1 //===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the RewriteRope class, which is a powerful string.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Rewrite/Core/RewriteRope.h"
15 #include "clang/Basic/LLVM.h"
16 #include <algorithm>
17 using namespace clang;
18 
19 /// RewriteRope is a "strong" string class, designed to make insertions and
20 /// deletions in the middle of the string nearly constant time (really, they are
21 /// O(log N), but with a very low constant factor).
22 ///
23 /// The implementation of this datastructure is a conceptual linear sequence of
24 /// RopePiece elements.  Each RopePiece represents a view on a separately
25 /// allocated and reference counted string.  This means that splitting a very
26 /// long string can be done in constant time by splitting a RopePiece that
27 /// references the whole string into two rope pieces that reference each half.
28 /// Once split, another string can be inserted in between the two halves by
29 /// inserting a RopePiece in between the two others.  All of this is very
30 /// inexpensive: it takes time proportional to the number of RopePieces, not the
31 /// length of the strings they represent.
32 ///
33 /// While a linear sequences of RopePieces is the conceptual model, the actual
34 /// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
35 /// is a tree that keeps the values in the leaves and has where each node
36 /// contains a reasonable number of pointers to children/values) allows us to
37 /// maintain efficient operation when the RewriteRope contains a *huge* number
38 /// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
39 /// the RopePiece corresponding to some offset very efficiently, and it
40 /// automatically balances itself on insertions of RopePieces (which can happen
41 /// for both insertions and erases of string ranges).
42 ///
43 /// The one wrinkle on the theory is that we don't attempt to keep the tree
44 /// properly balanced when erases happen.  Erases of string data can both insert
45 /// new RopePieces (e.g. when the middle of some other rope piece is deleted,
46 /// which results in two rope pieces, which is just like an insert) or it can
47 /// reduce the number of RopePieces maintained by the B+Tree.  In the case when
48 /// the number of RopePieces is reduced, we don't attempt to maintain the
49 /// standard 'invariant' that each node in the tree contains at least
50 /// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
51 /// matter.
52 ///
53 /// The implementation below is primarily implemented in terms of three classes:
54 ///   RopePieceBTreeNode - Common base class for:
55 ///
56 ///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
57 ///          nodes.  This directly represents a chunk of the string with those
58 ///          RopePieces contatenated.
59 ///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
60 ///          up to '2*WidthFactor' other nodes in the tree.
61 
62 
63 //===----------------------------------------------------------------------===//
64 // RopePieceBTreeNode Class
65 //===----------------------------------------------------------------------===//
66 
67 namespace {
68   /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
69   /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
70   /// and a flag that determines which subclass the instance is.  Also
71   /// important, this node knows the full extend of the node, including any
72   /// children that it has.  This allows efficient skipping over entire subtrees
73   /// when looking for an offset in the BTree.
74   class RopePieceBTreeNode {
75   protected:
76     /// WidthFactor - This controls the number of K/V slots held in the BTree:
77     /// how wide it is.  Each level of the BTree is guaranteed to have at least
78     /// 'WidthFactor' elements in it (either ropepieces or children), (except
79     /// the root, which may have less) and may have at most 2*WidthFactor
80     /// elements.
81     enum { WidthFactor = 8 };
82 
83     /// Size - This is the number of bytes of file this node (including any
84     /// potential children) covers.
85     unsigned Size;
86 
87     /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
88     /// is an instance of RopePieceBTreeInterior.
89     bool IsLeaf;
90 
RopePieceBTreeNode(bool isLeaf)91     RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
92     ~RopePieceBTreeNode() = default;
93 
94   public:
isLeaf() const95     bool isLeaf() const { return IsLeaf; }
size() const96     unsigned size() const { return Size; }
97 
98     void Destroy();
99 
100     /// split - Split the range containing the specified offset so that we are
101     /// guaranteed that there is a place to do an insertion at the specified
102     /// offset.  The offset is relative, so "0" is the start of the node.
