgumentType(QualType Ty,CCState & State) const1305 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1306 CCState &State) const {
1307 // FIXME: Set alignment on indirect arguments.
1308
1309 Ty = useFirstFieldIfTransparentUnion(Ty);
1310
1311 // Check with the C++ ABI first.
1312 const RecordType *RT = Ty->getAs<RecordType>();
1313 if (RT) {
1314 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1315 if (RAA == CGCXXABI::RAA_Indirect) {
1316 return getIndirectResult(Ty, false, State);
1317 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1318 // The field index doesn't matter, we'll fix it up later.
1319 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1320 }
1321 }
1322
1323 // vectorcall adds the concept of a homogenous vector aggregate, similar
1324 // to other targets.
1325 const Type *Base = nullptr;
1326 uint64_t NumElts = 0;
1327 if (State.CC == llvm::CallingConv::X86_VectorCall &&
1328 isHomogeneousAggregate(Ty, Base, NumElts)) {
1329 if (State.FreeSSERegs >= NumElts) {
1330 State.FreeSSERegs -= NumElts;
1331 if (Ty->isBuiltinType() || Ty->isVectorType())
1332 return ABIArgInfo::getDirect();
1333 return ABIArgInfo::getExpand();
1334 }
1335 return getIndirectResult(Ty, /*ByVal=*/false, State);
1336 }
1337
1338 if (isAggregateTypeForABI(Ty)) {
1339 if (RT) {
1340 // Structs are always byval on win32, regardless of what they contain.
1341 if (IsWin32StructABI)
1342 return getIndirectResult(Ty, true, State);
1343
1344 // Structures with flexible arrays are always indirect.
1345 if (RT->getDecl()->hasFlexibleArrayMember())
1346 return getIndirectResult(Ty, true, State);
1347 }
1348
1349 // Ignore empty structs/unions.
1350 if (isEmptyRecord(getContext(), Ty, true))
1351 return ABIArgInfo::getIgnore();
1352
1353 llvm::LLVMContext &LLVMContext = getVMContext();
1354 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1355 bool NeedsPadding;
1356 if (shouldUseInReg(Ty, State, NeedsPadding)) {
1357 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1358 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1359 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1360 return ABIArgInfo::getDirectInReg(Result);
1361 }
1362 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1363
1364 // Expand small (<= 128-bit) record types when we know that the stack layout
1365 // of those arguments will match the struct. This is important because the
1366 // LLVM backend isn't smart enough to remove byval, which inhibits many
1367 // optimizations.
1368 if (getContext().getTypeSize(Ty) <= 4*32 &&
1369 canExpandIndirectArgument(Ty, getContext()))
1370 return ABIArgInfo::getExpandWithPadding(
1371 State.CC == llvm::CallingConv::X86_FastCall ||
1372 State.CC == llvm::CallingConv::X86_VectorCall,
1373 PaddingType);
1374
1375 return getIndirectResult(Ty, true, State);
1376 }
1377
1378 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1379 // On Darwin, some vectors are passed in memory, we handle this by passing
1380 // it as an i8/i16/i32/i64.
1381 if (IsDarwinVectorABI) {
1382 uint64_t Size = getContext().getTypeSize(Ty);
1383 if ((Size == 8 || Size == 16 || Size == 32) ||
1384 (Size == 64 && VT->getNumElements() == 1))
1385 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1386 Size));
1387 }
1388
1389 if (IsX86_MMXType(CGT.ConvertType(Ty)))
1390 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1391
1392 return ABIArgInfo::getDirect();
1393 }
1394
1395
1396 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1397 Ty = EnumTy->getDecl()->getIntegerType();
1398
1399 bool NeedsPadding;
1400 bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1401
1402 if (Ty->isPromotableIntegerType()) {
1403 if (InReg)
1404 return ABIArgInfo::getExtendInReg();
1405 return ABIArgInfo::getExtend();
1406 }
1407 if (InReg)
1408 return ABIArgInfo::getDirectInReg();
1409 return ABIArgInfo::getDirect();
1410 }
1411
computeInfo(CGFunctionInfo & FI) const1412 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1413 CCState State(FI.getCallingConvention());
1414 if (State.CC == llvm::CallingConv::X86_FastCall)
1415 State.FreeRegs = 2;
1416 else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1417 State.FreeRegs = 2;
1418 State.FreeSSERegs = 6;
1419 } else if (FI.getHasRegParm())
1420 State.FreeRegs = FI.getRegParm();
1421 else if (IsMCUABI)
1422 State.FreeRegs = 3;
1423 else
1424 State.FreeRegs = DefaultNumRegisterParameters;
1425
1426 if (!getCXXABI().classifyReturnType(FI)) {
1427 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1428 } else if (FI.getReturnInfo().isIndirect()) {
1429 // The C++ ABI is not aware of register usage, so we have to check if the
1430 // return value was sret and put it in a register ourselves if appropriate.
1431 if (State.FreeRegs) {
1432 --State.FreeRegs; // The sret parameter consumes a register.
1433 FI.getReturnInfo().setInReg(true);
1434 }
1435 }
1436
1437 // The chain argument effectively gives us another free register.
1438 if (FI.isChainCall())
1439 ++State.FreeRegs;
1440
1441 bool UsedInAlloca = false;
1442 for (auto &I : FI.arguments()) {
1443 I.info = classifyArgumentType(I.type, State);
1444 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1445 }
1446
1447 // If we needed to use inalloca for any argument, do a second pass and rewrite
1448 // all the memory arguments to use inalloca.
1449 if (UsedInAlloca)
1450 rewriteWithInAlloca(FI);
1451 }
1452
1453 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,CharUnits & StackOffset,ABIArgInfo & Info,QualType Type) const1454 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1455 CharUnits &StackOffset, ABIArgInfo &Info,
1456 QualType Type) const {
1457 // Arguments are always 4-byte-aligned.
1458 CharUnits FieldAlign = CharUnits::fromQuantity(4);
1459
1460 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1461 Info = ABIArgInfo::getInAlloca(FrameFields.size());
1462 FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1463 StackOffset += getContext().getTypeSizeInChars(Type);
1464
1465 // Insert padding bytes to respect alignment.
1466 CharUnits FieldEnd = StackOffset;
1467 StackOffset = FieldEnd.RoundUpToAlignment(FieldAlign);
1468 if (StackOffset != FieldEnd) {
1469 CharUnits NumBytes = StackOffset - FieldEnd;
1470 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1471 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1472 FrameFields.push_back(Ty);
1473 }
1474 }
1475
isArgInAlloca(const ABIArgInfo & Info)1476 static bool isArgInAlloca(const ABIArgInfo &Info) {
1477 // Leave ignored and inreg arguments alone.
1478 switch (Info.getKind()) {
1479 case ABIArgInfo::InAlloca:
1480 return true;
1481 case ABIArgInfo::Indirect:
1482 assert(Info.getIndirectByVal());
1483 return true;
1484 case ABIArgInfo::Ignore:
1485 return false;
1486 case ABIArgInfo::Direct:
1487 case ABIArgInfo::Extend:
1488 case ABIArgInfo::Expand:
1489 if (Info.getInReg())
1490 return false;
1491 return true;
1492 }
1493 llvm_unreachable("invalid enum");
1494 }
1495
rewriteWithInAlloca(CGFunctionInfo & FI) const1496 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1497 assert(IsWin32StructABI && "inalloca only supported on win32");
1498
1499 // Build a packed struct type for all of the arguments in memory.
1500 SmallVector<llvm::Type *, 6> FrameFields;
1501
1502 // The stack alignment is always 4.
1503 CharUnits StackAlign = CharUnits::fromQuantity(4);
1504
1505 CharUnits StackOffset;
1506 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1507
1508 // Put 'this' into the struct before 'sret', if necessary.
1509 bool IsThisCall =
1510 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1511 ABIArgInfo &Ret = FI.getReturnInfo();
1512 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1513 isArgInAlloca(I->info)) {
1514 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1515 ++I;
1516 }
1517
1518 // Put the sret parameter into the inalloca struct if it's in memory.
1519 if (Ret.isIndirect() && !Ret.getInReg()) {
1520 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1521 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1522 // On Windows, the hidden sret parameter is always returned in eax.
1523 Ret.setInAllocaSRet(IsWin32StructABI);
1524 }
1525
1526 // Skip the 'this' parameter in ecx.
1527 if (IsThisCall)
1528 ++I;
1529
1530 // Put arguments passed in memory into the struct.
1531 for (; I != E; ++I) {
1532 if (isArgInAlloca(I->info))
1533 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1534 }
1535
1536 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1537 /*isPacked=*/true),
1538 StackAlign);
1539 }
1540
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const1541 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1542 Address VAListAddr, QualType Ty) const {
1543
1544 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1545
1546 // x86-32 changes the alignment of certain arguments on the stack.
1547 //
1548 // Just messing with TypeInfo like this works because we never pass
1549 // anything indirectly.
1550 TypeInfo.second = CharUnits::fromQuantity(
1551 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1552
1553 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1554 TypeInfo, CharUnits::fromQuantity(4),
1555 /*AllowHigherAlign*/ true);
1556 }
1557
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)1558 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1559 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1560 assert(Triple.getArch() == llvm::Triple::x86);
1561
1562 switch (Opts.getStructReturnConvention()) {
1563 case CodeGenOptions::SRCK_Default:
1564 break;
1565 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
1566 return false;
1567 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
1568 return true;
1569 }
1570
1571 if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1572 return true;
1573
1574 switch (Triple.getOS()) {
1575 case llvm::Triple::DragonFly:
1576 case llvm::Triple::FreeBSD:
1577 case llvm::Triple::OpenBSD:
1578 case llvm::Triple::Bitrig:
1579 case llvm::Triple::Win32:
1580 return true;
1581 default:
1582 return false;
1583 }
1584 }
1585
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1586 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1587 llvm::GlobalValue *GV,
1588 CodeGen::CodeGenModule &CGM) const {
1589 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1590 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1591 // Get the LLVM function.
1592 llvm::Function *Fn = cast<llvm::Function>(GV);
1593
1594 // Now add the 'alignstack' attribute with a value of 16.
1595 llvm::AttrBuilder B;
1596 B.addStackAlignmentAttr(16);
1597 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1598 llvm::AttributeSet::get(CGM.getLLVMContext(),
1599 llvm::AttributeSet::FunctionIndex,
1600 B));
1601 }
1602 }
1603 }
1604
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1605 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1606 CodeGen::CodeGenFunction &CGF,
1607 llvm::Value *Address) const {
1608 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1609
1610 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1611
1612 // 0-7 are the eight integer registers; the order is different
1613 // on Darwin (for EH), but the range is the same.
1614 // 8 is %eip.
1615 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1616
1617 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1618 // 12-16 are st(0..4). Not sure why we stop at 4.
1619 // These have size 16, which is sizeof(long double) on
1620 // platforms with 8-byte alignment for that type.
1621 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1622 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1623
1624 } else {
1625 // 9 is %eflags, which doesn't get a size on Darwin for some
1626 // reason.
1627 Builder.CreateAlignedStore(
1628 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1629 CharUnits::One());
1630
1631 // 11-16 are st(0..5). Not sure why we stop at 5.
1632 // These have size 12, which is sizeof(long double) on
1633 // platforms with 4-byte alignment for that type.
1634 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1635 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1636 }
1637
1638 return false;
1639 }
1640
1641 //===----------------------------------------------------------------------===//
1642 // X86-64 ABI Implementation
1643 //===----------------------------------------------------------------------===//
1644
1645
1646 namespace {
1647 /// The AVX ABI level for X86 targets.
1648 enum class X86AVXABILevel {
1649 None,
1650 AVX,
1651 AVX512
1652 };
1653
1654 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel)1655 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1656 switch (AVXLevel) {
1657 case X86AVXABILevel::AVX512:
1658 return 512;
1659 case X86AVXABILevel::AVX:
1660 return 256;
1661 case X86AVXABILevel::None:
1662 return 128;
1663 }
1664 llvm_unreachable("Unknown AVXLevel");
1665 }
1666
1667 /// X86_64ABIInfo - The X86_64 ABI information.
1668 class X86_64ABIInfo : public ABIInfo {
1669 enum Class {
1670 Integer = 0,
1671 SSE,
1672 SSEUp,
1673 X87,
1674 X87Up,
1675 ComplexX87,
1676 NoClass,
1677 Memory
1678 };
1679
1680 /// merge - Implement the X86_64 ABI merging algorithm.
1681 ///
1682 /// Merge an accumulating classification \arg Accum with a field
1683 /// classification \arg Field.
1684 ///
1685 /// \param Accum - The accumulating classification. This should
1686 /// always be either NoClass or the result of a previous merge
1687 /// call. In addition, this should never be Memory (the caller
1688 /// should just return Memory for the aggregate).
1689 static Class merge(Class Accum, Class Field);
1690
1691 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1692 ///
1693 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1694 /// final MEMORY or SSE classes when necessary.
1695 ///
1696 /// \param AggregateSize - The size of the current aggregate in
1697 /// the classification process.
1698 ///
1699 /// \param Lo - The classification for the parts of the type
1700 /// residing in the low word of the containing object.
1701 ///
1702 /// \param Hi - The classification for the parts of the type
1703 /// residing in the higher words of the containing object.
1704 ///
1705 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1706
1707 /// classify - Determine the x86_64 register classes in which the
1708 /// given type T should be passed.
1709 ///
1710 /// \param Lo - The classification for the parts of the type
1711 /// residing in the low word of the containing object.
1712 ///
1713 /// \param Hi - The classification for the parts of the type
1714 /// residing in the high word of the containing object.
1715 ///
1716 /// \param OffsetBase - The bit offset of this type in the
1717 /// containing object. Some parameters are classified different
1718 /// depending on whether they straddle an eightbyte boundary.
1719 ///
1720 /// \param isNamedArg - Whether the argument in question is a "named"
1721 /// argument, as used in AMD64-ABI 3.5.7.
1722 ///
1723 /// If a word is unused its result will be NoClass; if a type should
1724 /// be passed in Memory then at least the classification of \arg Lo
1725 /// will be Memory.
1726 ///
1727 /// The \arg Lo class will be NoClass iff the argument is ignored.
1728 ///
1729 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1730 /// also be ComplexX87.
1731 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1732 bool isNamedArg) const;
1733
1734 llvm::Type *GetByteVectorType(QualType Ty) const;
1735 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1736 unsigned IROffset, QualType SourceTy,
1737 unsigned SourceOffset) const;
1738 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1739 unsigned IROffset, QualType SourceTy,
1740 unsigned SourceOffset) const;
1741
1742 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1743 /// such that the argument will be returned in memory.
1744 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1745
1746 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1747 /// such that the argument will be passed in memory.
1748 ///
1749 /// \param freeIntRegs - The number of free integer registers remaining
1750 /// available.
1751 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1752
1753 ABIArgInfo classifyReturnType(QualType RetTy) const;
1754
1755 ABIArgInfo classifyArgumentType(QualType Ty,
1756 unsigned freeIntRegs,
1757 unsigned &neededInt,
1758 unsigned &neededSSE,
1759 bool isNamedArg) const;
1760
1761 bool IsIllegalVectorType(QualType Ty) const;
1762
1763 /// The 0.98 ABI revision clarified a lot of ambiguities,
1764 /// unfortunately in ways that were not always consistent with
1765 /// certain previous compilers. In particular, platforms which
1766 /// required strict binary compatibility with older versions of GCC
1767 /// may need to exempt themselves.
honorsRevision0_98() const1768 bool honorsRevision0_98() const {
1769 return !getTarget().getTriple().isOSDarwin();
1770 }
1771
1772 X86AVXABILevel AVXLevel;
1773 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1774 // 64-bit hardware.
1775 bool Has64BitPointers;
1776
1777 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1778 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1779 ABIInfo(CGT), AVXLevel(AVXLevel),
1780 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1781 }
1782
isPassedUsingAVXType(QualType type) const1783 bool isPassedUsingAVXType(QualType type) const {
1784 unsigned neededInt, neededSSE;
1785 // The freeIntRegs argument doesn't matter here.
1786 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1787 /*isNamedArg*/true);
1788 if (info.isDirect()) {
1789 llvm::Type *ty = info.getCoerceToType();
1790 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1791 return (vectorTy->getBitWidth() > 128);
1792 }
1793 return false;
1794 }
1795
1796 void computeInfo(CGFunctionInfo &FI) const override;
1797
1798 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1799 QualType Ty) const override;
1800 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1801 QualType Ty) const override;
1802
has64BitPointers() const1803 bool has64BitPointers() const {
1804 return Has64BitPointers;
1805 }
1806 };
1807
1808 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1809 class WinX86_64ABIInfo : public ABIInfo {
1810 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)1811 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
1812 : ABIInfo(CGT),
1813 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1814
1815 void computeInfo(CGFunctionInfo &FI) const override;
1816
1817 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1818 QualType Ty) const override;
1819
isHomogeneousAggregateBaseType(QualType Ty) const1820 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1821 // FIXME: Assumes vectorcall is in use.
1822 return isX86VectorTypeForVectorCall(getContext(), Ty);
1823 }
1824
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const1825 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1826 uint64_t NumMembers) const override {
1827 // FIXME: Assumes vectorcall is in use.
1828 return isX86VectorCallAggregateSmallEnough(NumMembers);
1829 }
1830
1831 private:
1832 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1833 bool IsReturnType) const;
1834
1835 bool IsMingw64;
1836 };
1837
1838 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1839 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1840 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1841 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1842
getABIInfo() const1843 const X86_64ABIInfo &getABIInfo() const {
1844 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1845 }
1846
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1847 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1848 return 7;
1849 }
1850
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1851 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1852 llvm::Value *Address) const override {
1853 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1854
1855 // 0-15 are the 16 integer registers.
1856 // 16 is %rip.
1857 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1858 return false;
1859 }
1860
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1861 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1862 StringRef Constraint,
1863 llvm::Type* Ty) const override {
1864 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1865 }
1866
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1867 bool isNoProtoCallVariadic(const CallArgList &args,
1868 const FunctionNoProtoType *fnType) const override {
1869 // The default CC on x86-64 sets %al to the number of SSA
1870 // registers used, and GCC sets this when calling an unprototyped
1871 // function, so we override the default behavior. However, don't do
1872 // that when AVX types are involved: the ABI explicitly states it is
1873 // undefined, and it doesn't work in practice because of how the ABI
1874 // defines varargs anyway.
1875 if (fnType->getCallConv() == CC_C) {
1876 bool HasAVXType = false;
1877 for (CallArgList::const_iterator
1878 it = args.begin(), ie = args.end(); it != ie; ++it) {
1879 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1880 HasAVXType = true;
1881 break;
1882 }
1883 }
1884
1885 if (!HasAVXType)
1886 return true;
1887 }
1888
1889 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1890 }
1891
1892 llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1893 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1894 unsigned Sig;
1895 if (getABIInfo().has64BitPointers())
1896 Sig = (0xeb << 0) | // jmp rel8
1897 (0x0a << 8) | // .+0x0c
1898 ('F' << 16) |
1899 ('T' << 24);
1900 else
1901 Sig = (0xeb << 0) | // jmp rel8
1902 (0x06 << 8) | // .+0x08
1903 ('F' << 16) |
1904 ('T' << 24);
1905 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1906 }
1907 };
1908
1909 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1910 public:
PS4TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1911 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1912 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1913
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1914 void getDependentLibraryOption(llvm::StringRef Lib,
1915 llvm::SmallString<24> &Opt) const override {
1916 Opt = "\01";
1917 // If the argument contains a space, enclose it in quotes.
1918 if (Lib.find(" ") != StringRef::npos)
1919 Opt += "\"" + Lib.str() + "\"";
1920 else
1921 Opt += Lib;
1922 }
1923 };
1924
qualifyWindowsLibrary(llvm::StringRef Lib)1925 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1926 // If the argument does not end in .lib, automatically add the suffix.
1927 // If the argument contains a space, enclose it in quotes.
1928 // This matches the behavior of MSVC.
1929 bool Quote = (Lib.find(" ") != StringRef::npos);
1930 std::string ArgStr = Quote ? "\"" : "";
1931 ArgStr += Lib;
1932 if (!Lib.endswith_lower(".lib"))
1933 ArgStr += ".lib";
1934 ArgStr += Quote ? "\"" : "";
1935 return ArgStr;
1936 }
1937
1938 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1939 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters)1940 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1941 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1942 unsigned NumRegisterParameters)
1943 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1944 Win32StructABI, NumRegisterParameters, false) {}
1945
1946 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1947 CodeGen::CodeGenModule &CGM) const override;
1948
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1949 void getDependentLibraryOption(llvm::StringRef Lib,
1950 llvm::SmallString<24> &Opt) const override {
1951 Opt = "/DEFAULTLIB:";
1952 Opt += qualifyWindowsLibrary(Lib);
1953 }
1954
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1955 void getDetectMismatchOption(llvm::StringRef Name,
1956 llvm::StringRef Value,
1957 llvm::SmallString<32> &Opt) const override {
1958 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1959 }
1960 };
1961
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)1962 static void addStackProbeSizeTargetAttribute(const Decl *D,
1963 llvm::GlobalValue *GV,
1964 CodeGen::CodeGenModule &CGM) {
1965 if (D && isa<FunctionDecl>(D)) {
1966 if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1967 llvm::Function *Fn = cast<llvm::Function>(GV);
1968
1969 Fn->addFnAttr("stack-probe-size",
1970 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1971 }
1972 }
1973 }
1974
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1975 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1976 llvm::GlobalValue *GV,
1977 CodeGen::CodeGenModule &CGM) const {
1978 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1979
1980 addStackProbeSizeTargetAttribute(D, GV, CGM);
1981 }
1982
1983 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1984 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1985 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1986 X86AVXABILevel AVXLevel)
1987 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1988
1989 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1990 CodeGen::CodeGenModule &CGM) const override;
1991
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1992 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1993 return 7;
1994 }
1995
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1996 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1997 llvm::Value *Address) const override {
1998 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1999
2000 // 0-15 are the 16 integer registers.
2001 // 16 is %rip.
2002 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2003 return false;
2004 }
2005
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2006 void getDependentLibraryOption(llvm::StringRef Lib,
2007 llvm::SmallString<24> &Opt) const override {
2008 Opt = "/DEFAULTLIB:";
2009 Opt += qualifyWindowsLibrary(Lib);
2010 }
2011
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const2012 void getDetectMismatchOption(llvm::StringRef Name,
2013 llvm::StringRef Value,
2014 llvm::SmallString<32> &Opt) const override {
2015 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2016 }
2017 };
2018
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2019 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2020 llvm::GlobalValue *GV,
2021 CodeGen::CodeGenModule &CGM) const {
2022 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2023
2024 addStackProbeSizeTargetAttribute(D, GV, CGM);
2025 }
2026 }
2027
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const2028 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2029 Class &Hi) const {
2030 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2031 //
2032 // (a) If one of the classes is Memory, the whole argument is passed in
2033 // memory.
2034 //
2035 // (b) If X87UP is not preceded by X87, the whole argument is passed in
2036 // memory.
2037 //
2038 // (c) If the size of the aggregate exceeds two eightbytes and the first
2039 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2040 // argument is passed in memory. NOTE: This is necessary to keep the
2041 // ABI working for processors that don't support the __m256 type.
2042 //
2043 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2044 //
2045 // Some of these are enforced by the merging logic. Others can arise
2046 // only with unions; for example:
2047 // union { _Complex double; unsigned; }
2048 //
2049 // Note that clauses (b) and (c) were added in 0.98.
2050 //
2051 if (Hi == Memory)
2052 Lo = Memory;
2053 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2054 Lo = Memory;
2055 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2056 Lo = Memory;
2057 if (Hi == SSEUp && Lo != SSE)
2058 Hi = SSE;
2059 }
2060
merge(Class Accum,Class Field)2061 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2062 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2063 // classified recursively so that always two fields are
2064 // considered. The resulting class is calculated according to
2065 // the classes of the fields in the eightbyte:
2066 //
2067 // (a) If both classes are equal, this is the resulting class.
2068 //
2069 // (b) If one of the classes is NO_CLASS, the resulting class is
2070 // the other class.
2071 //
2072 // (c) If one of the classes is MEMORY, the result is the MEMORY
2073 // class.
2074 //
2075 // (d) If one of the classes is INTEGER, the result is the
2076 // INTEGER.
2077 //
2078 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2079 // MEMORY is used as class.
2080 //
2081 // (f) Otherwise class SSE is used.
2082
2083 // Accum should never be memory (we should have returned) or
2084 // ComplexX87 (because this cannot be passed in a structure).
2085 assert((Accum != Memory && Accum != ComplexX87) &&
2086 "Invalid accumulated classification during merge.");
2087 if (Accum == Field || Field == NoClass)
2088 return Accum;
2089 if (Field == Memory)
2090 return Memory;
2091 if (Accum == NoClass)
2092 return Field;
2093 if (Accum == Integer || Field == Integer)
2094 return Integer;
2095 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2096 Accum == X87 || Accum == X87Up)
2097 return Memory;
2098 return SSE;
2099 }
2100
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg) const2101 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2102 Class &Lo, Class &Hi, bool isNamedArg) const {
2103 // FIXME: This code can be simplified by introducing a simple value class for
2104 // Class pairs with appropriate constructor methods for the various
2105 // situations.
2106
2107 // FIXME: Some of the split computations are wrong; unaligned vectors
2108 // shouldn't be passed in registers for example, so there is no chance they
2109 // can straddle an eightbyte. Verify & simplify.
2110
2111 Lo = Hi = NoClass;
2112
2113 Class &Current = OffsetBase < 64 ? Lo : Hi;
2114 Current = Memory;
2115
2116 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2117 BuiltinType::Kind k = BT->getKind();
2118
2119 if (k == BuiltinType::Void) {
2120 Current = NoClass;
2121 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2122 Lo = Integer;
2123 Hi = Integer;
2124 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2125 Current = Integer;
2126 } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2127 Current = SSE;
2128 } else if (k == BuiltinType::LongDouble) {
2129 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2130 if (LDF == &llvm::APFloat::IEEEquad) {
2131 Lo = SSE;
2132 Hi = SSEUp;
2133 } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2134 Lo = X87;
2135 Hi = X87Up;
2136 } else if (LDF == &llvm::APFloat::IEEEdouble) {
2137 Current = SSE;
2138 } else
2139 llvm_unreachable("unexpected long double representation!");
2140 }
2141 // FIXME: _Decimal32 and _Decimal64 are SSE.
2142 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2143 return;
2144 }
2145
2146 if (const EnumType *ET = Ty->getAs<EnumType>()) {
2147 // Classify the underlying integer type.
2148 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2149 return;
2150 }
2151
2152 if (Ty->hasPointerRepresentation()) {
2153 Current = Integer;
2154 return;
2155 }
2156
2157 if (Ty->isMemberPointerType()) {
2158 if (Ty->isMemberFunctionPointerType()) {
2159 if (Has64BitPointers) {
2160 // If Has64BitPointers, this is an {i64, i64}, so classify both
2161 // Lo and Hi now.
2162 Lo = Hi = Integer;
2163 } else {
2164 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2165 // straddles an eightbyte boundary, Hi should be classified as well.
2166 uint64_t EB_FuncPtr = (OffsetBase) / 64;
2167 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2168 if (EB_FuncPtr != EB_ThisAdj) {
2169 Lo = Hi = Integer;
2170 } else {
2171 Current = Integer;
2172 }
2173 }
2174 } else {
2175 Current = Integer;
2176 }
2177 return;
2178 }
2179
2180 if (const VectorType *VT = Ty->getAs<VectorType>()) {
2181 uint64_t Size = getContext().getTypeSize(VT);
2182 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2183 // gcc passes the following as integer:
2184 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2185 // 2 bytes - <2 x char>, <1 x short>
2186 // 1 byte - <1 x char>
2187 Current = Integer;
2188
2189 // If this type crosses an eightbyte boundary, it should be
2190 // split.
2191 uint64_t EB_Lo = (OffsetBase) / 64;
2192 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2193 if (EB_Lo != EB_Hi)
2194 Hi = Lo;
2195 } else if (Size == 64) {
2196 // gcc passes <1 x double> in memory. :(
2197 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
2198 return;
2199
2200 // gcc passes <1 x long long> as INTEGER.
2201 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
2202 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2203 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
2204 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
2205 Current = Integer;
2206 else
2207 Current = SSE;
2208
2209 // If this type crosses an eightbyte boundary, it should be
2210 // split.
2211 if (OffsetBase && OffsetBase != 64)
2212 Hi = Lo;
2213 } else if (Size == 128 ||
2214 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2215 // Arguments of 256-bits are split into four eightbyte chunks. The
2216 // least significant one belongs to class SSE and all the others to class
2217 // SSEUP. The original Lo and Hi design considers that types can't be
2218 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2219 // This design isn't correct for 256-bits, but since there're no cases
2220 // where the upper parts would need to be inspected, avoid adding
2221 // complexity and just consider Hi to match the 64-256 part.
2222 //
2223 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2224 // registers if they are "named", i.e. not part of the "..." of a
2225 // variadic function.
2226 //
2227 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2228 // split into eight eightbyte chunks, one SSE and seven SSEUP.
2229 Lo = SSE;
2230 Hi = SSEUp;
2231 }
2232 return;
2233 }
2234
2235 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2236 QualType ET = getContext().getCanonicalType(CT->getElementType());
2237
2238 uint64_t Size = getContext().getTypeSize(Ty);
2239 if (ET->isIntegralOrEnumerationType()) {
2240 if (Size <= 64)
2241 Current = Integer;
2242 else if (Size <= 128)
2243 Lo = Hi = Integer;
2244 } else if (ET == getContext().FloatTy) {
2245 Current = SSE;
2246 } else if (ET == getContext().DoubleTy) {
2247 Lo = Hi = SSE;
2248 } else if (ET == getContext().LongDoubleTy) {
2249 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2250 if (LDF == &llvm::APFloat::IEEEquad)
2251 Current = Memory;
2252 else if (LDF == &llvm::APFloat::x87DoubleExtended)
2253 Current = ComplexX87;
2254 else if (LDF == &llvm::APFloat::IEEEdouble)
2255 Lo = Hi = SSE;
2256 else
2257 llvm_unreachable("unexpected long double representation!");
2258 }
2259
2260 // If this complex type crosses an eightbyte boundary then it
2261 // should be split.
2262 uint64_t EB_Real = (OffsetBase) / 64;
2263 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2264 if (Hi == NoClass && EB_Real != EB_Imag)
2265 Hi = Lo;
2266
2267 return;
2268 }
2269
2270 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2271 // Arrays are treated like structures.
2272
2273 uint64_t Size = getContext().getTypeSize(Ty);
2274
2275 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2276 // than four eightbytes, ..., it has class MEMORY.
2277 if (Size > 256)
2278 return;
2279
2280 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2281 // fields, it has class MEMORY.
2282 //
2283 // Only need to check alignment of array base.
2284 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2285 return;
2286
2287 // Otherwise implement simplified merge. We could be smarter about
2288 // this, but it isn't worth it and would be harder to verify.
2289 Current = NoClass;
2290 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2291 uint64_t ArraySize = AT->getSize().getZExtValue();
2292
2293 // The only case a 256-bit wide vector could be used is when the array
2294 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2295 // to work for sizes wider than 128, early check and fallback to memory.
2296 if (Size > 128 && EltSize != 256)
2297 return;
2298
2299 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2300 Class FieldLo, FieldHi;
2301 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2302 Lo = merge(Lo, FieldLo);
2303 Hi = merge(Hi, FieldHi);
2304 if (Lo == Memory || Hi == Memory)
2305 break;
2306 }
2307
2308 postMerge(Size, Lo, Hi);
2309 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2310 return;
2311 }
2312
2313 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2314 uint64_t Size = getContext().getTypeSize(Ty);
2315
2316 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2317 // than four eightbytes, ..., it has class MEMORY.
2318 if (Size > 256)
2319 return;
2320
2321 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2322 // copy constructor or a non-trivial destructor, it is passed by invisible
2323 // reference.
2324 if (getRecordArgABI(RT, getCXXABI()))
2325 return;
2326
2327 const RecordDecl *RD = RT->getDecl();
2328
2329 // Assume variable sized types are passed in memory.
2330 if (RD->hasFlexibleArrayMember())
2331 return;
2332
2333 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2334
2335 // Reset Lo class, this will be recomputed.
2336 Current = NoClass;
2337
2338 // If this is a C++ record, classify the bases first.
2339 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2340 for (const auto &I : CXXRD->bases()) {
2341 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2342 "Unexpected base class!");
2343 const CXXRecordDecl *Base =
2344 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2345
2346 // Classify this field.
2347 //
2348 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2349 // single eightbyte, each is classified separately. Each eightbyte gets
2350 // initialized to class NO_CLASS.
2351 Class FieldLo, FieldHi;
2352 uint64_t Offset =
2353 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2354 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2355 Lo = merge(Lo, FieldLo);
2356 Hi = merge(Hi, FieldHi);
2357 if (Lo == Memory || Hi == Memory) {
2358 postMerge(Size, Lo, Hi);
2359 return;
2360 }
2361 }
2362 }
2363
2364 // Classify the fields one at a time, merging the results.
2365 unsigned idx = 0;
2366 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2367 i != e; ++i, ++idx) {
2368 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2369 bool BitField = i->isBitField();
2370
2371 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2372 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2373 //
2374 // The only case a 256-bit wide vector could be used is when the struct
2375 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2376 // to work for sizes wider than 128, early check and fallback to memory.
2377 //
2378 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2379 Lo = Memory;
2380 postMerge(Size, Lo, Hi);
2381 return;
2382 }
2383 // Note, skip this test for bit-fields, see below.
2384 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2385 Lo = Memory;
2386 postMerge(Size, Lo, Hi);
2387 return;
2388 }
2389
2390 // Classify this field.
2391 //
2392 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2393 // exceeds a single eightbyte, each is classified
2394 // separately. Each eightbyte gets initialized to class
2395 // NO_CLASS.
2396 Class FieldLo, FieldHi;
2397
2398 // Bit-fields require special handling, they do not force the
2399 // structure to be passed in memory even if unaligned, and
2400 // therefore they can straddle an eightbyte.
2401 if (BitField) {
2402 // Ignore padding bit-fields.
2403 if (i->isUnnamedBitfield())
2404 continue;
2405
2406 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2407 uint64_t Size = i->getBitWidthValue(getContext());
2408
2409 uint64_t EB_Lo = Offset / 64;
2410 uint64_t EB_Hi = (Offset + Size - 1) / 64;
2411
2412 if (EB_Lo) {
2413 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2414 FieldLo = NoClass;
2415 FieldHi = Integer;
2416 } else {
2417 FieldLo = Integer;
2418 FieldHi = EB_Hi ? Integer : NoClass;
2419 }
2420 } else
2421 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2422 Lo = merge(Lo, FieldLo);
2423 Hi = merge(Hi, FieldHi);
2424 if (Lo == Memory || Hi == Memory)
2425 break;
2426 }
2427
2428 postMerge(Size, Lo, Hi);
2429 }
2430 }
2431
getIndirectReturnResult(QualType Ty) const2432 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2433 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2434 // place naturally.
2435 if (!isAggregateTypeForABI(Ty)) {
2436 // Treat an enum type as its underlying type.
2437 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2438 Ty = EnumTy->getDecl()->getIntegerType();
2439
2440 return (Ty->isPromotableIntegerType() ?
2441 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2442 }
2443
2444 return getNaturalAlignIndirect(Ty);
2445 }
2446
IsIllegalVectorType(QualType Ty) const2447 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2448 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2449 uint64_t Size = getContext().getTypeSize(VecTy);
2450 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2451 if (Size <= 64 || Size > LargestVector)
2452 return true;
2453 }
2454
2455 return false;
2456 }
2457
getIndirectResult(QualType Ty,unsigned freeIntRegs) const2458 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2459 unsigned freeIntRegs) const {
2460 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2461 // place naturally.
2462 //
2463 // This assumption is optimistic, as there could be free registers available
2464 // when we need to pass this argument in memory, and LLVM could try to pass
2465 // the argument in the free register. This does not seem to happen currently,
2466 // but this code would be much safer if we could mark the argument with
2467 // 'onstack'. See PR12193.
2468 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2469 // Treat an enum type as its underlying type.
2470 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2471 Ty = EnumTy->getDecl()->getIntegerType();
2472
2473 return (Ty->isPromotableIntegerType() ?
2474 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2475 }
2476
2477 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2478 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2479
2480 // Compute the byval alignment. We specify the alignment of the byval in all
2481 // cases so that the mid-level optimizer knows the alignment of the byval.
2482 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2483
2484 // Attempt to avoid passing indirect results using byval when possible. This
2485 // is important for good codegen.
2486 //
2487 // We do this by coercing the value into a scalar type which the backend can
2488 // handle naturally (i.e., without using byval).
2489 //
2490 // For simplicity, we currently only do this when we have exhausted all of the
2491 // free integer registers. Doing this when there are free integer registers
2492 // would require more care, as we would have to ensure that the coerced value
2493 // did not claim the unused register. That would require either reording the
2494 // arguments to the function (so that any subsequent inreg values came first),
2495 // or only doing this optimization when there were no following arguments that
2496 // might be inreg.
2497 //
2498 // We currently expect it to be rare (particularly in well written code) for
2499 // arguments to be passed on the stack when there are still free integer
2500 // registers available (this would typically imply large structs being passed
2501 // by value), so this seems like a fair tradeoff for now.
2502 //
2503 // We can revisit this if the backend grows support for 'onstack' parameter
2504 // attributes. See PR12193.
2505 if (freeIntRegs == 0) {
2506 uint64_t Size = getContext().getTypeSize(Ty);
2507
2508 // If this type fits in an eightbyte, coerce it into the matching integral
2509 // type, which will end up on the stack (with alignment 8).
2510 if (Align == 8 && Size <= 64)
2511 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2512 Size));
2513 }
2514
2515 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2516 }
2517
2518 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2519 /// register. Pick an LLVM IR type that will be passed as a vector register.
GetByteVectorType(QualType Ty) const2520 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2521 // Wrapper structs/arrays that only contain vectors are passed just like
2522 // vectors; strip them off if present.
2523 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2524 Ty = QualType(InnerTy, 0);
2525
2526 llvm::Type *IRType = CGT.ConvertType(Ty);
2527 if (isa<llvm::VectorType>(IRType) ||
2528 IRType->getTypeID() == llvm::Type::FP128TyID)
2529 return IRType;
2530
2531 // We couldn't find the preferred IR vector type for 'Ty'.
2532 uint64_t Size = getContext().getTypeSize(Ty);
2533 assert((Size == 128 || Size == 256) && "Invalid type found!");
2534
2535 // Return a LLVM IR vector type based on the size of 'Ty'.
2536 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2537 Size / 64);
2538 }
2539
2540 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2541 /// is known to either be off the end of the specified type or being in
2542 /// alignment padding. The user type specified is known to be at most 128 bits
2543 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2544 /// classification that put one of the two halves in the INTEGER class.
2545 ///
2546 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)2547 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2548 unsigned EndBit, ASTContext &Context) {
2549 // If the bytes being queried are off the end of the type, there is no user
2550 // data hiding here. This handles analysis of builtins, vectors and other
2551 // types that don't contain interesting padding.
2552 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2553 if (TySize <= StartBit)
2554 return true;
2555
2556 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2557 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2558 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2559
2560 // Check each element to see if the element overlaps with the queried range.
2561 for (unsigned i = 0; i != NumElts; ++i) {
2562 // If the element is after the span we care about, then we're done..
2563 unsigned EltOffset = i*EltSize;
2564 if (EltOffset >= EndBit) break;
2565
2566 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2567 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2568 EndBit-EltOffset, Context))
2569 return false;
2570 }
2571 // If it overlaps no elements, then it is safe to process as padding.
2572 return true;
2573 }
2574
2575 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2576 const RecordDecl *RD = RT->getDecl();
2577 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2578
2579 // If this is a C++ record, check the bases first.
2580 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2581 for (const auto &I : CXXRD->bases()) {
2582 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2583 "Unexpected base class!");
2584 const CXXRecordDecl *Base =
2585 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2586
2587 // If the base is after the span we care about, ignore it.
2588 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2589 if (BaseOffset >= EndBit) continue;
2590
2591 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2592 if (!BitsContainNoUserData(I.getType(), BaseStart,
2593 EndBit-BaseOffset, Context))
2594 return false;
2595 }
2596 }
2597
2598 // Verify that no field has data that overlaps the region of interest. Yes
2599 // this could be sped up a lot by being smarter about queried fields,
2600 // however we're only looking at structs up to 16 bytes, so we don't care
2601 // much.
2602 unsigned idx = 0;
2603 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2604 i != e; ++i, ++idx) {
2605 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2606
2607 // If we found a field after the region we care about, then we're done.
2608 if (FieldOffset >= EndBit) break;
2609
2610 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2611 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2612 Context))
2613 return false;
2614 }
2615
2616 // If nothing in this record overlapped the area of interest, then we're
2617 // clean.
2618 return true;
2619 }
2620
2621 return false;
2622 }
2623
2624 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2625 /// float member at the specified offset. For example, {int,{float}} has a
2626 /// float at offset 4. It is conservatively correct for this routine to return
2627 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)2628 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2629 const llvm::DataLayout &TD) {
2630 // Base case if we find a float.
2631 if (IROffset == 0 && IRType->isFloatTy())
2632 return true;
2633
2634 // If this is a struct, recurse into the field at the specified offset.
2635 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2636 const llvm::StructLayout *SL = TD.getStructLayout(STy);
2637 unsigned Elt = SL->getElementContainingOffset(IROffset);
2638 IROffset -= SL->getElementOffset(Elt);
2639 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2640 }
2641
2642 // If this is an array, recurse into the field at the specified offset.
2643 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2644 llvm::Type *EltTy = ATy->getElementType();
2645 unsigned EltSize = TD.getTypeAllocSize(EltTy);
2646 IROffset -= IROffset/EltSize*EltSize;
2647 return ContainsFloatAtOffset(EltTy, IROffset, TD);
2648 }
2649
2650 return false;
2651 }
2652
2653
2654 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2655 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2656 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2657 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2658 QualType SourceTy, unsigned SourceOffset) const {
2659 // The only three choices we have are either double, <2 x float>, or float. We
2660 // pass as float if the last 4 bytes is just padding. This happens for
2661 // structs that contain 3 floats.
2662 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2663 SourceOffset*8+64, getContext()))
2664 return llvm::Type::getFloatTy(getVMContext());
2665
2666 // We want to pass as <2 x float> if the LLVM IR type contains a float at
2667 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
2668 // case.
2669 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2670 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2671 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2672
2673 return llvm::Type::getDoubleTy(getVMContext());
2674 }
2675
2676
2677 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2678 /// an 8-byte GPR. This means that we either have a scalar or we are talking
2679 /// about the high or low part of an up-to-16-byte struct. This routine picks
2680 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2681 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2682 /// etc).
2683 ///
2684 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2685 /// the source type. IROffset is an offset in bytes into the LLVM IR type that
2686 /// the 8-byte value references. PrefType may be null.
2687 ///
2688 /// SourceTy is the source-level type for the entire argument. SourceOffset is
2689 /// an offset into this that we're processing (which is always either 0 or 8).
2690 ///
2691 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2692 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2693 QualType SourceTy, unsigned SourceOffset) const {
2694 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2695 // returning an 8-byte unit starting with it. See if we can safely use it.
2696 if (IROffset == 0) {
2697 // Pointers and int64's always fill the 8-byte unit.
2698 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2699 IRType->isIntegerTy(64))
2700 return IRType;
2701
2702 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2703 // goodness in the source type is just tail padding. This is allowed to
2704 // kick in for struct {double,int} on the int, but not on
2705 // struct{double,int,int} because we wouldn't return the second int. We
2706 // have to do this analysis on the source type because we can't depend on
2707 // unions being lowered a specific way etc.
2708 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2709 IRType->isIntegerTy(32) ||
2710 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2711 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2712 cast<llvm::IntegerType>(IRType)->getBitWidth();
2713
2714 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2715 SourceOffset*8+64, getContext()))
2716 return IRType;
2717 }
2718 }
2719
2720 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2721 // If this is a struct, recurse into the field at the specified offset.
2722 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2723 if (IROffset < SL->getSizeInBytes()) {
2724 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2725 IROffset -= SL->getElementOffset(FieldIdx);
2726
2727 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2728 SourceTy, SourceOffset);
2729 }
2730 }
2731
2732 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2733 llvm::Type *EltTy = ATy->getElementType();
2734 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2735 unsigned EltOffset = IROffset/EltSize*EltSize;
2736 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2737 SourceOffset);
2738 }
2739
2740 // Okay, we don't have any better idea of what to pass, so we pass this in an
2741 // integer register that isn't too big to fit the rest of the struct.
2742 unsigned TySizeInBytes =
2743 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2744
2745 assert(TySizeInBytes != SourceOffset && "Empty field?");
2746
2747 // It is always safe to classify this as an integer type up to i64 that
2748 // isn't larger than the structure.
2749 return llvm::IntegerType::get(getVMContext(),
2750 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2751 }
2752
2753
2754 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2755 /// be used as elements of a two register pair to pass or return, return a
2756 /// first class aggregate to represent them. For example, if the low part of
2757 /// a by-value argument should be passed as i32* and the high part as float,
2758 /// return {i32*, float}.
2759 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)2760 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2761 const llvm::DataLayout &TD) {
2762 // In order to correctly satisfy the ABI, we need to the high part to start
2763 // at offset 8. If the high and low parts we inferred are both 4-byte types
2764 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2765 // the second element at offset 8. Check for this:
2766 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2767 unsigned HiAlign = TD.getABITypeAlignment(Hi);
2768 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2769 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2770
2771 // To handle this, we have to increase the size of the low part so that the
2772 // second element will start at an 8 byte offset. We can't increase the size
2773 // of the second element because it might make us access off the end of the
2774 // struct.
2775 if (HiStart != 8) {
2776 // There are usually two sorts of types the ABI generation code can produce
2777 // for the low part of a pair that aren't 8 bytes in size: float or
2778 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
2779 // NaCl).
2780 // Promote these to a larger type.
2781 if (Lo->isFloatTy())
2782 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2783 else {
2784 assert((Lo->isIntegerTy() || Lo->isPointerTy())
2785 && "Invalid/unknown lo type");
2786 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2787 }
2788 }
2789
2790 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2791
2792
2793 // Verify that the second element is at an 8-byte offset.
2794 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2795 "Invalid x86-64 argument pair!");
2796 return Result;
2797 }
2798
2799 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const2800 classifyReturnType(QualType RetTy) const {
2801 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2802 // classification algorithm.
2803 X86_64ABIInfo::Class Lo, Hi;
2804 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2805
2806 // Check some invariants.
2807 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2808 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2809
2810 llvm::Type *ResType = nullptr;
2811 switch (Lo) {
2812 case NoClass:
2813 if (Hi == NoClass)
2814 return ABIArgInfo::getIgnore();
2815 // If the low part is just padding, it takes no register, leave ResType
2816 // null.
2817 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2818 "Unknown missing lo part");
2819 break;
2820
2821 case SSEUp:
2822 case X87Up:
2823 llvm_unreachable("Invalid classification for lo word.");
2824
2825 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2826 // hidden argument.
2827 case Memory:
2828 return getIndirectReturnResult(RetTy);
2829
2830 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2831 // available register of the sequence %rax, %rdx is used.
2832 case Integer:
2833 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2834
2835 // If we have a sign or zero extended integer, make sure to return Extend
2836 // so that the parameter gets the right LLVM IR attributes.
2837 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2838 // Treat an enum type as its underlying type.
2839 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2840 RetTy = EnumTy->getDecl()->getIntegerType();
2841
2842 if (RetTy->isIntegralOrEnumerationType() &&
2843 RetTy->isPromotableIntegerType())
2844 return ABIArgInfo::getExtend();
2845 }
2846 break;
2847
2848 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2849 // available SSE register of the sequence %xmm0, %xmm1 is used.
2850 case SSE:
2851 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2852 break;
2853
2854 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2855 // returned on the X87 stack in %st0 as 80-bit x87 number.
2856 case X87:
2857 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2858 break;
2859
2860 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2861 // part of the value is returned in %st0 and the imaginary part in
2862 // %st1.
2863 case ComplexX87:
2864 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2865 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2866 llvm::Type::getX86_FP80Ty(getVMContext()),
2867 nullptr);
2868 break;
2869 }
2870
2871 llvm::Type *HighPart = nullptr;
2872 switch (Hi) {
2873 // Memory was handled previously and X87 should
2874 // never occur as a hi class.
2875 case Memory:
2876 case X87:
2877 llvm_unreachable("Invalid classification for hi word.");
2878
2879 case ComplexX87: // Previously handled.
2880 case NoClass:
2881 break;
2882
2883 case Integer:
2884 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2885 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2886 return ABIArgInfo::getDirect(HighPart, 8);
2887 break;
2888 case SSE:
2889 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2890 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2891 return ABIArgInfo::getDirect(HighPart, 8);
2892 break;
2893
2894 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2895 // is passed in the next available eightbyte chunk if the last used
2896 // vector register.
2897 //
2898 // SSEUP should always be preceded by SSE, just widen.
2899 case SSEUp:
2900 assert(Lo == SSE && "Unexpected SSEUp classification.");
2901 ResType = GetByteVectorType(RetTy);
2902 break;
2903
2904 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2905 // returned together with the previous X87 value in %st0.
2906 case X87Up:
2907 // If X87Up is preceded by X87, we don't need to do
2908 // anything. However, in some cases with unions it may not be
2909 // preceded by X87. In such situations we follow gcc and pass the
2910 // extra bits in an SSE reg.
2911 if (Lo != X87) {
2912 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2913 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2914 return ABIArgInfo::getDirect(HighPart, 8);
2915 }
2916 break;
2917 }
2918
2919 // If a high part was specified, merge it together with the low part. It is
2920 // known to pass in the high eightbyte of the result. We do this by forming a
2921 // first class struct aggregate with the high and low part: {low, high}
2922 if (HighPart)
2923 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2924
2925 return ABIArgInfo::getDirect(ResType);
2926 }
2927
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg) const2928 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2929 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2930 bool isNamedArg)
2931 const
2932 {
2933 Ty = useFirstFieldIfTransparentUnion(Ty);
2934
2935 X86_64ABIInfo::Class Lo, Hi;
2936 classify(Ty, 0, Lo, Hi, isNamedArg);
2937
2938 // Check some invariants.
2939 // FIXME: Enforce these by construction.
2940 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2941 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2942
2943 neededInt = 0;
2944 neededSSE = 0;
2945 llvm::Type *ResType = nullptr;
2946 switch (Lo) {
2947 case NoClass:
2948 if (Hi == NoClass)
2949 return ABIArgInfo::getIgnore();
2950 // If the low part is just padding, it takes no register, leave ResType
2951 // null.
2952 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2953 "Unknown missing lo part");
2954 break;
2955
2956 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2957 // on the stack.
2958 case Memory:
2959
2960 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2961 // COMPLEX_X87, it is passed in memory.
2962 case X87:
2963 case ComplexX87:
2964 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2965 ++neededInt;
2966 return getIndirectResult(Ty, freeIntRegs);
2967
2968 case SSEUp:
2969 case X87Up:
2970 llvm_unreachable("Invalid classification for lo word.");
2971
2972 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2973 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2974 // and %r9 is used.
2975 case Integer:
2976 ++neededInt;
2977
2978 // Pick an 8-byte type based on the preferred type.
2979 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2980
2981 // If we have a sign or zero extended integer, make sure to return Extend
2982 // so that the parameter gets the right LLVM IR attributes.
2983 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2984 // Treat an enum type as its underlying type.
2985 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2986 Ty = EnumTy->getDecl()->getIntegerType();
2987
2988 if (Ty->isIntegralOrEnumerationType() &&
2989 Ty->isPromotableIntegerType())
2990 return ABIArgInfo::getExtend();
2991 }
2992
2993 break;
2994
2995 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2996 // available SSE register is used, the registers are taken in the
2997 // order from %xmm0 to %xmm7.
2998 case SSE: {
2999 llvm::Type *IRType = CGT.ConvertType(Ty);
3000 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3001 ++neededSSE;
3002 break;
3003 }
3004 }
3005
3006 llvm::Type *HighPart = nullptr;
3007 switch (Hi) {
3008 // Memory was handled previously, ComplexX87 and X87 should
3009 // never occur as hi classes, and X87Up must be preceded by X87,
3010 // which is passed in memory.
3011 case Memory:
3012 case X87:
3013 case ComplexX87:
3014 llvm_unreachable("Invalid classification for hi word.");
3015
3016 case NoClass: break;
3017
3018 case Integer:
3019 ++neededInt;
3020 // Pick an 8-byte type based on the preferred type.
3021 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3022
3023 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
3024 return ABIArgInfo::getDirect(HighPart, 8);
3025 break;
3026
3027 // X87Up generally doesn't occur here (long double is passed in
3028 // memory), except in situations involving unions.
3029 case X87Up:
3030 case SSE:
3031 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3032
3033 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
3034 return ABIArgInfo::getDirect(HighPart, 8);
3035
3036 ++neededSSE;
3037 break;
3038
3039 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3040 // eightbyte is passed in the upper half of the last used SSE
3041 // register. This only happens when 128-bit vectors are passed.
3042 case SSEUp:
3043 assert(Lo == SSE && "Unexpected SSEUp classification");
3044 ResType = GetByteVectorType(Ty);
3045 break;
3046 }
3047
3048 // If a high part was specified, merge it together with the low part. It is
3049 // known to pass in the high eightbyte of the result. We do this by forming a
3050 // first class struct aggregate with the high and low part: {low, high}
3051 if (HighPart)
3052 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3053
3054 return ABIArgInfo::getDirect(ResType);
3055 }
3056
computeInfo(CGFunctionInfo & FI) const3057 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3058
3059 if (!getCXXABI().classifyReturnType(FI))
3060 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3061
3062 // Keep track of the number of assigned registers.
3063 unsigned freeIntRegs = 6, freeSSERegs = 8;
3064
3065 // If the return value is indirect, then the hidden argument is consuming one
3066 // integer register.
3067 if (FI.getReturnInfo().isIndirect())
3068 --freeIntRegs;
3069
3070 // The chain argument effectively gives us another free register.
3071 if (FI.isChainCall())
3072 ++freeIntRegs;
3073
3074 unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3075 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3076 // get assigned (in left-to-right order) for passing as follows...
3077 unsigned ArgNo = 0;
3078 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3079 it != ie; ++it, ++ArgNo) {
3080 bool IsNamedArg = ArgNo < NumRequiredArgs;
3081
3082 unsigned neededInt, neededSSE;
3083 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3084 neededSSE, IsNamedArg);
3085
3086 // AMD64-ABI 3.2.3p3: If there are no registers available for any
3087 // eightbyte of an argument, the whole argument is passed on the
3088 // stack. If registers have already been assigned for some
3089 // eightbytes of such an argument, the assignments get reverted.
3090 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3091 freeIntRegs -= neededInt;
3092 freeSSERegs -= neededSSE;
3093 } else {
3094 it->info = getIndirectResult(it->type, freeIntRegs);
3095 }
3096 }
3097 }
3098
EmitX86_64VAArgFromMemory(CodeGenFunction & CGF,Address VAListAddr,QualType Ty)3099 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3100 Address VAListAddr, QualType Ty) {
3101 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3102 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3103 llvm::Value *overflow_arg_area =
3104 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3105
3106 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3107 // byte boundary if alignment needed by type exceeds 8 byte boundary.
3108 // It isn't stated explicitly in the standard, but in practice we use
3109 // alignment greater than 16 where necessary.
3110 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3111 if (Align > CharUnits::fromQuantity(8)) {
3112 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3113 Align);
3114 }
3115
3116 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3117 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3118 llvm::Value *Res =
3119 CGF.Builder.CreateBitCast(overflow_arg_area,
3120 llvm::PointerType::getUnqual(LTy));
3121
3122 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3123 // l->overflow_arg_area + sizeof(type).
3124 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3125 // an 8 byte boundary.
3126
3127 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3128 llvm::Value *Offset =
3129 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
3130 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3131 "overflow_arg_area.next");
3132 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3133
3134 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3135 return Address(Res, Align);
3136 }
3137
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3138 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3139 QualType Ty) const {
3140 // Assume that va_list type is correct; should be pointer to LLVM type:
3141 // struct {
3142 // i32 gp_offset;
3143 // i32 fp_offset;
3144 // i8* overflow_arg_area;
3145 // i8* reg_save_area;
3146 // };
3147 unsigned neededInt, neededSSE;
3148
3149 Ty = getContext().getCanonicalType(Ty);
3150 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3151 /*isNamedArg*/false);
3152
3153 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3154 // in the registers. If not go to step 7.
3155 if (!neededInt && !neededSSE)
3156 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3157
3158 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3159 // general purpose registers needed to pass type and num_fp to hold
3160 // the number of floating point registers needed.
3161
3162 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3163 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3164 // l->fp_offset > 304 - num_fp * 16 go to step 7.
3165 //
3166 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3167 // register save space).
3168
3169 llvm::Value *InRegs = nullptr;
3170 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3171 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3172 if (neededInt) {
3173 gp_offset_p =
3174 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3175 "gp_offset_p");
3176 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3177 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3178 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3179 }
3180
3181 if (neededSSE) {
3182 fp_offset_p =
3183 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3184 "fp_offset_p");
3185 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3186 llvm::Value *FitsInFP =
3187 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3188 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3189 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3190 }
3191
3192 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3193 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3194 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3195 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3196
3197 // Emit code to load the value if it was passed in registers.
3198
3199 CGF.EmitBlock(InRegBlock);
3200
3201 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3202 // an offset of l->gp_offset and/or l->fp_offset. This may require
3203 // copying to a temporary location in case the parameter is passed
3204 // in different register classes or requires an alignment greater
3205 // than 8 for general purpose registers and 16 for XMM registers.
3206 //
3207 // FIXME: This really results in shameful code when we end up needing to
3208 // collect arguments from different places; often what should result in a
3209 // simple assembling of a structure from scattered addresses has many more
3210 // loads than necessary. Can we clean this up?
3211 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3212 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3213 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3214 "reg_save_area");
3215
3216 Address RegAddr = Address::invalid();
3217 if (neededInt && neededSSE) {
3218 // FIXME: Cleanup.
3219 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3220 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3221 Address Tmp = CGF.CreateMemTemp(Ty);
3222 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3223 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3224 llvm::Type *TyLo = ST->getElementType(0);
3225 llvm::Type *TyHi = ST->getElementType(1);
3226 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3227 "Unexpected ABI info for mixed regs");
3228 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3229 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3230 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3231 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3232 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3233 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3234
3235 // Copy the first element.
3236 llvm::Value *V =
3237 CGF.Builder.CreateDefaultAlignedLoad(
3238 CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3239 CGF.Builder.CreateStore(V,
3240 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3241
3242 // Copy the second element.
3243 V = CGF.Builder.CreateDefaultAlignedLoad(
3244 CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3245 CharUnits Offset = CharUnits::fromQuantity(
3246 getDataLayout().getStructLayout(ST)->getElementOffset(1));
3247 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3248
3249 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3250 } else if (neededInt) {
3251 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3252 CharUnits::fromQuantity(8));
3253 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3254
3255 // Copy to a temporary if necessary to ensure the appropriate alignment.
3256 std::pair<CharUnits, CharUnits> SizeAlign =
3257 getContext().getTypeInfoInChars(Ty);
3258 uint64_t TySize = SizeAlign.first.getQuantity();
3259 CharUnits TyAlign = SizeAlign.second;
3260
3261 // Copy into a temporary if the type is more aligned than the
3262 // register save area.
3263 if (TyAlign.getQuantity() > 8) {
3264 Address Tmp = CGF.CreateMemTemp(Ty);
3265 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3266 RegAddr = Tmp;
3267 }
3268
3269 } else if (neededSSE == 1) {
3270 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3271 CharUnits::fromQuantity(16));
3272 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3273 } else {
3274 assert(neededSSE == 2 && "Invalid number of needed registers!");
3275 // SSE registers are spaced 16 bytes apart in the register save
3276 // area, we need to collect the two eightbytes together.
3277 // The ABI isn't explicit about this, but it seems reasonable
3278 // to assume that the slots are 16-byte aligned, since the stack is
3279 // naturally 16-byte aligned and the prologue is expected to store
3280 // all the SSE registers to the RSA.
3281 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3282 CharUnits::fromQuantity(16));
3283 Address RegAddrHi =
3284 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3285 CharUnits::fromQuantity(16));
3286 llvm::Type *DoubleTy = CGF.DoubleTy;
3287 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3288 llvm::Value *V;
3289 Address Tmp = CGF.CreateMemTemp(Ty);
3290 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3291 V = CGF.Builder.CreateLoad(
3292 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3293 CGF.Builder.CreateStore(V,
3294 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3295 V = CGF.Builder.CreateLoad(
3296 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3297 CGF.Builder.CreateStore(V,
3298 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3299
3300 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3301 }
3302
3303 // AMD64-ABI 3.5.7p5: Step 5. Set:
3304 // l->gp_offset = l->gp_offset + num_gp * 8
3305 // l->fp_offset = l->fp_offset + num_fp * 16.
3306 if (neededInt) {
3307 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3308 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3309 gp_offset_p);
3310 }
3311 if (neededSSE) {
3312 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3313 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3314 fp_offset_p);
3315 }
3316 CGF.EmitBranch(ContBlock);
3317
3318 // Emit code to load the value if it was passed in memory.
3319
3320 CGF.EmitBlock(InMemBlock);
3321 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3322
3323 // Return the appropriate result.
3324
3325 CGF.EmitBlock(ContBlock);
3326 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3327 "vaarg.addr");
3328 return ResAddr;
3329 }
3330
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3331 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3332 QualType Ty) const {
3333 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3334 CGF.getContext().getTypeInfoInChars(Ty),
3335 CharUnits::fromQuantity(8),
3336 /*allowHigherAlign*/ false);
3337 }
3338
classify(QualType Ty,unsigned & FreeSSERegs,bool IsReturnType) const3339 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3340 bool IsReturnType) const {
3341
3342 if (Ty->isVoidType())
3343 return ABIArgInfo::getIgnore();
3344
3345 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3346 Ty = EnumTy->getDecl()->getIntegerType();
3347
3348 TypeInfo Info = getContext().getTypeInfo(Ty);
3349 uint64_t Width = Info.Width;
3350 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3351
3352 const RecordType *RT = Ty->getAs<RecordType>();
3353 if (RT) {
3354 if (!IsReturnType) {
3355 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3356 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3357 }
3358
3359 if (RT->getDecl()->hasFlexibleArrayMember())
3360 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3361
3362 }
3363
3364 // vectorcall adds the concept of a homogenous vector aggregate, similar to
3365 // other targets.
3366 const Type *Base = nullptr;
3367 uint64_t NumElts = 0;
3368 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3369 if (FreeSSERegs >= NumElts) {
3370 FreeSSERegs -= NumElts;
3371 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3372 return ABIArgInfo::getDirect();
3373 return ABIArgInfo::getExpand();
3374 }
3375 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3376 }
3377
3378
3379 if (Ty->isMemberPointerType()) {
3380 // If the member pointer is represented by an LLVM int or ptr, pass it
3381 // directly.
3382 llvm::Type *LLTy = CGT.ConvertType(Ty);
3383 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3384 return ABIArgInfo::getDirect();
3385 }
3386
3387 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3388 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3389 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3390 if (Width > 64 || !llvm::isPowerOf2_64(Width))
3391 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3392
3393 // Otherwise, coerce it to a small integer.
3394 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3395 }
3396
3397 // Bool type is always extended to the ABI, other builtin types are not
3398 // extended.
3399 const BuiltinType *BT = Ty->getAs<BuiltinType>();
3400 if (BT && BT->getKind() == BuiltinType::Bool)
3401 return ABIArgInfo::getExtend();
3402
3403 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3404 // passes them indirectly through memory.
3405 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3406 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3407 if (LDF == &llvm::APFloat::x87DoubleExtended)
3408 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3409 }
3410
3411 return ABIArgInfo::getDirect();
3412 }
3413
computeInfo(CGFunctionInfo & FI) const3414 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3415 bool IsVectorCall =
3416 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3417
3418 // We can use up to 4 SSE return registers with vectorcall.
3419 unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3420 if (!getCXXABI().classifyReturnType(FI))
3421 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3422
3423 // We can use up to 6 SSE register parameters with vectorcall.
3424 FreeSSERegs = IsVectorCall ? 6 : 0;
3425 for (auto &I : FI.arguments())
3426 I.info = classify(I.type, FreeSSERegs, false);
3427 }
3428
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3429 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3430 QualType Ty) const {
3431 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3432 CGF.getContext().getTypeInfoInChars(Ty),
3433 CharUnits::fromQuantity(8),
3434 /*allowHigherAlign*/ false);
3435 }
3436
3437 // PowerPC-32
3438 namespace {
3439 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3440 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3441 bool IsSoftFloatABI;
3442 public:
PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,bool SoftFloatABI)3443 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3444 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3445
3446 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3447 QualType Ty) const override;
3448 };
3449
3450 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3451 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT,bool SoftFloatABI)3452 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3453 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3454
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3455 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3456 // This is recovered from gcc output.
3457 return 1; // r1 is the dedicated stack pointer
3458 }
3459
3460 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3461 llvm::Value *Address) const override;
3462 };
3463
3464 }
3465
EmitVAArg(CodeGenFunction & CGF,Address VAList,QualType Ty) const3466 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3467 QualType Ty) const {
3468 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3469 // TODO: Implement this. For now ignore.
3470 (void)CTy;
3471 return Address::invalid();
3472 }
3473
3474 // struct __va_list_tag {
3475 // unsigned char gpr;
3476 // unsigned char fpr;
3477 // unsigned short reserved;
3478 // void *overflow_arg_area;
3479 // void *reg_save_area;
3480 // };
3481
3482 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3483 bool isInt =
3484 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3485 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3486
3487 // All aggregates are passed indirectly? That doesn't seem consistent
3488 // with the argument-lowering code.
3489 bool isIndirect = Ty->isAggregateType();
3490
3491 CGBuilderTy &Builder = CGF.Builder;
3492
3493 // The calling convention either uses 1-2 GPRs or 1 FPR.
3494 Address NumRegsAddr = Address::invalid();
3495 if (isInt || IsSoftFloatABI) {
3496 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3497 } else {
3498 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3499 }
3500
3501 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3502
3503 // "Align" the register count when TY is i64.
3504 if (isI64 || (isF64 && IsSoftFloatABI)) {
3505 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3506 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3507 }
3508
3509 llvm::Value *CC =
3510 Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
3511
3512 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3513 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3514 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3515
3516 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3517
3518 llvm::Type *DirectTy = CGF.ConvertType(Ty);
3519 if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3520
3521 // Case 1: consume registers.
3522 Address RegAddr = Address::invalid();
3523 {
3524 CGF.EmitBlock(UsingRegs);
3525
3526 Address RegSaveAreaPtr =
3527 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3528 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3529 CharUnits::fromQuantity(8));
3530 assert(RegAddr.getElementType() == CGF.Int8Ty);
3531
3532 // Floating-point registers start after the general-purpose registers.
3533 if (!(isInt || IsSoftFloatABI)) {
3534 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3535 CharUnits::fromQuantity(32));
3536 }
3537
3538 // Get the address of the saved value by scaling the number of
3539 // registers we've used by the number of
3540 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3541 llvm::Value *RegOffset =
3542 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3543 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3544 RegAddr.getPointer(), RegOffset),
3545 RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3546 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3547
3548 // Increase the used-register count.
3549 NumRegs =
3550 Builder.CreateAdd(NumRegs,
3551 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3552 Builder.CreateStore(NumRegs, NumRegsAddr);
3553
3554 CGF.EmitBranch(Cont);
3555 }
3556
3557 // Case 2: consume space in the overflow area.
3558 Address MemAddr = Address::invalid();
3559 {
3560 CGF.EmitBlock(UsingOverflow);
3561
3562 // Everything in the overflow area is rounded up to a size of at least 4.
3563 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3564
3565 CharUnits Size;
3566 if (!isIndirect) {
3567 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3568 Size = TypeInfo.first.RoundUpToAlignment(OverflowAreaAlign);
3569 } else {
3570 Size = CGF.getPointerSize();
3571 }
3572
3573 Address OverflowAreaAddr =
3574 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3575 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3576 OverflowAreaAlign);
3577 // Round up address of argument to alignment
3578 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3579 if (Align > OverflowAreaAlign) {
3580 llvm::Value *Ptr = OverflowArea.getPointer();
3581 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3582 Align);
3583 }
3584
3585 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3586
3587 // Increase the overflow area.
3588 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3589 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3590 CGF.EmitBranch(Cont);
3591 }
3592
3593 CGF.EmitBlock(Cont);
3594
3595 // Merge the cases with a phi.
3596 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3597 "vaarg.addr");
3598
3599 // Load the pointer if the argument was passed indirectly.
3600 if (isIndirect) {
3601 Result = Address(Builder.CreateLoad(Result, "aggr"),
3602 getContext().getTypeAlignInChars(Ty));
3603 }
3604
3605 return Result;
3606 }
3607
3608 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3609 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3610 llvm::Value *Address) const {
3611 // This is calculated from the LLVM and GCC tables and verified
3612 // against gcc output. AFAIK all ABIs use the same encoding.
3613
3614 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3615
3616 llvm::IntegerType *i8 = CGF.Int8Ty;
3617 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3618 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3619 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3620
3621 // 0-31: r0-31, the 4-byte general-purpose registers
3622 AssignToArrayRange(Builder, Address, Four8, 0, 31);
3623
3624 // 32-63: fp0-31, the 8-byte floating-point registers
3625 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3626
3627 // 64-76 are various 4-byte special-purpose registers:
3628 // 64: mq
3629 // 65: lr
3630 // 66: ctr
3631 // 67: ap
3632 // 68-75 cr0-7
3633 // 76: xer
3634 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3635
3636 // 77-108: v0-31, the 16-byte vector registers
3637 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3638
3639 // 109: vrsave
3640 // 110: vscr
3641 // 111: spe_acc
3642 // 112: spefscr
3643 // 113: sfp
3644 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3645
3646 return false;
3647 }
3648
3649 // PowerPC-64
3650
3651 namespace {
3652 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3653 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3654 public:
3655 enum ABIKind {
3656 ELFv1 = 0,
3657 ELFv2
3658 };
3659
3660 private:
3661 static const unsigned GPRBits = 64;
3662 ABIKind Kind;
3663 bool HasQPX;
3664
3665 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3666 // will be passed in a QPX register.
IsQPXVectorTy(const Type * Ty) const3667 bool IsQPXVectorTy(const Type *Ty) const {
3668 if (!HasQPX)
3669 return false;
3670
3671 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3672 unsigned NumElements = VT->getNumElements();
3673 if (NumElements == 1)
3674 return false;
3675
3676 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3677 if (getContext().getTypeSize(Ty) <= 256)
3678 return true;
3679 } else if (VT->getElementType()->
3680 isSpecificBuiltinType(BuiltinType::Float)) {
3681 if (getContext().getTypeSize(Ty) <= 128)
3682 return true;
3683 }
3684 }
3685
3686 return false;
3687 }
3688
IsQPXVectorTy(QualType Ty) const3689 bool IsQPXVectorTy(QualType Ty) const {
3690 return IsQPXVectorTy(Ty.getTypePtr());
3691 }
3692
3693 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind,bool HasQPX)3694 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3695 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3696
3697 bool isPromotableTypeForABI(QualType Ty) const;
3698 CharUnits getParamTypeAlignment(QualType Ty) const;
3699
3700 ABIArgInfo classifyReturnType(QualType RetTy) const;
3701 ABIArgInfo classifyArgumentType(QualType Ty) const;
3702
3703 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3704 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3705 uint64_t Members) const override;
3706
3707 // TODO: We can add more logic to computeInfo to improve performance.
3708 // Example: For aggregate arguments that fit in a register, we could
3709 // use getDirectInReg (as is done below for structs containing a single
3710 // floating-point value) to avoid pushing them to memory on function
3711 // entry. This would require changing the logic in PPCISelLowering
3712 // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const3713 void computeInfo(CGFunctionInfo &FI) const override {
3714 if (!getCXXABI().classifyReturnType(FI))
3715 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3716 for (auto &I : FI.arguments()) {
3717 // We rely on the default argument classification for the most part.
3718 // One exception: An aggregate containing a single floating-point
3719 // or vector item must be passed in a register if one is available.
3720 const Type *T = isSingleElementStruct(I.type, getContext());
3721 if (T) {
3722 const BuiltinType *BT = T->getAs<BuiltinType>();
3723 if (IsQPXVectorTy(T) ||
3724 (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3725 (BT && BT->isFloatingPoint())) {
3726 QualType QT(T, 0);
3727 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3728 continue;
3729 }
3730 }
3731 I.info = classifyArgumentType(I.type);
3732 }
3733 }
3734
3735 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3736 QualType Ty) const override;
3737 };
3738
3739 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3740
3741 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT,PPC64_SVR4_ABIInfo::ABIKind Kind,bool HasQPX)3742 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3743 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3744 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3745
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3746 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3747 // This is recovered from gcc output.
3748 return 1; // r1 is the dedicated stack pointer
3749 }
3750
3751 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3752 llvm::Value *Address) const override;
3753 };
3754
3755 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3756 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)3757 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3758
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3759 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3760 // This is recovered from gcc output.
3761 return 1; // r1 is the dedicated stack pointer
3762 }
3763
3764 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3765 llvm::Value *Address) const override;
3766 };
3767
3768 }
3769
3770 // Return true if the ABI requires Ty to be passed sign- or zero-
3771 // extended to 64 bits.
3772 bool
isPromotableTypeForABI(QualType Ty) const3773 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3774 // Treat an enum type as its underlying type.
3775 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3776 Ty = EnumTy->getDecl()->getIntegerType();
3777
3778 // Promotable integer types are required to be promoted by the ABI.
3779 if (Ty->isPromotableIntegerType())
3780 return true;
3781
3782 // In addition to the usual promotable integer types, we also need to
3783 // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3784 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3785 switch (BT->getKind()) {
3786 case BuiltinType::Int:
3787 case BuiltinType::UInt:
3788 return true;
3789 default:
3790 break;
3791 }
3792
3793 return false;
3794 }
3795
3796 /// isAlignedParamType - Determine whether a type requires 16-byte or
3797 /// higher alignment in the parameter area. Always returns at least 8.
getParamTypeAlignment(QualType Ty) const3798 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3799 // Complex types are passed just like their elements.
3800 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3801 Ty = CTy->getElementType();
3802
3803 // Only vector types of size 16 bytes need alignment (larger types are
3804 // passed via reference, smaller types are not aligned).
3805 if (IsQPXVectorTy(Ty)) {
3806 if (getContext().getTypeSize(Ty) > 128)
3807 return CharUnits::fromQuantity(32);
3808
3809 return CharUnits::fromQuantity(16);
3810 } else if (Ty->isVectorType()) {
3811 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
3812 }
3813
3814 // For single-element float/vector structs, we consider the whole type
3815 // to have the same alignment requirements as its single element.
3816 const Type *AlignAsType = nullptr;
3817 const Type *EltType = isSingleElementStruct(Ty, getContext());
3818 if (EltType) {
3819 const BuiltinType *BT = EltType->getAs<BuiltinType>();
3820 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3821 getContext().getTypeSize(EltType) == 128) ||
3822 (BT && BT->isFloatingPoint()))
3823 AlignAsType = EltType;
3824 }
3825
3826 // Likewise for ELFv2 homogeneous aggregates.
3827 const Type *Base = nullptr;
3828 uint64_t Members = 0;
3829 if (!AlignAsType && Kind == ELFv2 &&
3830 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3831 AlignAsType = Base;
3832
3833 // With special case aggregates, only vector base types need alignment.
3834 if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3835 if (getContext().getTypeSize(AlignAsType) > 128)
3836 return CharUnits::fromQuantity(32);
3837
3838 return CharUnits::fromQuantity(16);
3839 } else if (AlignAsType) {
3840 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
3841 }
3842
3843 // Otherwise, we only need alignment for any aggregate type that
3844 // has an alignment requirement of >= 16 bytes.
3845 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3846 if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3847 return CharUnits::fromQuantity(32);
3848 return CharUnits::fromQuantity(16);
3849 }
3850
3851 return CharUnits::fromQuantity(8);
3852 }
3853
3854 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3855 /// aggregate. Base is set to the base element type, and Members is set
3856 /// to the number of base elements.
isHomogeneousAggregate(QualType Ty,const Type * & Base,uint64_t & Members) const3857 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3858 uint64_t &Members) const {
3859 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3860 uint64_t NElements = AT->getSize().getZExtValue();
3861 if (NElements == 0)
3862 return false;
3863 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3864 return false;
3865 Members *= NElements;
3866 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3867 const RecordDecl *RD = RT->getDecl();
3868 if (RD->hasFlexibleArrayMember())
3869 return false;
3870
3871 Members = 0;
3872
3873 // If this is a C++ record, check the bases first.
3874 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3875 for (const auto &I : CXXRD->bases()) {
3876 // Ignore empty records.
3877 if (isEmptyRecord(getContext(), I.getType(), true))
3878 continue;
3879
3880 uint64_t FldMembers;
3881 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3882 return false;
3883
3884 Members += FldMembers;
3885 }
3886 }
3887
3888 for (const auto *FD : RD->fields()) {
3889 // Ignore (non-zero arrays of) empty records.
3890 QualType FT = FD->getType();
3891 while (const ConstantArrayType *AT =
3892 getContext().getAsConstantArrayType(FT)) {
3893 if (AT->getSize().getZExtValue() == 0)
3894 return false;
3895 FT = AT->getElementType();
3896 }
3897 if (isEmptyRecord(getContext(), FT, true))
3898 continue;
3899
3900 // For compatibility with GCC, ignore empty bitfields in C++ mode.
3901 if (getContext().getLangOpts().CPlusPlus &&
3902 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3903 continue;
3904
3905 uint64_t FldMembers;
3906 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3907 return false;
3908
3909 Members = (RD->isUnion() ?
3910 std::max(Members, FldMembers) : Members + FldMembers);
3911 }
3912
3913 if (!Base)
3914 return false;
3915
3916 // Ensure there is no padding.
3917 if (getContext().getTypeSize(Base) * Members !=
3918 getContext().getTypeSize(Ty))
3919 return false;
3920 } else {
3921 Members = 1;
3922 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3923 Members = 2;
3924 Ty = CT->getElementType();
3925 }
3926
3927 // Most ABIs only support float, double, and some vector type widths.
3928 if (!isHomogeneousAggregateBaseType(Ty))
3929 return false;
3930
3931 // The base type must be the same for all members. Types that
3932 // agree in both total size and mode (float vs. vector) are
3933 // treated as being equivalent here.
3934 const Type *TyPtr = Ty.getTypePtr();
3935 if (!Base)
3936 Base = TyPtr;
3937
3938 if (Base->isVectorType() != TyPtr->isVectorType() ||
3939 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3940 return false;
3941 }
3942 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3943 }
3944
isHomogeneousAggregateBaseType(QualType Ty) const3945 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3946 // Homogeneous aggregates for ELFv2 must have base types of float,
3947 // double, long double, or 128-bit vectors.
3948 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3949 if (BT->getKind() == BuiltinType::Float ||
3950 BT->getKind() == BuiltinType::Double ||
3951 BT->getKind() == BuiltinType::LongDouble)
3952 return true;
3953 }
3954 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3955 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3956 return true;
3957 }
3958 return false;
3959 }
3960
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const3961 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3962 const Type *Base, uint64_t Members) const {
3963 // Vector types require one register, floating point types require one
3964 // or two registers depending on their size.
3965 uint32_t NumRegs =
3966 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3967
3968 // Homogeneous Aggregates may occupy at most 8 registers.
3969 return Members * NumRegs <= 8;
3970 }
3971
3972 ABIArgInfo
classifyArgumentType(QualType Ty) const3973 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3974 Ty = useFirstFieldIfTransparentUnion(Ty);
3975
3976 if (Ty->isAnyComplexType())
3977 return ABIArgInfo::getDirect();
3978
3979 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3980 // or via reference (larger than 16 bytes).
3981 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3982 uint64_t Size = getContext().getTypeSize(Ty);
3983 if (Size > 128)
3984 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3985 else if (Size < 128) {
3986 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3987 return ABIArgInfo::getDirect(CoerceTy);
3988 }
3989 }
3990
3991 if (isAggregateTypeForABI(Ty)) {
3992 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3993 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3994
3995 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
3996 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
3997
3998 // ELFv2 homogeneous aggregates are passed as array types.
3999 const Type *Base = nullptr;
4000 uint64_t Members = 0;
4001 if (Kind == ELFv2 &&
4002 isHomogeneousAggregate(Ty, Base, Members)) {
4003 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4004 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4005 return ABIArgInfo::getDirect(CoerceTy);
4006 }
4007
4008 // If an aggregate may end up fully in registers, we do not
4009 // use the ByVal method, but pass the aggregate as array.
4010 // This is usually beneficial since we avoid forcing the
4011 // back-end to store the argument to memory.
4012 uint64_t Bits = getContext().getTypeSize(Ty);
4013 if (Bits > 0 && Bits <= 8 * GPRBits) {
4014 llvm::Type *CoerceTy;
4015
4016 // Types up to 8 bytes are passed as integer type (which will be
4017 // properly aligned in the argument save area doubleword).
4018 if (Bits <= GPRBits)
4019 CoerceTy = llvm::IntegerType::get(getVMContext(),
4020 llvm::RoundUpToAlignment(Bits, 8));
4021 // Larger types are passed as arrays, with the base type selected
4022 // according to the required alignment in the save area.
4023 else {
4024 uint64_t RegBits = ABIAlign * 8;
4025 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
4026 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4027 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4028 }
4029
4030 return ABIArgInfo::getDirect(CoerceTy);
4031 }
4032
4033 // All other aggregates are passed ByVal.
4034 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4035 /*ByVal=*/true,
4036 /*Realign=*/TyAlign > ABIAlign);
4037 }
4038
4039 return (isPromotableTypeForABI(Ty) ?
4040 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4041 }
4042
4043 ABIArgInfo
classifyReturnType(QualType RetTy) const4044 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4045 if (RetTy->isVoidType())
4046 return ABIArgInfo::getIgnore();
4047
4048 if (RetTy->isAnyComplexType())
4049 return ABIArgInfo::getDirect();
4050
4051 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4052 // or via reference (larger than 16 bytes).
4053 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4054 uint64_t Size = getContext().getTypeSize(RetTy);
4055 if (Size > 128)
4056 return getNaturalAlignIndirect(RetTy);
4057 else if (Size < 128) {
4058 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4059 return ABIArgInfo::getDirect(CoerceTy);
4060 }
4061 }
4062
4063 if (isAggregateTypeForABI(RetTy)) {
4064 // ELFv2 homogeneous aggregates are returned as array types.
4065 const Type *Base = nullptr;
4066 uint64_t Members = 0;
4067 if (Kind == ELFv2 &&
4068 isHomogeneousAggregate(RetTy, Base, Members)) {
4069 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4070 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4071 return ABIArgInfo::getDirect(CoerceTy);
4072 }
4073
4074 // ELFv2 small aggregates are returned in up to two registers.
4075 uint64_t Bits = getContext().getTypeSize(RetTy);
4076 if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4077 if (Bits == 0)
4078 return ABIArgInfo::getIgnore();
4079
4080 llvm::Type *CoerceTy;
4081 if (Bits > GPRBits) {
4082 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4083 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4084 } else
4085 CoerceTy = llvm::IntegerType::get(getVMContext(),
4086 llvm::RoundUpToAlignment(Bits, 8));
4087 return ABIArgInfo::getDirect(CoerceTy);
4088 }
4089
4090 // All other aggregates are returned indirectly.
4091 return getNaturalAlignIndirect(RetTy);
4092 }
4093
4094 return (isPromotableTypeForABI(RetTy) ?
4095 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4096 }
4097
4098 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4099 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4100 QualType Ty) const {
4101 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4102 TypeInfo.second = getParamTypeAlignment(Ty);
4103
4104 CharUnits SlotSize = CharUnits::fromQuantity(8);
4105
4106 // If we have a complex type and the base type is smaller than 8 bytes,
4107 // the ABI calls for the real and imaginary parts to be right-adjusted
4108 // in separate doublewords. However, Clang expects us to produce a
4109 // pointer to a structure with the two parts packed tightly. So generate
4110 // loads of the real and imaginary parts relative to the va_list pointer,
4111 // and store them to a temporary structure.
4112 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4113 CharUnits EltSize = TypeInfo.first / 2;
4114 if (EltSize < SlotSize) {
4115 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4116 SlotSize * 2, SlotSize,
4117 SlotSize, /*AllowHigher*/ true);
4118
4119 Address RealAddr = Addr;
4120 Address ImagAddr = RealAddr;
4121 if (CGF.CGM.getDataLayout().isBigEndian()) {
4122 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4123 SlotSize - EltSize);
4124 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4125 2 * SlotSize - EltSize);
4126 } else {
4127 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4128 }
4129
4130 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4131 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4132 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4133 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4134 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4135
4136 Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4137 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4138 /*init*/ true);
4139 return Temp;
4140 }
4141 }
4142
4143 // Otherwise, just use the general rule.
4144 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4145 TypeInfo, SlotSize, /*AllowHigher*/ true);
4146 }
4147
4148 static bool
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address)4149 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4150 llvm::Value *Address) {
4151 // This is calculated from the LLVM and GCC tables and verified
4152 // against gcc output. AFAIK all ABIs use the same encoding.
4153
4154 CodeGen::CGBuilderTy &Builder = CGF.Builder;
4155
4156 llvm::IntegerType *i8 = CGF.Int8Ty;
4157 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4158 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4159 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4160
4161 // 0-31: r0-31, the 8-byte general-purpose registers
4162 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4163
4164 // 32-63: fp0-31, the 8-byte floating-point registers
4165 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4166
4167 // 64-76 are various 4-byte special-purpose registers:
4168 // 64: mq
4169 // 65: lr
4170 // 66: ctr
4171 // 67: ap
4172 // 68-75 cr0-7
4173 // 76: xer
4174 AssignToArrayRange(Builder, Address, Four8, 64, 76);
4175
4176 // 77-108: v0-31, the 16-byte vector registers
4177 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4178
4179 // 109: vrsave
4180 // 110: vscr
4181 // 111: spe_acc
4182 // 112: spefscr
4183 // 113: sfp
4184 AssignToArrayRange(Builder, Address, Four8, 109, 113);
4185
4186 return false;
4187 }
4188
4189 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4190 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4191 CodeGen::CodeGenFunction &CGF,
4192 llvm::Value *Address) const {
4193
4194 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4195 }
4196
4197 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4198 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4199 llvm::Value *Address) const {
4200
4201 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4202 }
4203
4204 //===----------------------------------------------------------------------===//
4205 // AArch64 ABI Implementation
4206 //===----------------------------------------------------------------------===//
4207
4208 namespace {
4209
4210 class AArch64ABIInfo : public ABIInfo {
4211 public:
4212 enum ABIKind {
4213 AAPCS = 0,
4214 DarwinPCS
4215 };
4216
4217 private:
4218 ABIKind Kind;
4219
4220 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)4221 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
4222
4223 private:
getABIKind() const4224 ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const4225 bool isDarwinPCS() const { return Kind == DarwinPCS; }
4226
4227 ABIArgInfo classifyReturnType(QualType RetTy) const;
4228 ABIArgInfo classifyArgumentType(QualType RetTy) const;
4229 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4230 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4231 uint64_t Members) const override;
4232
4233 bool isIllegalVectorType(QualType Ty) const;
4234
computeInfo(CGFunctionInfo & FI) const4235 void computeInfo(CGFunctionInfo &FI) const override {
4236 if (!getCXXABI().classifyReturnType(FI))
4237 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4238
4239 for (auto &it : FI.arguments())
4240 it.info = classifyArgumentType(it.type);
4241 }
4242
4243 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4244 CodeGenFunction &CGF) const;
4245
4246 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4247 CodeGenFunction &CGF) const;
4248
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4249 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4250 QualType Ty) const override {
4251 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4252 : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4253 }
4254 };
4255
4256 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4257 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)4258 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4259 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4260
getARCRetainAutoreleasedReturnValueMarker() const4261 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4262 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4263 }
4264
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4265 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4266 return 31;
4267 }
4268
doesReturnSlotInterfereWithArgs() const4269 bool doesReturnSlotInterfereWithArgs() const override { return false; }
4270 };
4271 }
4272
classifyArgumentType(QualType Ty) const4273 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4274 Ty = useFirstFieldIfTransparentUnion(Ty);
4275
4276 // Handle illegal vector types here.
4277 if (isIllegalVectorType(Ty)) {
4278 uint64_t Size = getContext().getTypeSize(Ty);
4279 // Android promotes <2 x i8> to i16, not i32
4280 if (Size <= 16) {
4281 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4282 return ABIArgInfo::getDirect(ResType);
4283 }
4284 if (Size == 32) {
4285 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4286 return ABIArgInfo::getDirect(ResType);
4287 }
4288 if (Size == 64) {
4289 llvm::Type *ResType =
4290 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4291 return ABIArgInfo::getDirect(ResType);
4292 }
4293 if (Size == 128) {
4294 llvm::Type *ResType =
4295 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4296 return ABIArgInfo::getDirect(ResType);
4297 }
4298 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4299 }
4300
4301 if (!isAggregateTypeForABI(Ty)) {
4302 // Treat an enum type as its underlying type.
4303 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4304 Ty = EnumTy->getDecl()->getIntegerType();
4305
4306 return (Ty->isPromotableIntegerType() && isDarwinPCS()
4307 ? ABIArgInfo::getExtend()
4308 : ABIArgInfo::getDirect());
4309 }
4310
4311 // Structures with either a non-trivial destructor or a non-trivial
4312 // copy constructor are always indirect.
4313 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4314 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4315 CGCXXABI::RAA_DirectInMemory);
4316 }
4317
4318 // Empty records are always ignored on Darwin, but actually passed in C++ mode
4319 // elsewhere for GNU compatibility.
4320 if (isEmptyRecord(getContext(), Ty, true)) {
4321 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4322 return ABIArgInfo::getIgnore();
4323
4324 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4325 }
4326
4327 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4328 const Type *Base = nullptr;
4329 uint64_t Members = 0;
4330 if (isHomogeneousAggregate(Ty, Base, Members)) {
4331 return ABIArgInfo::getDirect(
4332 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4333 }
4334
4335 // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4336 uint64_t Size = getContext().getTypeSize(Ty);
4337 if (Size <= 128) {
4338 if (getContext().getLangOpts().Renderscript) {
4339 return coerceToIntArray(Ty, getContext(), getVMContext());
4340 }
4341 unsigned Alignment = getContext().getTypeAlign(Ty);
4342 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4343
4344 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4345 // For aggregates with 16-byte alignment, we use i128.
4346 if (Alignment < 128 && Size == 128) {
4347 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4348 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4349 }
4350 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4351 }
4352
4353 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4354 }
4355
classifyReturnType(QualType RetTy) const4356 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4357 if (RetTy->isVoidType())
4358 return ABIArgInfo::getIgnore();
4359
4360 // Large vector types should be returned via memory.
4361 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4362 return getNaturalAlignIndirect(RetTy);
4363
4364 if (!isAggregateTypeForABI(RetTy)) {
4365 // Treat an enum type as its underlying type.
4366 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4367 RetTy = EnumTy->getDecl()->getIntegerType();
4368
4369 return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4370 ? ABIArgInfo::getExtend()
4371 : ABIArgInfo::getDirect());
4372 }
4373
4374 if (isEmptyRecord(getContext(), RetTy, true))
4375 return ABIArgInfo::getIgnore();
4376
4377 const Type *Base = nullptr;
4378 uint64_t Members = 0;
4379 if (isHomogeneousAggregate(RetTy, Base, Members))
4380 // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4381 return ABIArgInfo::getDirect();
4382
4383 // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4384 uint64_t Size = getContext().getTypeSize(RetTy);
4385 if (Size <= 128) {
4386 if (getContext().getLangOpts().Renderscript) {
4387 return coerceToIntArray(RetTy, getContext(), getVMContext());
4388 }
4389 unsigned Alignment = getContext().getTypeAlign(RetTy);
4390 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4391
4392 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4393 // For aggregates with 16-byte alignment, we use i128.
4394 if (Alignment < 128 && Size == 128) {
4395 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4396 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4397 }
4398 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4399 }
4400
4401 return getNaturalAlignIndirect(RetTy);
4402 }
4403
4404 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const4405 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4406 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4407 // Check whether VT is legal.
4408 unsigned NumElements = VT->getNumElements();
4409 uint64_t Size = getContext().getTypeSize(VT);
4410 // NumElements should be power of 2 between 1 and 16.
4411 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4412 return true;
4413 return Size != 64 && (Size != 128 || NumElements == 1);
4414 }
4415 return false;
4416 }
4417
isHomogeneousAggregateBaseType(QualType Ty) const4418 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4419 // Homogeneous aggregates for AAPCS64 must have base types of a floating
4420 // point type or a short-vector type. This is the same as the 32-bit ABI,
4421 // but with the difference that any floating-point type is allowed,
4422 // including __fp16.
4423 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4424 if (BT->isFloatingPoint())
4425 return true;
4426 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4427 unsigned VecSize = getContext().getTypeSize(VT);
4428 if (VecSize == 64 || VecSize == 128)
4429 return true;
4430 }
4431 return false;
4432 }
4433
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const4434 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4435 uint64_t Members) const {
4436 return Members <= 4;
4437 }
4438
EmitAAPCSVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const4439 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4440 QualType Ty,
4441 CodeGenFunction &CGF) const {
4442 ABIArgInfo AI = classifyArgumentType(Ty);
4443 bool IsIndirect = AI.isIndirect();
4444
4445 llvm::Type *BaseTy = CGF.ConvertType(Ty);
4446 if (IsIndirect)
4447 BaseTy = llvm::PointerType::getUnqual(BaseTy);
4448 else if (AI.getCoerceToType())
4449 BaseTy = AI.getCoerceToType();
4450
4451 unsigned NumRegs = 1;
4452 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4453 BaseTy = ArrTy->getElementType();
4454 NumRegs = ArrTy->getNumElements();
4455 }
4456 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4457
4458 // The AArch64 va_list type and handling is specified in the Procedure Call
4459 // Standard, section B.4:
4460 //
4461 // struct {
4462 // void *__stack;
4463 // void *__gr_top;
4464 // void *__vr_top;
4465 // int __gr_offs;
4466 // int __vr_offs;
4467 // };
4468
4469 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4470 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4471 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4472 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4473
4474 auto TyInfo = getContext().getTypeInfoInChars(Ty);
4475 CharUnits TyAlign = TyInfo.second;
4476
4477 Address reg_offs_p = Address::invalid();
4478 llvm::Value *reg_offs = nullptr;
4479 int reg_top_index;
4480 CharUnits reg_top_offset;
4481 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4482 if (!IsFPR) {
4483 // 3 is the field number of __gr_offs
4484 reg_offs_p =
4485 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4486 "gr_offs_p");
4487 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4488 reg_top_index = 1; // field number for __gr_top
4489 reg_top_offset = CharUnits::fromQuantity(8);
4490 RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4491 } else {
4492 // 4 is the field number of __vr_offs.
4493 reg_offs_p =
4494 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4495 "vr_offs_p");
4496 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4497 reg_top_index = 2; // field number for __vr_top
4498 reg_top_offset = CharUnits::fromQuantity(16);
4499 RegSize = 16 * NumRegs;
4500 }
4501
4502 //=======================================
4503 // Find out where argument was passed
4504 //=======================================
4505
4506 // If reg_offs >= 0 we're already using the stack for this type of
4507 // argument. We don't want to keep updating reg_offs (in case it overflows,
4508 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4509 // whatever they get).
4510 llvm::Value *UsingStack = nullptr;
4511 UsingStack = CGF.Builder.CreateICmpSGE(
4512 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4513
4514 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4515
4516 // Otherwise, at least some kind of argument could go in these registers, the
4517 // question is whether this particular type is too big.
4518 CGF.EmitBlock(MaybeRegBlock);
4519
4520 // Integer arguments may need to correct register alignment (for example a
4521 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4522 // align __gr_offs to calculate the potential address.
4523 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4524 int Align = TyAlign.getQuantity();
4525
4526 reg_offs = CGF.Builder.CreateAdd(
4527 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4528 "align_regoffs");
4529 reg_offs = CGF.Builder.CreateAnd(
4530 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4531 "aligned_regoffs");
4532 }
4533
4534 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4535 // The fact that this is done unconditionally reflects the fact that
4536 // allocating an argument to the stack also uses up all the remaining
4537 // registers of the appropriate kind.
4538 llvm::Value *NewOffset = nullptr;
4539 NewOffset = CGF.Builder.CreateAdd(
4540 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4541 CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4542
4543 // Now we're in a position to decide whether this argument really was in
4544 // registers or not.
4545 llvm::Value *InRegs = nullptr;
4546 InRegs = CGF.Builder.CreateICmpSLE(
4547 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4548
4549 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4550
4551 //=======================================
4552 // Argument was in registers
4553 //=======================================
4554
4555 // Now we emit the code for if the argument was originally passed in
4556 // registers. First start the appropriate block:
4557 CGF.EmitBlock(InRegBlock);
4558
4559 llvm::Value *reg_top = nullptr;
4560 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4561 reg_top_offset, "reg_top_p");
4562 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4563 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4564 CharUnits::fromQuantity(IsFPR ? 16 : 8));
4565 Address RegAddr = Address::invalid();
4566 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4567
4568 if (IsIndirect) {
4569 // If it's been passed indirectly (actually a struct), whatever we find from
4570 // stored registers or on the stack will actually be a struct **.
4571 MemTy = llvm::PointerType::getUnqual(MemTy);
4572 }
4573
4574 const Type *Base = nullptr;
4575 uint64_t NumMembers = 0;
4576 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4577 if (IsHFA && NumMembers > 1) {
4578 // Homogeneous aggregates passed in registers will have their elements split
4579 // and stored 16-bytes apart regardless of size (they're notionally in qN,
4580 // qN+1, ...). We reload and store into a temporary local variable
4581 // contiguously.
4582 assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4583 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4584 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4585 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4586 Address Tmp = CGF.CreateTempAlloca(HFATy,
4587 std::max(TyAlign, BaseTyInfo.second));
4588
4589 // On big-endian platforms, the value will be right-aligned in its slot.
4590 int Offset = 0;
4591 if (CGF.CGM.getDataLayout().isBigEndian() &&
4592 BaseTyInfo.first.getQuantity() < 16)
4593 Offset = 16 - BaseTyInfo.first.getQuantity();
4594
4595 for (unsigned i = 0; i < NumMembers; ++i) {
4596 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4597 Address LoadAddr =
4598 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4599 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4600
4601 Address StoreAddr =
4602 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4603
4604 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4605 CGF.Builder.CreateStore(Elem, StoreAddr);
4606 }
4607
4608 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4609 } else {
4610 // Otherwise the object is contiguous in memory.
4611
4612 // It might be right-aligned in its slot.
4613 CharUnits SlotSize = BaseAddr.getAlignment();
4614 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4615 (IsHFA || !isAggregateTypeForABI(Ty)) &&
4616 TyInfo.first < SlotSize) {
4617 CharUnits Offset = SlotSize - TyInfo.first;
4618 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4619 }
4620
4621 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4622 }
4623
4624 CGF.EmitBranch(ContBlock);
4625
4626 //=======================================
4627 // Argument was on the stack
4628 //=======================================
4629 CGF.EmitBlock(OnStackBlock);
4630
4631 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4632 CharUnits::Zero(), "stack_p");
4633 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4634
4635 // Again, stack arguments may need realignment. In this case both integer and
4636 // floating-point ones might be affected.
4637 if (!IsIndirect && TyAlign.getQuantity() > 8) {
4638 int Align = TyAlign.getQuantity();
4639
4640 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4641
4642 OnStackPtr = CGF.Builder.CreateAdd(
4643 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4644 "align_stack");
4645 OnStackPtr = CGF.Builder.CreateAnd(
4646 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4647 "align_stack");
4648
4649 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4650 }
4651 Address OnStackAddr(OnStackPtr,
4652 std::max(CharUnits::fromQuantity(8), TyAlign));
4653
4654 // All stack slots are multiples of 8 bytes.
4655 CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4656 CharUnits StackSize;
4657 if (IsIndirect)
4658 StackSize = StackSlotSize;
4659 else
4660 StackSize = TyInfo.first.RoundUpToAlignment(StackSlotSize);
4661
4662 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4663 llvm::Value *NewStack =
4664 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4665
4666 // Write the new value of __stack for the next call to va_arg
4667 CGF.Builder.CreateStore(NewStack, stack_p);
4668
4669 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4670 TyInfo.first < StackSlotSize) {
4671 CharUnits Offset = StackSlotSize - TyInfo.first;
4672 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4673 }
4674
4675 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4676
4677 CGF.EmitBranch(ContBlock);
4678
4679 //=======================================
4680 // Tidy up
4681 //=======================================
4682 CGF.EmitBlock(ContBlock);
4683
4684 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4685 OnStackAddr, OnStackBlock, "vaargs.addr");
4686
4687 if (IsIndirect)
4688 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4689 TyInfo.second);
4690
4691 return ResAddr;
4692 }
4693
EmitDarwinVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const4694 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4695 CodeGenFunction &CGF) const {
4696 // The backend's lowering doesn't support va_arg for aggregates or
4697 // illegal vector types. Lower VAArg here for these cases and use
4698 // the LLVM va_arg instruction for everything else.
4699 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4700 return Address::invalid();
4701
4702 CharUnits SlotSize = CharUnits::fromQuantity(8);
4703
4704 // Empty records are ignored for parameter passing purposes.
4705 if (isEmptyRecord(getContext(), Ty, true)) {
4706 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4707 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4708 return Addr;
4709 }
4710
4711 // The size of the actual thing passed, which might end up just
4712 // being a pointer for indirect types.
4713 auto TyInfo = getContext().getTypeInfoInChars(Ty);
4714
4715 // Arguments bigger than 16 bytes which aren't homogeneous
4716 // aggregates should be passed indirectly.
4717 bool IsIndirect = false;
4718 if (TyInfo.first.getQuantity() > 16) {
4719 const Type *Base = nullptr;
4720 uint64_t Members = 0;
4721 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4722 }
4723
4724 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4725 TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4726 }
4727
4728 //===----------------------------------------------------------------------===//
4729 // ARM ABI Implementation
4730 //===----------------------------------------------------------------------===//
4731
4732 namespace {
4733
4734 class ARMABIInfo : public ABIInfo {
4735 public:
4736 enum ABIKind {
4737 APCS = 0,
4738 AAPCS = 1,
4739 AAPCS_VFP = 2,
4740 AAPCS16_VFP = 3,
4741 };
4742
4743 private:
4744 ABIKind Kind;
4745
4746 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)4747 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4748 setCCs();
4749 }
4750
isEABI() const4751 bool isEABI() const {
4752 switch (getTarget().getTriple().getEnvironment()) {
4753 case llvm::Triple::Android:
4754 case llvm::Triple::EABI:
4755 case llvm::Triple::EABIHF:
4756 case llvm::Triple::GNUEABI:
4757 case llvm::Triple::GNUEABIHF:
4758 return true;
4759 default:
4760 return false;
4761 }
4762 }
4763
isEABIHF() const4764 bool isEABIHF() const {
4765 switch (getTarget().getTriple().getEnvironment()) {
4766 case llvm::Triple::EABIHF:
4767 case llvm::Triple::GNUEABIHF:
4768 return true;
4769 default:
4770 return false;
4771 }
4772 }
4773
isAndroid() const4774 bool isAndroid() const {
4775 return (getTarget().getTriple().getEnvironment() ==
4776 llvm::Triple::Android || getContext().getLangOpts().Renderscript);
4777 }
4778
getABIKind() const4779 ABIKind getABIKind() const { return Kind; }
4780
4781 private:
4782 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4783 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4784 bool isIllegalVectorType(QualType Ty) const;
4785
4786 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4787 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4788 uint64_t Members) const override;
4789
4790 void computeInfo(CGFunctionInfo &FI) const override;
4791
4792 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4793 QualType Ty) const override;
4794
4795 llvm::CallingConv::ID getLLVMDefaultCC() const;
4796 llvm::CallingConv::ID getABIDefaultCC() const;
4797 void setCCs();
4798 };
4799
4800 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4801 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)4802 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4803 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4804
getABIInfo() const4805 const ARMABIInfo &getABIInfo() const {
4806 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4807 }
4808
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4809 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4810 return 13;
4811 }
4812
getARCRetainAutoreleasedReturnValueMarker() const4813 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4814 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4815 }
4816
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4817 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4818 llvm::Value *Address) const override {
4819 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4820
4821 // 0-15 are the 16 integer registers.
4822 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4823 return false;
4824 }
4825
getSizeOfUnwindException() const4826 unsigned getSizeOfUnwindException() const override {
4827 if (getABIInfo().isEABI()) return 88;
4828 return TargetCodeGenInfo::getSizeOfUnwindException();
4829 }
4830
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4831 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4832 CodeGen::CodeGenModule &CGM) const override {
4833 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
4834 if (!FD)
4835 return;
4836
4837 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4838 if (!Attr)
4839 return;
4840
4841 const char *Kind;
4842 switch (Attr->getInterrupt()) {
4843 case ARMInterruptAttr::Generic: Kind = ""; break;
4844 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
4845 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
4846 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
4847 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
4848 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
4849 }
4850
4851 llvm::Function *Fn = cast<llvm::Function>(GV);
4852
4853 Fn->addFnAttr("interrupt", Kind);
4854
4855 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
4856 if (ABI == ARMABIInfo::APCS)
4857 return;
4858
4859 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4860 // however this is not necessarily true on taking any interrupt. Instruct
4861 // the backend to perform a realignment as part of the function prologue.
4862 llvm::AttrBuilder B;
4863 B.addStackAlignmentAttr(8);
4864 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4865 llvm::AttributeSet::get(CGM.getLLVMContext(),
4866 llvm::AttributeSet::FunctionIndex,
4867 B));
4868 }
4869 };
4870
4871 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4872 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4873 CodeGen::CodeGenModule &CGM) const;
4874
4875 public:
WindowsARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)4876 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4877 : ARMTargetCodeGenInfo(CGT, K) {}
4878
4879 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4880 CodeGen::CodeGenModule &CGM) const override;
4881 };
4882
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4883 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4884 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4885 if (!isa<FunctionDecl>(D))
4886 return;
4887 if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4888 return;
4889
4890 llvm::Function *F = cast<llvm::Function>(GV);
4891 F->addFnAttr("stack-probe-size",
4892 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4893 }
4894
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4895 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4896 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4897 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4898 addStackProbeSizeTargetAttribute(D, GV, CGM);
4899 }
4900 }
4901
computeInfo(CGFunctionInfo & FI) const4902 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4903 if (!getCXXABI().classifyReturnType(FI))
4904 FI.getReturnInfo() =
4905 classifyReturnType(FI.getReturnType(), FI.isVariadic());
4906
4907 for (auto &I : FI.arguments())
4908 I.info = classifyArgumentType(I.type, FI.isVariadic());
4909
4910 // Always honor user-specified calling convention.
4911 if (FI.getCallingConvention() != llvm::CallingConv::C)
4912 return;
4913
4914 llvm::CallingConv::ID cc = getRuntimeCC();
4915 if (cc != llvm::CallingConv::C)
4916 FI.setEffectiveCallingConvention(cc);
4917 }
4918
4919 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const4920 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4921 // The default calling convention that LLVM will infer.
4922 if (isEABIHF() || getTarget().getTriple().isWatchOS())
4923 return llvm::CallingConv::ARM_AAPCS_VFP;
4924 else if (isEABI())
4925 return llvm::CallingConv::ARM_AAPCS;
4926 else
4927 return llvm::CallingConv::ARM_APCS;
4928 }
4929
4930 /// Return the calling convention that our ABI would like us to use
4931 /// as the C calling convention.
getABIDefaultCC() const4932 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4933 switch (getABIKind()) {
4934 case APCS: return llvm::CallingConv::ARM_APCS;
4935 case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4936 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4937 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4938 }
4939 llvm_unreachable("bad ABI kind");
4940 }
4941
setCCs()4942 void ARMABIInfo::setCCs() {
4943 assert(getRuntimeCC() == llvm::CallingConv::C);
4944
4945 // Don't muddy up the IR with a ton of explicit annotations if
4946 // they'd just match what LLVM will infer from the triple.
4947 llvm::CallingConv::ID abiCC = getABIDefaultCC();
4948 if (abiCC != getLLVMDefaultCC())
4949 RuntimeCC = abiCC;
4950
4951 // AAPCS apparently requires runtime support functions to be soft-float, but
4952 // that's almost certainly for historic reasons (Thumb1 not supporting VFP
4953 // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
4954 switch (getABIKind()) {
4955 case APCS:
4956 case AAPCS16_VFP:
4957 if (abiCC != getLLVMDefaultCC())
4958 BuiltinCC = abiCC;
4959 break;
4960 case AAPCS:
4961 case AAPCS_VFP:
4962 BuiltinCC = llvm::CallingConv::ARM_AAPCS;
4963 break;
4964 }
4965 }
4966
classifyArgumentType(QualType Ty,bool isVariadic) const4967 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4968 bool isVariadic) const {
4969 // 6.1.2.1 The following argument types are VFP CPRCs:
4970 // A single-precision floating-point type (including promoted
4971 // half-precision types); A double-precision floating-point type;
4972 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4973 // with a Base Type of a single- or double-precision floating-point type,
4974 // 64-bit containerized vectors or 128-bit containerized vectors with one
4975 // to four Elements.
4976 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4977
4978 Ty = useFirstFieldIfTransparentUnion(Ty);
4979
4980 // Handle illegal vector types here.
4981 if (isIllegalVectorType(Ty)) {
4982 uint64_t Size = getContext().getTypeSize(Ty);
4983 if (Size <= 32) {
4984 llvm::Type *ResType =
4985 llvm::Type::getInt32Ty(getVMContext());
4986 return ABIArgInfo::getDirect(ResType);
4987 }
4988 if (Size == 64) {
4989 llvm::Type *ResType = llvm::VectorType::get(
4990 llvm::Type::getInt32Ty(getVMContext()), 2);
4991 return ABIArgInfo::getDirect(ResType);
4992 }
4993 if (Size == 128) {
4994 llvm::Type *ResType = llvm::VectorType::get(
4995 llvm::Type::getInt32Ty(getVMContext()), 4);
4996 return ABIArgInfo::getDirect(ResType);
4997 }
4998 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4999 }
5000
5001 // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5002 // unspecified. This is not done for OpenCL as it handles the half type
5003 // natively, and does not need to interwork with AAPCS code.
5004 if (Ty->isHalfType() && !getContext().getLangOpts().HalfArgsAndReturns) {
5005 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5006 llvm::Type::getFloatTy(getVMContext()) :
5007 llvm::Type::getInt32Ty(getVMContext());
5008 return ABIArgInfo::getDirect(ResType);
5009 }
5010
5011 if (!isAggregateTypeForABI(Ty)) {
5012 // Treat an enum type as its underlying type.
5013 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5014 Ty = EnumTy->getDecl()->getIntegerType();
5015 }
5016
5017 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5018 : ABIArgInfo::getDirect());
5019 }
5020
5021 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5022 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5023 }
5024
5025 // Ignore empty records.
5026 if (isEmptyRecord(getContext(), Ty, true))
5027 return ABIArgInfo::getIgnore();
5028
5029 if (IsEffectivelyAAPCS_VFP) {
5030 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5031 // into VFP registers.
5032 const Type *Base = nullptr;
5033 uint64_t Members = 0;
5034 if (isHomogeneousAggregate(Ty, Base, Members)) {
5035 assert(Base && "Base class should be set for homogeneous aggregate");
5036 // Base can be a floating-point or a vector.
5037 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5038 }
5039 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5040 // WatchOS does have homogeneous aggregates. Note that we intentionally use
5041 // this convention even for a variadic function: the backend will use GPRs
5042 // if needed.
5043 const Type *Base = nullptr;
5044 uint64_t Members = 0;
5045 if (isHomogeneousAggregate(Ty, Base, Members)) {
5046 assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5047 llvm::Type *Ty =
5048 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5049 return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5050 }
5051 }
5052
5053 if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5054 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5055 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5056 // bigger than 128-bits, they get placed in space allocated by the caller,
5057 // and a pointer is passed.
5058 return ABIArgInfo::getIndirect(
5059 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5060 }
5061
5062 // Support byval for ARM.
5063 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5064 // most 8-byte. We realign the indirect argument if type alignment is bigger
5065 // than ABI alignment.
5066 uint64_t ABIAlign = 4;
5067 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5068 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5069 getABIKind() == ARMABIInfo::AAPCS)
5070 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5071
5072 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5073 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5074 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5075 /*ByVal=*/true,
5076 /*Realign=*/TyAlign > ABIAlign);
5077 }
5078
5079 if (getContext().getLangOpts().Renderscript) {
5080 return coerceToIntArray(Ty, getContext(), getVMContext());
5081 }
5082
5083 // Otherwise, pass by coercing to a structure of the appropriate size.
5084 llvm::Type* ElemTy;
5085 unsigned SizeRegs;
5086 // FIXME: Try to match the types of the arguments more accurately where
5087 // we can.
5088 if (getContext().getTypeAlign(Ty) <= 32) {
5089 ElemTy = llvm::Type::getInt32Ty(getVMContext());
5090 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5091 } else {
5092 ElemTy = llvm::Type::getInt64Ty(getVMContext());
5093 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5094 }
5095
5096 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5097 }
5098
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)5099 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5100 llvm::LLVMContext &VMContext) {
5101 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5102 // is called integer-like if its size is less than or equal to one word, and
5103 // the offset of each of its addressable sub-fields is zero.
5104
5105 uint64_t Size = Context.getTypeSize(Ty);
5106
5107 // Check that the type fits in a word.
5108 if (Size > 32)
5109 return false;
5110
5111 // FIXME: Handle vector types!
5112 if (Ty->isVectorType())
5113 return false;
5114
5115 // Float types are never treated as "integer like".
5116 if (Ty->isRealFloatingType())
5117 return false;
5118
5119 // If this is a builtin or pointer type then it is ok.
5120 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5121 return true;
5122
5123 // Small complex integer types are "integer like".
5124 if (const ComplexType *CT = Ty->getAs<ComplexType>())
5125 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5126
5127 // Single element and zero sized arrays should be allowed, by the definition
5128 // above, but they are not.
5129
5130 // Otherwise, it must be a record type.
5131 const RecordType *RT = Ty->getAs<RecordType>();
5132 if (!RT) return false;
5133
5134 // Ignore records with flexible arrays.
5135 const RecordDecl *RD = RT->getDecl();
5136 if (RD->hasFlexibleArrayMember())
5137 return false;
5138
5139 // Check that all sub-fields are at offset 0, and are themselves "integer
5140 // like".
5141 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5142
5143 bool HadField = false;
5144 unsigned idx = 0;
5145 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5146 i != e; ++i, ++idx) {
5147 const FieldDecl *FD = *i;
5148
5149 // Bit-fields are not addressable, we only need to verify they are "integer
5150 // like". We still have to disallow a subsequent non-bitfield, for example:
5151 // struct { int : 0; int x }
5152 // is non-integer like according to gcc.
5153 if (FD->isBitField()) {
5154 if (!RD->isUnion())
5155 HadField = true;
5156
5157 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5158 return false;
5159
5160 continue;
5161 }
5162
5163 // Check if this field is at offset 0.
5164 if (Layout.getFieldOffset(idx) != 0)
5165 return false;
5166
5167 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5168 return false;
5169
5170 // Only allow at most one field in a structure. This doesn't match the
5171 // wording above, but follows gcc in situations with a field following an
5172 // empty structure.
5173 if (!RD->isUnion()) {
5174 if (HadField)
5175 return false;
5176
5177 HadField = true;
5178 }
5179 }
5180
5181 return true;
5182 }
5183
classifyReturnType(QualType RetTy,bool isVariadic) const5184 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5185 bool isVariadic) const {
5186 bool IsEffectivelyAAPCS_VFP =
5187 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5188
5189 if (RetTy->isVoidType())
5190 return ABIArgInfo::getIgnore();
5191
5192 // Large vector types should be returned via memory.
5193 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5194 return getNaturalAlignIndirect(RetTy);
5195 }
5196
5197 // __fp16 gets returned as if it were an int or float, but with the top 16
5198 // bits unspecified. This is not done for OpenCL as it handles the half type
5199 // natively, and does not need to interwork with AAPCS code.
5200 if (RetTy->isHalfType() && !getContext().getLangOpts().HalfArgsAndReturns) {
5201 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5202 llvm::Type::getFloatTy(getVMContext()) :
5203 llvm::Type::getInt32Ty(getVMContext());
5204 return ABIArgInfo::getDirect(ResType);
5205 }
5206
5207 if (!isAggregateTypeForABI(RetTy)) {
5208 // Treat an enum type as its underlying type.
5209 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5210 RetTy = EnumTy->getDecl()->getIntegerType();
5211
5212 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5213 : ABIArgInfo::getDirect();
5214 }
5215
5216 // Are we following APCS?
5217 if (getABIKind() == APCS) {
5218 if (isEmptyRecord(getContext(), RetTy, false))
5219 return ABIArgInfo::getIgnore();
5220
5221 // Complex types are all returned as packed integers.
5222 //
5223 // FIXME: Consider using 2 x vector types if the back end handles them
5224 // correctly.
5225 if (RetTy->isAnyComplexType())
5226 return ABIArgInfo::getDirect(llvm::IntegerType::get(
5227 getVMContext(), getContext().getTypeSize(RetTy)));
5228
5229 // Integer like structures are returned in r0.
5230 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5231 // Return in the smallest viable integer type.
5232 uint64_t Size = getContext().getTypeSize(RetTy);
5233 if (Size <= 8)
5234 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5235 if (Size <= 16)
5236 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5237 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5238 }
5239
5240 // Otherwise return in memory.
5241 return getNaturalAlignIndirect(RetTy);
5242 }
5243
5244 // Otherwise this is an AAPCS variant.
5245
5246 if (isEmptyRecord(getContext(), RetTy, true))
5247 return ABIArgInfo::getIgnore();
5248
5249 // Check for homogeneous aggregates with AAPCS-VFP.
5250 if (IsEffectivelyAAPCS_VFP) {
5251 const Type *Base = nullptr;
5252 uint64_t Members = 0;
5253 if (isHomogeneousAggregate(RetTy, Base, Members)) {
5254 assert(Base && "Base class should be set for homogeneous aggregate");
5255 // Homogeneous Aggregates are returned directly.
5256 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5257 }
5258 }
5259
5260 // Aggregates <= 4 bytes are returned in r0; other aggregates
5261 // are returned indirectly.
5262 uint64_t Size = getContext().getTypeSize(RetTy);
5263 if (Size <= 32) {
5264 if (getContext().getLangOpts().Renderscript) {
5265 return coerceToIntArray(RetTy, getContext(), getVMContext());
5266 }
5267 if (getDataLayout().isBigEndian())
5268 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5269 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5270
5271 // Return in the smallest viable integer type.
5272 if (Size <= 8)
5273 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5274 if (Size <= 16)
5275 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5276 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5277 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5278 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5279 llvm::Type *CoerceTy =
5280 llvm::ArrayType::get(Int32Ty, llvm::RoundUpToAlignment(Size, 32) / 32);
5281 return ABIArgInfo::getDirect(CoerceTy);
5282 }
5283
5284 return getNaturalAlignIndirect(RetTy);
5285 }
5286
5287 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const5288 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5289 if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5290 if (isAndroid()) {
5291 // Android shipped using Clang 3.1, which supported a slightly different
5292 // vector ABI. The primary differences were that 3-element vector types
5293 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5294 // accepts that legacy behavior for Android only.
5295 // Check whether VT is legal.
5296 unsigned NumElements = VT->getNumElements();
5297 // NumElements should be power of 2 or equal to 3.
5298 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5299 return true;
5300 } else {
5301 // Check whether VT is legal.
5302 unsigned NumElements = VT->getNumElements();
5303 uint64_t Size = getContext().getTypeSize(VT);
5304 // NumElements should be power of 2.
5305 if (!llvm::isPowerOf2_32(NumElements))
5306 return true;
5307 // Size should be greater than 32 bits.
5308 return Size <= 32;
5309 }
5310 }
5311 return false;
5312 }
5313
isHomogeneousAggregateBaseType(QualType Ty) const5314 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5315 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5316 // double, or 64-bit or 128-bit vectors.
5317 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5318 if (BT->getKind() == BuiltinType::Float ||
5319 BT->getKind() == BuiltinType::Double ||
5320 BT->getKind() == BuiltinType::LongDouble)
5321 return true;
5322 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5323 unsigned VecSize = getContext().getTypeSize(VT);
5324 if (VecSize == 64 || VecSize == 128)
5325 return true;
5326 }
5327 return false;
5328 }
5329
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const5330 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5331 uint64_t Members) const {
5332 return Members <= 4;
5333 }
5334
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5335 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5336 QualType Ty) const {
5337 CharUnits SlotSize = CharUnits::fromQuantity(4);
5338
5339 // Empty records are ignored for parameter passing purposes.
5340 if (isEmptyRecord(getContext(), Ty, true)) {
5341 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5342 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5343 return Addr;
5344 }
5345
5346 auto TyInfo = getContext().getTypeInfoInChars(Ty);
5347 CharUnits TyAlignForABI = TyInfo.second;
5348
5349 // Use indirect if size of the illegal vector is bigger than 16 bytes.
5350 bool IsIndirect = false;
5351 const Type *Base = nullptr;
5352 uint64_t Members = 0;
5353 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5354 IsIndirect = true;
5355
5356 // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5357 // allocated by the caller.
5358 } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5359 getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5360 !isHomogeneousAggregate(Ty, Base, Members)) {
5361 IsIndirect = true;
5362
5363 // Otherwise, bound the type's ABI alignment.
5364 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5365 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5366 // Our callers should be prepared to handle an under-aligned address.
5367 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5368 getABIKind() == ARMABIInfo::AAPCS) {
5369 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5370 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5371 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5372 // ARMv7k allows type alignment up to 16 bytes.
5373 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5374 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5375 } else {
5376 TyAlignForABI = CharUnits::fromQuantity(4);
5377 }
5378 TyInfo.second = TyAlignForABI;
5379
5380 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5381 SlotSize, /*AllowHigherAlign*/ true);
5382 }
5383
5384 //===----------------------------------------------------------------------===//
5385 // NVPTX ABI Implementation
5386 //===----------------------------------------------------------------------===//
5387
5388 namespace {
5389
5390 class NVPTXABIInfo : public ABIInfo {
5391 public:
NVPTXABIInfo(CodeGenTypes & CGT)5392 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5393
5394 ABIArgInfo classifyReturnType(QualType RetTy) const;
5395 ABIArgInfo classifyArgumentType(QualType Ty) const;
5396
5397 void computeInfo(CGFunctionInfo &FI) const override;
5398 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5399 QualType Ty) const override;
5400 };
5401
5402 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5403 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)5404 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5405 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5406
5407 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5408 CodeGen::CodeGenModule &M) const override;
5409 private:
5410 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5411 // resulting MDNode to the nvvm.annotations MDNode.
5412 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5413 };
5414
classifyReturnType(QualType RetTy) const5415 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5416 if (RetTy->isVoidType())
5417 return ABIArgInfo::getIgnore();
5418
5419 // note: this is different from default ABI
5420 if (!RetTy->isScalarType())
5421 return ABIArgInfo::getDirect();
5422
5423 // Treat an enum type as its underlying type.
5424 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5425 RetTy = EnumTy->getDecl()->getIntegerType();
5426
5427 return (RetTy->isPromotableIntegerType() ?
5428 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5429 }
5430
classifyArgumentType(QualType Ty) const5431 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5432 // Treat an enum type as its underlying type.
5433 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5434 Ty = EnumTy->getDecl()->getIntegerType();
5435
5436 // Return aggregates type as indirect by value
5437 if (isAggregateTypeForABI(Ty))
5438 return getNaturalAlignIndirect(Ty, /* byval */ true);
5439
5440 return (Ty->isPromotableIntegerType() ?
5441 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5442 }
5443
computeInfo(CGFunctionInfo & FI) const5444 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5445 if (!getCXXABI().classifyReturnType(FI))
5446 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5447 for (auto &I : FI.arguments())
5448 I.info = classifyArgumentType(I.type);
5449
5450 // Always honor user-specified calling convention.
5451 if (FI.getCallingConvention() != llvm::CallingConv::C)
5452 return;
5453
5454 FI.setEffectiveCallingConvention(getRuntimeCC());
5455 }
5456
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5457 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5458 QualType Ty) const {
5459 llvm_unreachable("NVPTX does not support varargs");
5460 }
5461
5462 void NVPTXTargetCodeGenInfo::
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5463 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5464 CodeGen::CodeGenModule &M) const{
5465 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5466 if (!FD) return;
5467
5468 llvm::Function *F = cast<llvm::Function>(GV);
5469
5470 // Perform special handling in OpenCL mode
5471 if (M.getLangOpts().OpenCL) {
5472 // Use OpenCL function attributes to check for kernel functions
5473 // By default, all functions are device functions
5474 if (FD->hasAttr<OpenCLKernelAttr>()) {
5475 // OpenCL __kernel functions get kernel metadata
5476 // Create !{<func-ref>, metadata !"kernel", i32 1} node
5477 addNVVMMetadata(F, "kernel", 1);
5478 // And kernel functions are not subject to inlining
5479 F->addFnAttr(llvm::Attribute::NoInline);
5480 }
5481 }
5482
5483 // Perform special handling in CUDA mode.
5484 if (M.getLangOpts().CUDA) {
5485 // CUDA __global__ functions get a kernel metadata entry. Since
5486 // __global__ functions cannot be called from the device, we do not
5487 // need to set the noinline attribute.
5488 if (FD->hasAttr<CUDAGlobalAttr>()) {
5489 // Create !{<func-ref>, metadata !"kernel", i32 1} node
5490 addNVVMMetadata(F, "kernel", 1);
5491 }
5492 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5493 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5494 llvm::APSInt MaxThreads(32);
5495 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5496 if (MaxThreads > 0)
5497 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5498
5499 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5500 // not specified in __launch_bounds__ or if the user specified a 0 value,
5501 // we don't have to add a PTX directive.
5502 if (Attr->getMinBlocks()) {
5503 llvm::APSInt MinBlocks(32);
5504 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5505 if (MinBlocks > 0)
5506 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5507 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5508 }
5509 }
5510 }
5511 }
5512
addNVVMMetadata(llvm::Function * F,StringRef Name,int Operand)5513 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5514 int Operand) {
5515 llvm::Module *M = F->getParent();
5516 llvm::LLVMContext &Ctx = M->getContext();
5517
5518 // Get "nvvm.annotations" metadata node
5519 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5520
5521 llvm::Metadata *MDVals[] = {
5522 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5523 llvm::ConstantAsMetadata::get(
5524 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5525 // Append metadata to nvvm.annotations
5526 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5527 }
5528 }
5529
5530 //===----------------------------------------------------------------------===//
5531 // SystemZ ABI Implementation
5532 //===----------------------------------------------------------------------===//
5533
5534 namespace {
5535
5536 class SystemZABIInfo : public ABIInfo {
5537 bool HasVector;
5538
5539 public:
SystemZABIInfo(CodeGenTypes & CGT,bool HV)5540 SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5541 : ABIInfo(CGT), HasVector(HV) {}
5542
5543 bool isPromotableIntegerType(QualType Ty) const;
5544 bool isCompoundType(QualType Ty) const;
5545 bool isVectorArgumentType(QualType Ty) const;
5546 bool isFPArgumentType(QualType Ty) const;
5547 QualType GetSingleElementType(QualType Ty) const;
5548
5549 ABIArgInfo classifyReturnType(QualType RetTy) const;
5550 ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5551
computeInfo(CGFunctionInfo & FI) const5552 void computeInfo(CGFunctionInfo &FI) const override {
5553 if (!getCXXABI().classifyReturnType(FI))
5554 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5555 for (auto &I : FI.arguments())
5556 I.info = classifyArgumentType(I.type);
5557 }
5558
5559 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5560 QualType Ty) const override;
5561 };
5562
5563 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5564 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT,bool HasVector)5565 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5566 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5567 };
5568
5569 }
5570
isPromotableIntegerType(QualType Ty) const5571 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5572 // Treat an enum type as its underlying type.
5573 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5574 Ty = EnumTy->getDecl()->getIntegerType();
5575
5576 // Promotable integer types are required to be promoted by the ABI.
5577 if (Ty->isPromotableIntegerType())
5578 return true;
5579
5580 // 32-bit values must also be promoted.
5581 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5582 switch (BT->getKind()) {
5583 case BuiltinType::Int:
5584 case BuiltinType::UInt:
5585 return true;
5586 default:
5587 return false;
5588 }
5589 return false;
5590 }
5591
isCompoundType(QualType Ty) const5592 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5593 return (Ty->isAnyComplexType() ||
5594 Ty->isVectorType() ||
5595 isAggregateTypeForABI(Ty));
5596 }
5597
isVectorArgumentType(QualType Ty) const5598 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5599 return (HasVector &&
5600 Ty->isVectorType() &&
5601 getContext().getTypeSize(Ty) <= 128);
5602 }
5603
isFPArgumentType(QualType Ty) const5604 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5605 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5606 switch (BT->getKind()) {
5607 case BuiltinType::Float:
5608 case BuiltinType::Double:
5609 return true;
5610 default:
5611 return false;
5612 }
5613
5614 return false;
5615 }
5616
GetSingleElementType(QualType Ty) const5617 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5618 if (const RecordType *RT = Ty->getAsStructureType()) {
5619 const RecordDecl *RD = RT->getDecl();
5620 QualType Found;
5621
5622 // If this is a C++ record, check the bases first.
5623 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5624 for (const auto &I : CXXRD->bases()) {
5625 QualType Base = I.getType();
5626
5627 // Empty bases don't affect things either way.
5628 if (isEmptyRecord(getContext(), Base, true))
5629 continue;
5630
5631 if (!Found.isNull())
5632 return Ty;
5633 Found = GetSingleElementType(Base);
5634 }
5635
5636 // Check the fields.
5637 for (const auto *FD : RD->fields()) {
5638 // For compatibility with GCC, ignore empty bitfields in C++ mode.
5639 // Unlike isSingleElementStruct(), empty structure and array fields
5640 // do count. So do anonymous bitfields that aren't zero-sized.
5641 if (getContext().getLangOpts().CPlusPlus &&
5642 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5643 continue;
5644
5645 // Unlike isSingleElementStruct(), arrays do not count.
5646 // Nested structures still do though.
5647 if (!Found.isNull())
5648 return Ty;
5649 Found = GetSingleElementType(FD->getType());
5650 }
5651
5652 // Unlike isSingleElementStruct(), trailing padding is allowed.
5653 // An 8-byte aligned struct s { float f; } is passed as a double.
5654 if (!Found.isNull())
5655 return Found;
5656 }
5657
5658 return Ty;
5659 }
5660
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5661 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5662 QualType Ty) const {
5663 // Assume that va_list type is correct; should be pointer to LLVM type:
5664 // struct {
5665 // i64 __gpr;
5666 // i64 __fpr;
5667 // i8 *__overflow_arg_area;
5668 // i8 *__reg_save_area;
5669 // };
5670
5671 // Every non-vector argument occupies 8 bytes and is passed by preference
5672 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
5673 // always passed on the stack.
5674 Ty = getContext().getCanonicalType(Ty);
5675 auto TyInfo = getContext().getTypeInfoInChars(Ty);
5676 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5677 llvm::Type *DirectTy = ArgTy;
5678 ABIArgInfo AI = classifyArgumentType(Ty);
5679 bool IsIndirect = AI.isIndirect();
5680 bool InFPRs = false;
5681 bool IsVector = false;
5682 CharUnits UnpaddedSize;
5683 CharUnits DirectAlign;
5684 if (IsIndirect) {
5685 DirectTy = llvm::PointerType::getUnqual(DirectTy);
5686 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5687 } else {
5688 if (AI.getCoerceToType())
5689 ArgTy = AI.getCoerceToType();
5690 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5691 IsVector = ArgTy->isVectorTy();
5692 UnpaddedSize = TyInfo.first;
5693 DirectAlign = TyInfo.second;
5694 }
5695 CharUnits PaddedSize = CharUnits::fromQuantity(8);
5696 if (IsVector && UnpaddedSize > PaddedSize)
5697 PaddedSize = CharUnits::fromQuantity(16);
5698 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5699
5700 CharUnits Padding = (PaddedSize - UnpaddedSize);
5701
5702 llvm::Type *IndexTy = CGF.Int64Ty;
5703 llvm::Value *PaddedSizeV =
5704 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5705
5706 if (IsVector) {
5707 // Work out the address of a vector argument on the stack.
5708 // Vector arguments are always passed in the high bits of a
5709 // single (8 byte) or double (16 byte) stack slot.
5710 Address OverflowArgAreaPtr =
5711 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5712 "overflow_arg_area_ptr");
5713 Address OverflowArgArea =
5714 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5715 TyInfo.second);
5716 Address MemAddr =
5717 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5718
5719 // Update overflow_arg_area_ptr pointer
5720 llvm::Value *NewOverflowArgArea =
5721 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5722 "overflow_arg_area");
5723 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5724
5725 return MemAddr;
5726 }
5727
5728 assert(PaddedSize.getQuantity() == 8);
5729
5730 unsigned MaxRegs, RegCountField, RegSaveIndex;
5731 CharUnits RegPadding;
5732 if (InFPRs) {
5733 MaxRegs = 4; // Maximum of 4 FPR arguments
5734 RegCountField = 1; // __fpr
5735 RegSaveIndex = 16; // save offset for f0
5736 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5737 } else {
5738 MaxRegs = 5; // Maximum of 5 GPR arguments
5739 RegCountField = 0; // __gpr
5740 RegSaveIndex = 2; // save offset for r2
5741 RegPadding = Padding; // values are passed in the low bits of a GPR
5742 }
5743
5744 Address RegCountPtr = CGF.Builder.CreateStructGEP(
5745 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5746 "reg_count_ptr");
5747 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5748 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5749 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5750 "fits_in_regs");
5751
5752 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5753 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5754 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5755 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5756
5757 // Emit code to load the value if it was passed in registers.
5758 CGF.EmitBlock(InRegBlock);
5759
5760 // Work out the address of an argument register.
5761 llvm::Value *ScaledRegCount =
5762 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5763 llvm::Value *RegBase =
5764 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5765 + RegPadding.getQuantity());
5766 llvm::Value *RegOffset =
5767 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5768 Address RegSaveAreaPtr =
5769 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5770 "reg_save_area_ptr");
5771 llvm::Value *RegSaveArea =
5772 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5773 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5774 "raw_reg_addr"),
5775 PaddedSize);
5776 Address RegAddr =
5777 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5778
5779 // Update the register count
5780 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5781 llvm::Value *NewRegCount =
5782 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5783 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5784 CGF.EmitBranch(ContBlock);
5785
5786 // Emit code to load the value if it was passed in memory.
5787 CGF.EmitBlock(InMemBlock);
5788
5789 // Work out the address of a stack argument.
5790 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5791 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5792 Address OverflowArgArea =
5793 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5794 PaddedSize);
5795 Address RawMemAddr =
5796 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5797 Address MemAddr =
5798 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5799
5800 // Update overflow_arg_area_ptr pointer
5801 llvm::Value *NewOverflowArgArea =
5802 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5803 "overflow_arg_area");
5804 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5805 CGF.EmitBranch(ContBlock);
5806
5807 // Return the appropriate result.
5808 CGF.EmitBlock(ContBlock);
5809 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5810 MemAddr, InMemBlock, "va_arg.addr");
5811
5812 if (IsIndirect)
5813 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
5814 TyInfo.second);
5815
5816 return ResAddr;
5817 }
5818
classifyReturnType(QualType RetTy) const5819 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5820 if (RetTy->isVoidType())
5821 return ABIArgInfo::getIgnore();
5822 if (isVectorArgumentType(RetTy))
5823 return ABIArgInfo::getDirect();
5824 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5825 return getNaturalAlignIndirect(RetTy);
5826 return (isPromotableIntegerType(RetTy) ?
5827 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5828 }
5829
classifyArgumentType(QualType Ty) const5830 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5831 // Handle the generic C++ ABI.
5832 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5833 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5834
5835 // Integers and enums are extended to full register width.
5836 if (isPromotableIntegerType(Ty))
5837 return ABIArgInfo::getExtend();
5838
5839 // Handle vector types and vector-like structure types. Note that
5840 // as opposed to float-like structure types, we do not allow any
5841 // padding for vector-like structures, so verify the sizes match.
5842 uint64_t Size = getContext().getTypeSize(Ty);
5843 QualType SingleElementTy = GetSingleElementType(Ty);
5844 if (isVectorArgumentType(SingleElementTy) &&
5845 getContext().getTypeSize(SingleElementTy) == Size)
5846 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5847
5848 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5849 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5850 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5851
5852 // Handle small structures.
5853 if (const RecordType *RT = Ty->getAs<RecordType>()) {
5854 // Structures with flexible arrays have variable length, so really
5855 // fail the size test above.
5856 const RecordDecl *RD = RT->getDecl();
5857 if (RD->hasFlexibleArrayMember())
5858 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5859
5860 // The structure is passed as an unextended integer, a float, or a double.
5861 llvm::Type *PassTy;
5862 if (isFPArgumentType(SingleElementTy)) {
5863 assert(Size == 32 || Size == 64);
5864 if (Size == 32)
5865 PassTy = llvm::Type::getFloatTy(getVMContext());
5866 else
5867 PassTy = llvm::Type::getDoubleTy(getVMContext());
5868 } else
5869 PassTy = llvm::IntegerType::get(getVMContext(), Size);
5870 return ABIArgInfo::getDirect(PassTy);
5871 }
5872
5873 // Non-structure compounds are passed indirectly.
5874 if (isCompoundType(Ty))
5875 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5876
5877 return ABIArgInfo::getDirect(nullptr);
5878 }
5879
5880 //===----------------------------------------------------------------------===//
5881 // MSP430 ABI Implementation
5882 //===----------------------------------------------------------------------===//
5883
5884 namespace {
5885
5886 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5887 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)5888 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5889 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5890 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5891 CodeGen::CodeGenModule &M) const override;
5892 };
5893
5894 }
5895
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5896 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5897 llvm::GlobalValue *GV,
5898 CodeGen::CodeGenModule &M) const {
5899 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
5900 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5901 // Handle 'interrupt' attribute:
5902 llvm::Function *F = cast<llvm::Function>(GV);
5903
5904 // Step 1: Set ISR calling convention.
5905 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5906
5907 // Step 2: Add attributes goodness.
5908 F->addFnAttr(llvm::Attribute::NoInline);
5909
5910 // Step 3: Emit ISR vector alias.
5911 unsigned Num = attr->getNumber() / 2;
5912 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5913 "__isr_" + Twine(Num), F);
5914 }
5915 }
5916 }
5917
5918 //===----------------------------------------------------------------------===//
5919 // MIPS ABI Implementation. This works for both little-endian and
5920 // big-endian variants.
5921 //===----------------------------------------------------------------------===//
5922
5923 namespace {
5924 class MipsABIInfo : public ABIInfo {
5925 bool IsO32;
5926 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5927 void CoerceToIntArgs(uint64_t TySize,
5928 SmallVectorImpl<llvm::Type *> &ArgList) const;
5929 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5930 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5931 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5932 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)5933 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5934 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5935 StackAlignInBytes(IsO32 ? 8 : 16) {}
5936
5937 ABIArgInfo classifyReturnType(QualType RetTy) const;
5938 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5939 void computeInfo(CGFunctionInfo &FI) const override;
5940 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5941 QualType Ty) const override;
5942 bool shouldSignExtUnsignedType(QualType Ty) const override;
5943 };
5944
5945 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5946 unsigned SizeOfUnwindException;
5947 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)5948 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5949 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5950 SizeOfUnwindException(IsO32 ? 24 : 32) {}
5951
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const5952 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5953 return 29;
5954 }
5955
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5956 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5957 CodeGen::CodeGenModule &CGM) const override {
5958 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5959 if (!FD) return;
5960 llvm::Function *Fn = cast<llvm::Function>(GV);
5961 if (FD->hasAttr<Mips16Attr>()) {
5962 Fn->addFnAttr("mips16");
5963 }
5964 else if (FD->hasAttr<NoMips16Attr>()) {
5965 Fn->addFnAttr("nomips16");
5966 }
5967
5968 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
5969 if (!Attr)
5970 return;
5971
5972 const char *Kind;
5973 switch (Attr->getInterrupt()) {
5974 case MipsInterruptAttr::eic: Kind = "eic"; break;
5975 case MipsInterruptAttr::sw0: Kind = "sw0"; break;
5976 case MipsInterruptAttr::sw1: Kind = "sw1"; break;
5977 case MipsInterruptAttr::hw0: Kind = "hw0"; break;
5978 case MipsInterruptAttr::hw1: Kind = "hw1"; break;
5979 case MipsInterruptAttr::hw2: Kind = "hw2"; break;
5980 case MipsInterruptAttr::hw3: Kind = "hw3"; break;
5981 case MipsInterruptAttr::hw4: Kind = "hw4"; break;
5982 case MipsInterruptAttr::hw5: Kind = "hw5"; break;
5983 }
5984
5985 Fn->addFnAttr("interrupt", Kind);
5986
5987 }
5988
5989 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5990 llvm::Value *Address) const override;
5991
getSizeOfUnwindException() const5992 unsigned getSizeOfUnwindException() const override {
5993 return SizeOfUnwindException;
5994 }
5995 };
5996 }
5997
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const5998 void MipsABIInfo::CoerceToIntArgs(
5999 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6000 llvm::IntegerType *IntTy =
6001 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6002
6003 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6004 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6005 ArgList.push_back(IntTy);
6006
6007 // If necessary, add one more integer type to ArgList.
6008 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6009
6010 if (R)
6011 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6012 }
6013
6014 // In N32/64, an aligned double precision floating point field is passed in
6015 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const6016 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6017 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6018
6019 if (IsO32) {
6020 CoerceToIntArgs(TySize, ArgList);
6021 return llvm::StructType::get(getVMContext(), ArgList);
6022 }
6023
6024 if (Ty->isComplexType())
6025 return CGT.ConvertType(Ty);
6026
6027 const RecordType *RT = Ty->getAs<RecordType>();
6028
6029 // Unions/vectors are passed in integer registers.
6030 if (!RT || !RT->isStructureOrClassType()) {
6031 CoerceToIntArgs(TySize, ArgList);
6032 return llvm::StructType::get(getVMContext(), ArgList);
6033 }
6034
6035 const RecordDecl *RD = RT->getDecl();
6036 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6037 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6038
6039 uint64_t LastOffset = 0;
6040 unsigned idx = 0;
6041 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6042
6043 // Iterate over fields in the struct/class and check if there are any aligned
6044 // double fields.
6045 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6046 i != e; ++i, ++idx) {
6047 const QualType Ty = i->getType();
6048 const BuiltinType *BT = Ty->getAs<BuiltinType>();
6049
6050 if (!BT || BT->getKind() != BuiltinType::Double)
6051 continue;
6052
6053 uint64_t Offset = Layout.getFieldOffset(idx);
6054 if (Offset % 64) // Ignore doubles that are not aligned.
6055 continue;
6056
6057 // Add ((Offset - LastOffset) / 64) args of type i64.
6058 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6059 ArgList.push_back(I64);
6060
6061 // Add double type.
6062 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6063 LastOffset = Offset + 64;
6064 }
6065
6066 CoerceToIntArgs(TySize - LastOffset, IntArgList);
6067 ArgList.append(IntArgList.begin(), IntArgList.end());
6068
6069 return llvm::StructType::get(getVMContext(), ArgList);
6070 }
6071
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const6072 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6073 uint64_t Offset) const {
6074 if (OrigOffset + MinABIStackAlignInBytes > Offset)
6075 return nullptr;
6076
6077 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6078 }
6079
6080 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const6081 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6082 Ty = useFirstFieldIfTransparentUnion(Ty);
6083
6084 uint64_t OrigOffset = Offset;
6085 uint64_t TySize = getContext().getTypeSize(Ty);
6086 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6087
6088 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6089 (uint64_t)StackAlignInBytes);
6090 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
6091 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
6092
6093 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6094 // Ignore empty aggregates.
6095 if (TySize == 0)
6096 return ABIArgInfo::getIgnore();
6097
6098 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6099 Offset = OrigOffset + MinABIStackAlignInBytes;
6100 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6101 }
6102
6103 // If we have reached here, aggregates are passed directly by coercing to
6104 // another structure type. Padding is inserted if the offset of the
6105 // aggregate is unaligned.
6106 ABIArgInfo ArgInfo =
6107 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6108 getPaddingType(OrigOffset, CurrOffset));
6109 ArgInfo.setInReg(true);
6110 return ArgInfo;
6111 }
6112
6113 // Treat an enum type as its underlying type.
6114 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6115 Ty = EnumTy->getDecl()->getIntegerType();
6116
6117 // All integral types are promoted to the GPR width.
6118 if (Ty->isIntegralOrEnumerationType())
6119 return ABIArgInfo::getExtend();
6120
6121 return ABIArgInfo::getDirect(
6122 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6123 }
6124
6125 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const6126 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6127 const RecordType *RT = RetTy->getAs<RecordType>();
6128 SmallVector<llvm::Type*, 8> RTList;
6129
6130 if (RT && RT->isStructureOrClassType()) {
6131 const RecordDecl *RD = RT->getDecl();
6132 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6133 unsigned FieldCnt = Layout.getFieldCount();
6134
6135 // N32/64 returns struct/classes in floating point registers if the
6136 // following conditions are met:
6137 // 1. The size of the struct/class is no larger than 128-bit.
6138 // 2. The struct/class has one or two fields all of which are floating
6139 // point types.
6140 // 3. The offset of the first field is zero (this follows what gcc does).
6141 //
6142 // Any other composite results are returned in integer registers.
6143 //
6144 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6145 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6146 for (; b != e; ++b) {
6147 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6148
6149 if (!BT || !BT->isFloatingPoint())
6150 break;
6151
6152 RTList.push_back(CGT.ConvertType(b->getType()));
6153 }
6154
6155 if (b == e)
6156 return llvm::StructType::get(getVMContext(), RTList,
6157 RD->hasAttr<PackedAttr>());
6158
6159 RTList.clear();
6160 }
6161 }
6162
6163 CoerceToIntArgs(Size, RTList);
6164 return llvm::StructType::get(getVMContext(), RTList);
6165 }
6166
classifyReturnType(QualType RetTy) const6167 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6168 uint64_t Size = getContext().getTypeSize(RetTy);
6169
6170 if (RetTy->isVoidType())
6171 return ABIArgInfo::getIgnore();
6172
6173 // O32 doesn't treat zero-sized structs differently from other structs.
6174 // However, N32/N64 ignores zero sized return values.
6175 if (!IsO32 && Size == 0)
6176 return ABIArgInfo::getIgnore();
6177
6178 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6179 if (Size <= 128) {
6180 if (RetTy->isAnyComplexType())
6181 return ABIArgInfo::getDirect();
6182
6183 // O32 returns integer vectors in registers and N32/N64 returns all small
6184 // aggregates in registers.
6185 if (!IsO32 ||
6186 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6187 ABIArgInfo ArgInfo =
6188 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6189 ArgInfo.setInReg(true);
6190 return ArgInfo;
6191 }
6192 }
6193
6194 return getNaturalAlignIndirect(RetTy);
6195 }
6196
6197 // Treat an enum type as its underlying type.
6198 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6199 RetTy = EnumTy->getDecl()->getIntegerType();
6200
6201 return (RetTy->isPromotableIntegerType() ?
6202 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6203 }
6204
computeInfo(CGFunctionInfo & FI) const6205 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6206 ABIArgInfo &RetInfo = FI.getReturnInfo();
6207 if (!getCXXABI().classifyReturnType(FI))
6208 RetInfo = classifyReturnType(FI.getReturnType());
6209
6210 // Check if a pointer to an aggregate is passed as a hidden argument.
6211 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6212
6213 for (auto &I : FI.arguments())
6214 I.info = classifyArgumentType(I.type, Offset);
6215 }
6216
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType OrigTy) const6217 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6218 QualType OrigTy) const {
6219 QualType Ty = OrigTy;
6220
6221 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6222 // Pointers are also promoted in the same way but this only matters for N32.
6223 unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6224 unsigned PtrWidth = getTarget().getPointerWidth(0);
6225 bool DidPromote = false;
6226 if ((Ty->isIntegerType() &&
6227 getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6228 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6229 DidPromote = true;
6230 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6231 Ty->isSignedIntegerType());
6232 }
6233
6234 auto TyInfo = getContext().getTypeInfoInChars(Ty);
6235
6236 // The alignment of things in the argument area is never larger than
6237 // StackAlignInBytes.
6238 TyInfo.second =
6239 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6240
6241 // MinABIStackAlignInBytes is the size of argument slots on the stack.
6242 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6243
6244 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6245 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6246
6247
6248 // If there was a promotion, "unpromote" into a temporary.
6249 // TODO: can we just use a pointer into a subset of the original slot?
6250 if (DidPromote) {
6251 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6252 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6253
6254 // Truncate down to the right width.
6255 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6256 : CGF.IntPtrTy);
6257 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6258 if (OrigTy->isPointerType())
6259 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6260
6261 CGF.Builder.CreateStore(V, Temp);
6262 Addr = Temp;
6263 }
6264
6265 return Addr;
6266 }
6267
shouldSignExtUnsignedType(QualType Ty) const6268 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6269 int TySize = getContext().getTypeSize(Ty);
6270
6271 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6272 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6273 return true;
6274
6275 return false;
6276 }
6277
6278 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6279 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6280 llvm::Value *Address) const {
6281 // This information comes from gcc's implementation, which seems to
6282 // as canonical as it gets.
6283
6284 // Everything on MIPS is 4 bytes. Double-precision FP registers
6285 // are aliased to pairs of single-precision FP registers.
6286 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6287
6288 // 0-31 are the general purpose registers, $0 - $31.
6289 // 32-63 are the floating-point registers, $f0 - $f31.
6290 // 64 and 65 are the multiply/divide registers, $hi and $lo.
6291 // 66 is the (notional, I think) register for signal-handler return.
6292 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6293
6294 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6295 // They are one bit wide and ignored here.
6296
6297 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6298 // (coprocessor 1 is the FP unit)
6299 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6300 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6301 // 176-181 are the DSP accumulator registers.
6302 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6303 return false;
6304 }
6305
6306 //===----------------------------------------------------------------------===//
6307 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6308 // Currently subclassed only to implement custom OpenCL C function attribute
6309 // handling.
6310 //===----------------------------------------------------------------------===//
6311
6312 namespace {
6313
6314 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6315 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)6316 TCETargetCodeGenInfo(CodeGenTypes &CGT)
6317 : DefaultTargetCodeGenInfo(CGT) {}
6318
6319 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6320 CodeGen::CodeGenModule &M) const override;
6321 };
6322
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6323 void TCETargetCodeGenInfo::setTargetAttributes(
6324 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6325 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6326 if (!FD) return;
6327
6328 llvm::Function *F = cast<llvm::Function>(GV);
6329
6330 if (M.getLangOpts().OpenCL) {
6331 if (FD->hasAttr<OpenCLKernelAttr>()) {
6332 // OpenCL C Kernel functions are not subject to inlining
6333 F->addFnAttr(llvm::Attribute::NoInline);
6334 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6335 if (Attr) {
6336 // Convert the reqd_work_group_size() attributes to metadata.
6337 llvm::LLVMContext &Context = F->getContext();
6338 llvm::NamedMDNode *OpenCLMetadata =
6339 M.getModule().getOrInsertNamedMetadata(
6340 "opencl.kernel_wg_size_info");
6341
6342 SmallVector<llvm::Metadata *, 5> Operands;
6343 Operands.push_back(llvm::ConstantAsMetadata::get(F));
6344
6345 Operands.push_back(
6346 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6347 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6348 Operands.push_back(
6349 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6350 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6351 Operands.push_back(
6352 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6353 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6354
6355 // Add a boolean constant operand for "required" (true) or "hint"
6356 // (false) for implementing the work_group_size_hint attr later.
6357 // Currently always true as the hint is not yet implemented.
6358 Operands.push_back(
6359 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6360 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6361 }
6362 }
6363 }
6364 }
6365
6366 }
6367
6368 //===----------------------------------------------------------------------===//
6369 // Hexagon ABI Implementation
6370 //===----------------------------------------------------------------------===//
6371
6372 namespace {
6373
6374 class HexagonABIInfo : public ABIInfo {
6375
6376
6377 public:
HexagonABIInfo(CodeGenTypes & CGT)6378 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6379
6380 private:
6381
6382 ABIArgInfo classifyReturnType(QualType RetTy) const;
6383 ABIArgInfo classifyArgumentType(QualType RetTy) const;
6384
6385 void computeInfo(CGFunctionInfo &FI) const override;
6386
6387 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6388 QualType Ty) const override;
6389 };
6390
6391 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6392 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)6393 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6394 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6395
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6396 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6397 return 29;
6398 }
6399 };
6400
6401 }
6402
computeInfo(CGFunctionInfo & FI) const6403 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6404 if (!getCXXABI().classifyReturnType(FI))
6405 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6406 for (auto &I : FI.arguments())
6407 I.info = classifyArgumentType(I.type);
6408 }
6409
classifyArgumentType(QualType Ty) const6410 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6411 if (!isAggregateTypeForABI(Ty)) {
6412 // Treat an enum type as its underlying type.
6413 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6414 Ty = EnumTy->getDecl()->getIntegerType();
6415
6416 return (Ty->isPromotableIntegerType() ?
6417 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6418 }
6419
6420 // Ignore empty records.
6421 if (isEmptyRecord(getContext(), Ty, true))
6422 return ABIArgInfo::getIgnore();
6423
6424 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6425 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6426
6427 uint64_t Size = getContext().getTypeSize(Ty);
6428 if (Size > 64)
6429 return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6430 // Pass in the smallest viable integer type.
6431 else if (Size > 32)
6432 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6433 else if (Size > 16)
6434 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6435 else if (Size > 8)
6436 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6437 else
6438 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6439 }
6440
classifyReturnType(QualType RetTy) const6441 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6442 if (RetTy->isVoidType())
6443 return ABIArgInfo::getIgnore();
6444
6445 // Large vector types should be returned via memory.
6446 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6447 return getNaturalAlignIndirect(RetTy);
6448
6449 if (!isAggregateTypeForABI(RetTy)) {
6450 // Treat an enum type as its underlying type.
6451 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6452 RetTy = EnumTy->getDecl()->getIntegerType();
6453
6454 return (RetTy->isPromotableIntegerType() ?
6455 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6456 }
6457
6458 if (isEmptyRecord(getContext(), RetTy, true))
6459 return ABIArgInfo::getIgnore();
6460
6461 // Aggregates <= 8 bytes are returned in r0; other aggregates
6462 // are returned indirectly.
6463 uint64_t Size = getContext().getTypeSize(RetTy);
6464 if (Size <= 64) {
6465 // Return in the smallest viable integer type.
6466 if (Size <= 8)
6467 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6468 if (Size <= 16)
6469 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6470 if (Size <= 32)
6471 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6472 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6473 }
6474
6475 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6476 }
6477
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6478 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6479 QualType Ty) const {
6480 // FIXME: Someone needs to audit that this handle alignment correctly.
6481 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6482 getContext().getTypeInfoInChars(Ty),
6483 CharUnits::fromQuantity(4),
6484 /*AllowHigherAlign*/ true);
6485 }
6486
6487 //===----------------------------------------------------------------------===//
6488 // AMDGPU ABI Implementation
6489 //===----------------------------------------------------------------------===//
6490
6491 namespace {
6492
6493 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6494 public:
AMDGPUTargetCodeGenInfo(CodeGenTypes & CGT)6495 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6496 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6497 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6498 CodeGen::CodeGenModule &M) const override;
6499 };
6500
6501 }
6502
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6503 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6504 const Decl *D,
6505 llvm::GlobalValue *GV,
6506 CodeGen::CodeGenModule &M) const {
6507 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6508 if (!FD)
6509 return;
6510
6511 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6512 llvm::Function *F = cast<llvm::Function>(GV);
6513 uint32_t NumVGPR = Attr->getNumVGPR();
6514 if (NumVGPR != 0)
6515 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6516 }
6517
6518 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6519 llvm::Function *F = cast<llvm::Function>(GV);
6520 unsigned NumSGPR = Attr->getNumSGPR();
6521 if (NumSGPR != 0)
6522 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6523 }
6524 }
6525
6526
6527 //===----------------------------------------------------------------------===//
6528 // SPARC v9 ABI Implementation.
6529 // Based on the SPARC Compliance Definition version 2.4.1.
6530 //
6531 // Function arguments a mapped to a nominal "parameter array" and promoted to
6532 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6533 // the array, structs larger than 16 bytes are passed indirectly.
6534 //
6535 // One case requires special care:
6536 //
6537 // struct mixed {
6538 // int i;
6539 // float f;
6540 // };
6541 //
6542 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6543 // parameter array, but the int is passed in an integer register, and the float
6544 // is passed in a floating point register. This is represented as two arguments
6545 // with the LLVM IR inreg attribute:
6546 //
6547 // declare void f(i32 inreg %i, float inreg %f)
6548 //
6549 // The code generator will only allocate 4 bytes from the parameter array for
6550 // the inreg arguments. All other arguments are allocated a multiple of 8
6551 // bytes.
6552 //
6553 namespace {
6554 class SparcV9ABIInfo : public ABIInfo {
6555 public:
SparcV9ABIInfo(CodeGenTypes & CGT)6556 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6557
6558 private:
6559 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6560 void computeInfo(CGFunctionInfo &FI) const override;
6561 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6562 QualType Ty) const override;
6563
6564 // Coercion type builder for structs passed in registers. The coercion type
6565 // serves two purposes:
6566 //
6567 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6568 // in registers.
6569 // 2. Expose aligned floating point elements as first-level elements, so the
6570 // code generator knows to pass them in floating point registers.
6571 //
6572 // We also compute the InReg flag which indicates that the struct contains
6573 // aligned 32-bit floats.
6574 //
6575 struct CoerceBuilder {
6576 llvm::LLVMContext &Context;
6577 const llvm::DataLayout &DL;
6578 SmallVector<llvm::Type*, 8> Elems;
6579 uint64_t Size;
6580 bool InReg;
6581
CoerceBuilder__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6582 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6583 : Context(c), DL(dl), Size(0), InReg(false) {}
6584
6585 // Pad Elems with integers until Size is ToSize.
pad__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6586 void pad(uint64_t ToSize) {
6587 assert(ToSize >= Size && "Cannot remove elements");
6588 if (ToSize == Size)
6589 return;
6590
6591 // Finish the current 64-bit word.
6592 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6593 if (Aligned > Size && Aligned <= ToSize) {
6594 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6595 Size = Aligned;
6596 }
6597
6598 // Add whole 64-bit words.
6599 while (Size + 64 <= ToSize) {
6600 Elems.push_back(llvm::Type::getInt64Ty(Context));
6601 Size += 64;
6602 }
6603
6604 // Final in-word padding.
6605 if (Size < ToSize) {
6606 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6607 Size = ToSize;
6608 }
6609 }
6610
6611 // Add a floating point element at Offset.
addFloat__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6612 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6613 // Unaligned floats are treated as integers.
6614 if (Offset % Bits)
6615 return;
6616 // The InReg flag is only required if there are any floats < 64 bits.
6617 if (Bits < 64)
6618 InReg = true;
6619 pad(Offset);
6620 Elems.push_back(Ty);
6621 Size = Offset + Bits;
6622 }
6623
6624 // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6625 void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6626 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6627 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6628 llvm::Type *ElemTy = StrTy->getElementType(i);
6629 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6630 switch (ElemTy->getTypeID()) {
6631 case llvm::Type::StructTyID:
6632 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6633 break;
6634 case llvm::Type::FloatTyID:
6635 addFloat(ElemOffset, ElemTy, 32);
6636 break;
6637 case llvm::Type::DoubleTyID:
6638 addFloat(ElemOffset, ElemTy, 64);
6639 break;
6640 case llvm::Type::FP128TyID:
6641 addFloat(ElemOffset, ElemTy, 128);
6642 break;
6643 case llvm::Type::PointerTyID:
6644 if (ElemOffset % 64 == 0) {
6645 pad(ElemOffset);
6646 Elems.push_back(ElemTy);
6647 Size += 64;
6648 }
6649 break;
6650 default:
6651 break;
6652 }
6653 }
6654 }
6655
6656 // Check if Ty is a usable substitute for the coercion type.
isUsableType__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6657 bool isUsableType(llvm::StructType *Ty) const {
6658 return llvm::makeArrayRef(Elems) == Ty->elements();
6659 }
6660
6661 // Get the coercion type as a literal struct type.
getType__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6662 llvm::Type *getType() const {
6663 if (Elems.size() == 1)
6664 return Elems.front();
6665 else
6666 return llvm::StructType::get(Context, Elems);
6667 }
6668 };
6669 };
6670 } // end anonymous namespace
6671
6672 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const6673 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6674 if (Ty->isVoidType())
6675 return ABIArgInfo::getIgnore();
6676
6677 uint64_t Size = getContext().getTypeSize(Ty);
6678
6679 // Anything too big to fit in registers is passed with an explicit indirect
6680 // pointer / sret pointer.
6681 if (Size > SizeLimit)
6682 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6683
6684 // Treat an enum type as its underlying type.
6685 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6686 Ty = EnumTy->getDecl()->getIntegerType();
6687
6688 // Integer types smaller than a register are extended.
6689 if (Size < 64 && Ty->isIntegerType())
6690 return ABIArgInfo::getExtend();
6691
6692 // Other non-aggregates go in registers.
6693 if (!isAggregateTypeForABI(Ty))
6694 return ABIArgInfo::getDirect();
6695
6696 // If a C++ object has either a non-trivial copy constructor or a non-trivial
6697 // destructor, it is passed with an explicit indirect pointer / sret pointer.
6698 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6699 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6700
6701 // This is a small aggregate type that should be passed in registers.
6702 // Build a coercion type from the LLVM struct type.
6703 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6704 if (!StrTy)
6705 return ABIArgInfo::getDirect();
6706
6707 CoerceBuilder CB(getVMContext(), getDataLayout());
6708 CB.addStruct(0, StrTy);
6709 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6710
6711 // Try to use the original type for coercion.
6712 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6713
6714 if (CB.InReg)
6715 return ABIArgInfo::getDirectInReg(CoerceTy);
6716 else
6717 return ABIArgInfo::getDirect(CoerceTy);
6718 }
6719
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6720 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6721 QualType Ty) const {
6722 ABIArgInfo AI = classifyType(Ty, 16 * 8);
6723 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6724 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6725 AI.setCoerceToType(ArgTy);
6726
6727 CharUnits SlotSize = CharUnits::fromQuantity(8);
6728
6729 CGBuilderTy &Builder = CGF.Builder;
6730 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6731 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6732
6733 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
6734
6735 Address ArgAddr = Address::invalid();
6736 CharUnits Stride;
6737 switch (AI.getKind()) {
6738 case ABIArgInfo::Expand:
6739 case ABIArgInfo::InAlloca:
6740 llvm_unreachable("Unsupported ABI kind for va_arg");
6741
6742 case ABIArgInfo::Extend: {
6743 Stride = SlotSize;
6744 CharUnits Offset = SlotSize - TypeInfo.first;
6745 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
6746 break;
6747 }
6748
6749 case ABIArgInfo::Direct: {
6750 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6751 Stride = CharUnits::fromQuantity(AllocSize).RoundUpToAlignment(SlotSize);
6752 ArgAddr = Addr;
6753 break;
6754 }
6755
6756 case ABIArgInfo::Indirect:
6757 Stride = SlotSize;
6758 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
6759 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
6760 TypeInfo.second);
6761 break;
6762
6763 case ABIArgInfo::Ignore:
6764 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
6765 }
6766
6767 // Update VAList.
6768 llvm::Value *NextPtr =
6769 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
6770 Builder.CreateStore(NextPtr, VAListAddr);
6771
6772 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
6773 }
6774
computeInfo(CGFunctionInfo & FI) const6775 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6776 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6777 for (auto &I : FI.arguments())
6778 I.info = classifyType(I.type, 16 * 8);
6779 }
6780
6781 namespace {
6782 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6783 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)6784 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6785 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6786
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6787 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6788 return 14;
6789 }
6790
6791 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6792 llvm::Value *Address) const override;
6793 };
6794 } // end anonymous namespace
6795
6796 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6797 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6798 llvm::Value *Address) const {
6799 // This is calculated from the LLVM and GCC tables and verified
6800 // against gcc output. AFAIK all ABIs use the same encoding.
6801
6802 CodeGen::CGBuilderTy &Builder = CGF.Builder;
6803
6804 llvm::IntegerType *i8 = CGF.Int8Ty;
6805 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6806 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6807
6808 // 0-31: the 8-byte general-purpose registers
6809 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6810
6811 // 32-63: f0-31, the 4-byte floating-point registers
6812 AssignToArrayRange(Builder, Address, Four8, 32, 63);
6813
6814 // Y = 64
6815 // PSR = 65
6816 // WIM = 66
6817 // TBR = 67
6818 // PC = 68
6819 // NPC = 69
6820 // FSR = 70
6821 // CSR = 71
6822 AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6823
6824 // 72-87: d0-15, the 8-byte floating-point registers
6825 AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6826
6827 return false;
6828 }
6829
6830
6831 //===----------------------------------------------------------------------===//
6832 // XCore ABI Implementation
6833 //===----------------------------------------------------------------------===//
6834
6835 namespace {
6836
6837 /// A SmallStringEnc instance is used to build up the TypeString by passing
6838 /// it by reference between functions that append to it.
6839 typedef llvm::SmallString<128> SmallStringEnc;
6840
6841 /// TypeStringCache caches the meta encodings of Types.
6842 ///
6843 /// The reason for caching TypeStrings is two fold:
6844 /// 1. To cache a type's encoding for later uses;
6845 /// 2. As a means to break recursive member type inclusion.
6846 ///
6847 /// A cache Entry can have a Status of:
6848 /// NonRecursive: The type encoding is not recursive;
6849 /// Recursive: The type encoding is recursive;
6850 /// Incomplete: An incomplete TypeString;
6851 /// IncompleteUsed: An incomplete TypeString that has been used in a
6852 /// Recursive type encoding.
6853 ///
6854 /// A NonRecursive entry will have all of its sub-members expanded as fully
6855 /// as possible. Whilst it may contain types which are recursive, the type
6856 /// itself is not recursive and thus its encoding may be safely used whenever
6857 /// the type is encountered.
6858 ///
6859 /// A Recursive entry will have all of its sub-members expanded as fully as
6860 /// possible. The type itself is recursive and it may contain other types which
6861 /// are recursive. The Recursive encoding must not be used during the expansion
6862 /// of a recursive type's recursive branch. For simplicity the code uses
6863 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6864 ///
6865 /// An Incomplete entry is always a RecordType and only encodes its
6866 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6867 /// are placed into the cache during type expansion as a means to identify and
6868 /// handle recursive inclusion of types as sub-members. If there is recursion
6869 /// the entry becomes IncompleteUsed.
6870 ///
6871 /// During the expansion of a RecordType's members:
6872 ///
6873 /// If the cache contains a NonRecursive encoding for the member type, the
6874 /// cached encoding is used;
6875 ///
6876 /// If the cache contains a Recursive encoding for the member type, the
6877 /// cached encoding is 'Swapped' out, as it may be incorrect, and...
6878 ///
6879 /// If the member is a RecordType, an Incomplete encoding is placed into the
6880 /// cache to break potential recursive inclusion of itself as a sub-member;
6881 ///
6882 /// Once a member RecordType has been expanded, its temporary incomplete
6883 /// entry is removed from the cache. If a Recursive encoding was swapped out
6884 /// it is swapped back in;
6885 ///
6886 /// If an incomplete entry is used to expand a sub-member, the incomplete
6887 /// entry is marked as IncompleteUsed. The cache keeps count of how many
6888 /// IncompleteUsed entries it currently contains in IncompleteUsedCount;
6889 ///
6890 /// If a member's encoding is found to be a NonRecursive or Recursive viz:
6891 /// IncompleteUsedCount==0, the member's encoding is added to the cache.
6892 /// Else the member is part of a recursive type and thus the recursion has
6893 /// been exited too soon for the encoding to be correct for the member.
6894 ///
6895 class TypeStringCache {
6896 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6897 struct Entry {
6898 std::string Str; // The encoded TypeString for the type.
6899 enum Status State; // Information about the encoding in 'Str'.
6900 std::string Swapped; // A temporary place holder for a Recursive encoding
6901 // during the expansion of RecordType's members.
6902 };
6903 std::map<const IdentifierInfo *, struct Entry> Map;
6904 unsigned IncompleteCount; // Number of Incomplete entries in the Map.
6905 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6906 public:
TypeStringCache()6907 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6908 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6909 bool removeIncomplete(const IdentifierInfo *ID);
6910 void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6911 bool IsRecursive);
6912 StringRef lookupStr(const IdentifierInfo *ID);
6913 };
6914
6915 /// TypeString encodings for enum & union fields must be order.
6916 /// FieldEncoding is a helper for this ordering process.
6917 class FieldEncoding {
6918 bool HasName;
6919 std::string Enc;
6920 public:
FieldEncoding(bool b,SmallStringEnc & e)6921 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
str()6922 StringRef str() {return Enc.c_str();}
operator <(const FieldEncoding & rhs) const6923 bool operator<(const FieldEncoding &rhs) const {
6924 if (HasName != rhs.HasName) return HasName;
6925 return Enc < rhs.Enc;
6926 }
6927 };
6928
6929 class XCoreABIInfo : public DefaultABIInfo {
6930 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)6931 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6932 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6933 QualType Ty) const override;
6934 };
6935
6936 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6937 mutable TypeStringCache TSC;
6938 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)6939 XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6940 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6941 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6942 CodeGen::CodeGenModule &M) const override;
6943 };
6944
6945 } // End anonymous namespace.
6946
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6947 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6948 QualType Ty) const {
6949 CGBuilderTy &Builder = CGF.Builder;
6950
6951 // Get the VAList.
6952 CharUnits SlotSize = CharUnits::fromQuantity(4);
6953 Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
6954
6955 // Handle the argument.
6956 ABIArgInfo AI = classifyArgumentType(Ty);
6957 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
6958 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6959 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6960 AI.setCoerceToType(ArgTy);
6961 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6962
6963 Address Val = Address::invalid();
6964 CharUnits ArgSize = CharUnits::Zero();
6965 switch (AI.getKind()) {
6966 case ABIArgInfo::Expand:
6967 case ABIArgInfo::InAlloca:
6968 llvm_unreachable("Unsupported ABI kind for va_arg");
6969 case ABIArgInfo::Ignore:
6970 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
6971 ArgSize = CharUnits::Zero();
6972 break;
6973 case ABIArgInfo::Extend:
6974 case ABIArgInfo::Direct:
6975 Val = Builder.CreateBitCast(AP, ArgPtrTy);
6976 ArgSize = CharUnits::fromQuantity(
6977 getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
6978 ArgSize = ArgSize.RoundUpToAlignment(SlotSize);
6979 break;
6980 case ABIArgInfo::Indirect:
6981 Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
6982 Val = Address(Builder.CreateLoad(Val), TypeAlign);
6983 ArgSize = SlotSize;
6984 break;
6985 }
6986
6987 // Increment the VAList.
6988 if (!ArgSize.isZero()) {
6989 llvm::Value *APN =
6990 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
6991 Builder.CreateStore(APN, VAListAddr);
6992 }
6993
6994 return Val;
6995 }
6996
6997 /// During the expansion of a RecordType, an incomplete TypeString is placed
6998 /// into the cache as a means to identify and break recursion.
6999 /// If there is a Recursive encoding in the cache, it is swapped out and will
7000 /// be reinserted by removeIncomplete().
7001 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)7002 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7003 std::string StubEnc) {
7004 if (!ID)
7005 return;
7006 Entry &E = Map[ID];
7007 assert( (E.Str.empty() || E.State == Recursive) &&
7008 "Incorrectly use of addIncomplete");
7009 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7010 E.Swapped.swap(E.Str); // swap out the Recursive
7011 E.Str.swap(StubEnc);
7012 E.State = Incomplete;
7013 ++IncompleteCount;
7014 }
7015
7016 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7017 /// must be removed from the cache.
7018 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7019 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)7020 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7021 if (!ID)
7022 return false;
7023 auto I = Map.find(ID);
7024 assert(I != Map.end() && "Entry not present");
7025 Entry &E = I->second;
7026 assert( (E.State == Incomplete ||
7027 E.State == IncompleteUsed) &&
7028 "Entry must be an incomplete type");
7029 bool IsRecursive = false;
7030 if (E.State == IncompleteUsed) {
7031 // We made use of our Incomplete encoding, thus we are recursive.
7032 IsRecursive = true;
7033 --IncompleteUsedCount;
7034 }
7035 if (E.Swapped.empty())
7036 Map.erase(I);
7037 else {
7038 // Swap the Recursive back.
7039 E.Swapped.swap(E.Str);
7040 E.Swapped.clear();
7041 E.State = Recursive;
7042 }
7043 --IncompleteCount;
7044 return IsRecursive;
7045 }
7046
7047 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7048 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)7049 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7050 bool IsRecursive) {
7051 if (!ID || IncompleteUsedCount)
7052 return; // No key or it is is an incomplete sub-type so don't add.
7053 Entry &E = Map[ID];
7054 if (IsRecursive && !E.Str.empty()) {
7055 assert(E.State==Recursive && E.Str.size() == Str.size() &&
7056 "This is not the same Recursive entry");
7057 // The parent container was not recursive after all, so we could have used
7058 // this Recursive sub-member entry after all, but we assumed the worse when
7059 // we started viz: IncompleteCount!=0.
7060 return;
7061 }
7062 assert(E.Str.empty() && "Entry already present");
7063 E.Str = Str.str();
7064 E.State = IsRecursive? Recursive : NonRecursive;
7065 }
7066
7067 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7068 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7069 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)7070 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7071 if (!ID)
7072 return StringRef(); // We have no key.
7073 auto I = Map.find(ID);
7074 if (I == Map.end())
7075 return StringRef(); // We have no encoding.
7076 Entry &E = I->second;
7077 if (E.State == Recursive && IncompleteCount)
7078 return StringRef(); // We don't use Recursive encodings for member types.
7079
7080 if (E.State == Incomplete) {
7081 // The incomplete type is being used to break out of recursion.
7082 E.State = IncompleteUsed;
7083 ++IncompleteUsedCount;
7084 }
7085 return E.Str.c_str();
7086 }
7087
7088 /// The XCore ABI includes a type information section that communicates symbol
7089 /// type information to the linker. The linker uses this information to verify
7090 /// safety/correctness of things such as array bound and pointers et al.
7091 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7092 /// This type information (TypeString) is emitted into meta data for all global
7093 /// symbols: definitions, declarations, functions & variables.
7094 ///
7095 /// The TypeString carries type, qualifier, name, size & value details.
7096 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7097 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7098 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7099 ///
7100 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7101 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7102
7103 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const7104 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7105 CodeGen::CodeGenModule &CGM) const {
7106 SmallStringEnc Enc;
7107 if (getTypeString(Enc, D, CGM, TSC)) {
7108 llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7109 llvm::SmallVector<llvm::Metadata *, 2> MDVals;
7110 MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
7111 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
7112 llvm::NamedMDNode *MD =
7113 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7114 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7115 }
7116 }
7117
7118 static bool appendType(SmallStringEnc &Enc, QualType QType,
7119 const CodeGen::CodeGenModule &CGM,
7120 TypeStringCache &TSC);
7121
7122 /// Helper function for appendRecordType().
7123 /// Builds a SmallVector containing the encoded field types in declaration
7124 /// order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7125 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7126 const RecordDecl *RD,
7127 const CodeGen::CodeGenModule &CGM,
7128 TypeStringCache &TSC) {
7129 for (const auto *Field : RD->fields()) {
7130 SmallStringEnc Enc;
7131 Enc += "m(";
7132 Enc += Field->getName();
7133 Enc += "){";
7134 if (Field->isBitField()) {
7135 Enc += "b(";
7136 llvm::raw_svector_ostream OS(Enc);
7137 OS << Field->getBitWidthValue(CGM.getContext());
7138 Enc += ':';
7139 }
7140 if (!appendType(Enc, Field->getType(), CGM, TSC))
7141 return false;
7142 if (Field->isBitField())
7143 Enc += ')';
7144 Enc += '}';
7145 FE.emplace_back(!Field->getName().empty(), Enc);
7146 }
7147 return true;
7148 }
7149
7150 /// Appends structure and union types to Enc and adds encoding to cache.
7151 /// Recursively calls appendType (via extractFieldType) for each field.
7152 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)7153 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7154 const CodeGen::CodeGenModule &CGM,
7155 TypeStringCache &TSC, const IdentifierInfo *ID) {
7156 // Append the cached TypeString if we have one.
7157 StringRef TypeString = TSC.lookupStr(ID);
7158 if (!TypeString.empty()) {
7159 Enc += TypeString;
7160 return true;
7161 }
7162
7163 // Start to emit an incomplete TypeString.
7164 size_t Start = Enc.size();
7165 Enc += (RT->isUnionType()? 'u' : 's');
7166 Enc += '(';
7167 if (ID)
7168 Enc += ID->getName();
7169 Enc += "){";
7170
7171 // We collect all encoded fields and order as necessary.
7172 bool IsRecursive = false;
7173 const RecordDecl *RD = RT->getDecl()->getDefinition();
7174 if (RD && !RD->field_empty()) {
7175 // An incomplete TypeString stub is placed in the cache for this RecordType
7176 // so that recursive calls to this RecordType will use it whilst building a
7177 // complete TypeString for this RecordType.
7178 SmallVector<FieldEncoding, 16> FE;
7179 std::string StubEnc(Enc.substr(Start).str());
7180 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
7181 TSC.addIncomplete(ID, std::move(StubEnc));
7182 if (!extractFieldType(FE, RD, CGM, TSC)) {
7183 (void) TSC.removeIncomplete(ID);
7184 return false;
7185 }
7186 IsRecursive = TSC.removeIncomplete(ID);
7187 // The ABI requires unions to be sorted but not structures.
7188 // See FieldEncoding::operator< for sort algorithm.
7189 if (RT->isUnionType())
7190 std::sort(FE.begin(), FE.end());
7191 // We can now complete the TypeString.
7192 unsigned E = FE.size();
7193 for (unsigned I = 0; I != E; ++I) {
7194 if (I)
7195 Enc += ',';
7196 Enc += FE[I].str();
7197 }
7198 }
7199 Enc += '}';
7200 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7201 return true;
7202 }
7203
7204 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)7205 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7206 TypeStringCache &TSC,
7207 const IdentifierInfo *ID) {
7208 // Append the cached TypeString if we have one.
7209 StringRef TypeString = TSC.lookupStr(ID);
7210 if (!TypeString.empty()) {
7211 Enc += TypeString;
7212 return true;
7213 }
7214
7215 size_t Start = Enc.size();
7216 Enc += "e(";
7217 if (ID)
7218 Enc += ID->getName();
7219 Enc += "){";
7220
7221 // We collect all encoded enumerations and order them alphanumerically.
7222 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7223 SmallVector<FieldEncoding, 16> FE;
7224 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7225 ++I) {
7226 SmallStringEnc EnumEnc;
7227 EnumEnc += "m(";
7228 EnumEnc += I->getName();
7229 EnumEnc += "){";
7230 I->getInitVal().toString(EnumEnc);
7231 EnumEnc += '}';
7232 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7233 }
7234 std::sort(FE.begin(), FE.end());
7235 unsigned E = FE.size();
7236 for (unsigned I = 0; I != E; ++I) {
7237 if (I)
7238 Enc += ',';
7239 Enc += FE[I].str();
7240 }
7241 }
7242 Enc += '}';
7243 TSC.addIfComplete(ID, Enc.substr(Start), false);
7244 return true;
7245 }
7246
7247 /// Appends type's qualifier to Enc.
7248 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)7249 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7250 // Qualifiers are emitted in alphabetical order.
7251 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7252 int Lookup = 0;
7253 if (QT.isConstQualified())
7254 Lookup += 1<<0;
7255 if (QT.isRestrictQualified())
7256 Lookup += 1<<1;
7257 if (QT.isVolatileQualified())
7258 Lookup += 1<<2;
7259 Enc += Table[Lookup];
7260 }
7261
7262 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)7263 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7264 const char *EncType;
7265 switch (BT->getKind()) {
7266 case BuiltinType::Void:
7267 EncType = "0";
7268 break;
7269 case BuiltinType::Bool:
7270 EncType = "b";
7271 break;
7272 case BuiltinType::Char_U:
7273 EncType = "uc";
7274 break;
7275 case BuiltinType::UChar:
7276 EncType = "uc";
7277 break;
7278 case BuiltinType::SChar:
7279 EncType = "sc";
7280 break;
7281 case BuiltinType::UShort:
7282 EncType = "us";
7283 break;
7284 case BuiltinType::Short:
7285 EncType = "ss";
7286 break;
7287 case BuiltinType::UInt:
7288 EncType = "ui";
7289 break;
7290 case BuiltinType::Int:
7291 EncType = "si";
7292 break;
7293 case BuiltinType::ULong:
7294 EncType = "ul";
7295 break;
7296 case BuiltinType::Long:
7297 EncType = "sl";
7298 break;
7299 case BuiltinType::ULongLong:
7300 EncType = "ull";
7301 break;
7302 case BuiltinType::LongLong:
7303 EncType = "sll";
7304 break;
7305 case BuiltinType::Float:
7306 EncType = "ft";
7307 break;
7308 case BuiltinType::Double:
7309 EncType = "d";
7310 break;
7311 case BuiltinType::LongDouble:
7312 EncType = "ld";
7313 break;
7314 default:
7315 return false;
7316 }
7317 Enc += EncType;
7318 return true;
7319 }
7320
7321 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7322 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7323 const CodeGen::CodeGenModule &CGM,
7324 TypeStringCache &TSC) {
7325 Enc += "p(";
7326 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7327 return false;
7328 Enc += ')';
7329 return true;
7330 }
7331
7332 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)7333 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7334 const ArrayType *AT,
7335 const CodeGen::CodeGenModule &CGM,
7336 TypeStringCache &TSC, StringRef NoSizeEnc) {
7337 if (AT->getSizeModifier() != ArrayType::Normal)
7338 return false;
7339 Enc += "a(";
7340 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7341 CAT->getSize().toStringUnsigned(Enc);
7342 else
7343 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7344 Enc += ':';
7345 // The Qualifiers should be attached to the type rather than the array.
7346 appendQualifier(Enc, QT);
7347 if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7348 return false;
7349 Enc += ')';
7350 return true;
7351 }
7352
7353 /// Appends a function encoding to Enc, calling appendType for the return type
7354 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7355 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7356 const CodeGen::CodeGenModule &CGM,
7357 TypeStringCache &TSC) {
7358 Enc += "f{";
7359 if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7360 return false;
7361 Enc += "}(";
7362 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7363 // N.B. we are only interested in the adjusted param types.
7364 auto I = FPT->param_type_begin();
7365 auto E = FPT->param_type_end();
7366 if (I != E) {
7367 do {
7368 if (!appendType(Enc, *I, CGM, TSC))
7369 return false;
7370 ++I;
7371 if (I != E)
7372 Enc += ',';
7373 } while (I != E);
7374 if (FPT->isVariadic())
7375 Enc += ",va";
7376 } else {
7377 if (FPT->isVariadic())
7378 Enc += "va";
7379 else
7380 Enc += '0';
7381 }
7382 }
7383 Enc += ')';
7384 return true;
7385 }
7386
7387 /// Handles the type's qualifier before dispatching a call to handle specific
7388 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7389 static bool appendType(SmallStringEnc &Enc, QualType QType,
7390 const CodeGen::CodeGenModule &CGM,
7391 TypeStringCache &TSC) {
7392
7393 QualType QT = QType.getCanonicalType();
7394
7395 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7396 // The Qualifiers should be attached to the type rather than the array.
7397 // Thus we don't call appendQualifier() here.
7398 return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7399
7400 appendQualifier(Enc, QT);
7401
7402 if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7403 return appendBuiltinType(Enc, BT);
7404
7405 if (const PointerType *PT = QT->getAs<PointerType>())
7406 return appendPointerType(Enc, PT, CGM, TSC);
7407
7408 if (const EnumType *ET = QT->getAs<EnumType>())
7409 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7410
7411 if (const RecordType *RT = QT->getAsStructureType())
7412 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7413
7414 if (const RecordType *RT = QT->getAsUnionType())
7415 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7416
7417 if (const FunctionType *FT = QT->getAs<FunctionType>())
7418 return appendFunctionType(Enc, FT, CGM, TSC);
7419
7420 return false;
7421 }
7422
getTypeString(SmallStringEnc & Enc,const Decl * D,CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7423 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7424 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7425 if (!D)
7426 return false;
7427
7428 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7429 if (FD->getLanguageLinkage() != CLanguageLinkage)
7430 return false;
7431 return appendType(Enc, FD->getType(), CGM, TSC);
7432 }
7433
7434 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7435 if (VD->getLanguageLinkage() != CLanguageLinkage)
7436 return false;
7437 QualType QT = VD->getType().getCanonicalType();
7438 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7439 // Global ArrayTypes are given a size of '*' if the size is unknown.
7440 // The Qualifiers should be attached to the type rather than the array.
7441 // Thus we don't call appendQualifier() here.
7442 return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7443 }
7444 return appendType(Enc, QT, CGM, TSC);
7445 }
7446 return false;
7447 }
7448
7449
7450 //===----------------------------------------------------------------------===//
7451 // Driver code
7452 //===----------------------------------------------------------------------===//
7453
getTriple() const7454 const llvm::Triple &CodeGenModule::getTriple() const {
7455 return getTarget().getTriple();
7456 }
7457
supportsCOMDAT() const7458 bool CodeGenModule::supportsCOMDAT() const {
7459 return !getTriple().isOSBinFormatMachO();
7460 }
7461
getTargetCodeGenInfo()7462 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7463 if (TheTargetCodeGenInfo)
7464 return *TheTargetCodeGenInfo;
7465
7466 const llvm::Triple &Triple = getTarget().getTriple();
7467 switch (Triple.getArch()) {
7468 default:
7469 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7470
7471 case llvm::Triple::le32:
7472 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7473 case llvm::Triple::mips:
7474 case llvm::Triple::mipsel:
7475 if (Triple.getOS() == llvm::Triple::NaCl)
7476 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7477 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7478
7479 case llvm::Triple::mips64:
7480 case llvm::Triple::mips64el:
7481 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7482
7483 case llvm::Triple::aarch64:
7484 case llvm::Triple::aarch64_be: {
7485 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7486 if (getTarget().getABI() == "darwinpcs")
7487 Kind = AArch64ABIInfo::DarwinPCS;
7488
7489 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7490 }
7491
7492 case llvm::Triple::wasm32:
7493 case llvm::Triple::wasm64:
7494 return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
7495
7496 case llvm::Triple::arm:
7497 case llvm::Triple::armeb:
7498 case llvm::Triple::thumb:
7499 case llvm::Triple::thumbeb:
7500 {
7501 if (Triple.getOS() == llvm::Triple::Win32) {
7502 TheTargetCodeGenInfo =
7503 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7504 return *TheTargetCodeGenInfo;
7505 }
7506
7507 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7508 StringRef ABIStr = getTarget().getABI();
7509 if (ABIStr == "apcs-gnu")
7510 Kind = ARMABIInfo::APCS;
7511 else if (ABIStr == "aapcs16")
7512 Kind = ARMABIInfo::AAPCS16_VFP;
7513 else if (CodeGenOpts.FloatABI == "hard" ||
7514 (CodeGenOpts.FloatABI != "soft" &&
7515 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7516 Kind = ARMABIInfo::AAPCS_VFP;
7517
7518 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7519 }
7520
7521 case llvm::Triple::ppc:
7522 return *(TheTargetCodeGenInfo =
7523 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
7524 case llvm::Triple::ppc64:
7525 if (Triple.isOSBinFormatELF()) {
7526 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7527 if (getTarget().getABI() == "elfv2")
7528 Kind = PPC64_SVR4_ABIInfo::ELFv2;
7529 bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7530
7531 return *(TheTargetCodeGenInfo =
7532 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7533 } else
7534 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7535 case llvm::Triple::ppc64le: {
7536 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7537 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7538 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7539 Kind = PPC64_SVR4_ABIInfo::ELFv1;
7540 bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7541
7542 return *(TheTargetCodeGenInfo =
7543 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7544 }
7545
7546 case llvm::Triple::nvptx:
7547 case llvm::Triple::nvptx64:
7548 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7549
7550 case llvm::Triple::msp430:
7551 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7552
7553 case llvm::Triple::systemz: {
7554 bool HasVector = getTarget().getABI() == "vector";
7555 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7556 HasVector));
7557 }
7558
7559 case llvm::Triple::tce:
7560 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7561
7562 case llvm::Triple::x86: {
7563 bool IsDarwinVectorABI = Triple.isOSDarwin();
7564 bool RetSmallStructInRegABI =
7565 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7566 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7567
7568 if (Triple.getOS() == llvm::Triple::Win32) {
7569 return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7570 Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7571 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7572 } else {
7573 return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7574 Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7575 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
7576 CodeGenOpts.FloatABI == "soft"));
7577 }
7578 }
7579
7580 case llvm::Triple::x86_64: {
7581 StringRef ABI = getTarget().getABI();
7582 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7583 ABI == "avx" ? X86AVXABILevel::AVX :
7584 X86AVXABILevel::None);
7585
7586 switch (Triple.getOS()) {
7587 case llvm::Triple::Win32:
7588 return *(TheTargetCodeGenInfo =
7589 new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7590 case llvm::Triple::PS4:
7591 return *(TheTargetCodeGenInfo =
7592 new PS4TargetCodeGenInfo(Types, AVXLevel));
7593 default:
7594 return *(TheTargetCodeGenInfo =
7595 new X86_64TargetCodeGenInfo(Types, AVXLevel));
7596 }
7597 }
7598 case llvm::Triple::hexagon:
7599 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7600 case llvm::Triple::r600:
7601 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7602 case llvm::Triple::amdgcn:
7603 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7604 case llvm::Triple::sparcv9:
7605 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7606 case llvm::Triple::xcore:
7607 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7608 }
7609 }
7610