103     ///
104     /// If there is no space in this subtree for the extra piece, the extra tree
105     /// node is returned and must be inserted into a parent.
106     RopePieceBTreeNode *split(unsigned Offset);
107 
108     /// insert - Insert the specified ropepiece into this tree node at the
109     /// specified offset.  The offset is relative, so "0" is the start of the
110     /// node.
111     ///
112     /// If there is no space in this subtree for the extra piece, the extra tree
113     /// node is returned and must be inserted into a parent.
114     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
115 
116     /// erase - Remove NumBytes from this node at the specified offset.  We are
117     /// guaranteed that there is a split at Offset.
118     void erase(unsigned Offset, unsigned NumBytes);
119 
120   };
121 } // end anonymous namespace
122 
123 //===----------------------------------------------------------------------===//
124 // RopePieceBTreeLeaf Class
125 //===----------------------------------------------------------------------===//
126 
127 namespace {
128   /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
129   /// nodes.  This directly represents a chunk of the string with those
130   /// RopePieces contatenated.  Since this is a B+Tree, all values (in this case
131   /// instances of RopePiece) are stored in leaves like this.  To make iteration
132   /// over the leaves efficient, they maintain a singly linked list through the
133   /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
134   /// time for all increments.
135   class RopePieceBTreeLeaf : public RopePieceBTreeNode {
136     /// NumPieces - This holds the number of rope pieces currently active in the
137     /// Pieces array.
138     unsigned char NumPieces;
139 
140     /// Pieces - This tracks the file chunks currently in this leaf.
141     ///
142     RopePiece Pieces[2*WidthFactor];
143 
144     /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
145     /// efficient in-order forward iteration of the tree without traversal.
146     RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
147   public:
RopePieceBTreeLeaf()148     RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
149                            PrevLeaf(nullptr), NextLeaf(nullptr) {}
~RopePieceBTreeLeaf()150     ~RopePieceBTreeLeaf() {
151       if (PrevLeaf || NextLeaf)
152         removeFromLeafInOrder();
153       clear();
154     }
155 
isFull() const156     bool isFull() const { return NumPieces == 2*WidthFactor; }
157 
158     /// clear - Remove all rope pieces from this leaf.
clear()159     void clear() {
160       while (NumPieces)
161         Pieces[--NumPieces] = RopePiece();
162       Size = 0;
163     }
164 
getNumPieces() const165     unsigned getNumPieces() const { return NumPieces; }
166 
getPiece(unsigned i) const167     const RopePiece &getPiece(unsigned i) const {
168       assert(i < getNumPieces() && "Invalid piece ID");
169       return Pieces[i];
170     }
171 
getNextLeafInOrder() const172     const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
insertAfterLeafInOrder(RopePieceBTreeLeaf * Node)173     void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
174       assert(!PrevLeaf && !NextLeaf && "Already in ordering");
175 
176       NextLeaf = Node->NextLeaf;
177       if (NextLeaf)
178         NextLeaf->PrevLeaf = &NextLeaf;
179       PrevLeaf = &Node->NextLeaf;
180       Node->NextLeaf = this;
181     }
182 
removeFromLeafInOrder()183     void removeFromLeafInOrder() {
184       if (PrevLeaf) {
185         *PrevLeaf = NextLeaf;
186         if (NextLeaf)
187           NextLeaf->PrevLeaf = PrevLeaf;
188       } else if (NextLeaf) {
189         NextLeaf->PrevLeaf = nullptr;
190       }
191     }
192 
193     /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
194     /// summing the size of all RopePieces.
FullRecomputeSizeLocally()195     void FullRecomputeSizeLocally() {
196       Size = 0;
197       for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
198         Size += getPiece(i).size();
199     }
200 
201     /// split - Split the range containing the specified offset so that we are
202     /// guaranteed that there is a place to do an insertion at the specified
203     /// offset.  The offset is relative, so "0" is the start of the node.
204     ///
205     /// If there is no space in this subtree for the extra piece, the extra tree
206     /// node is returned and must be inserted into a parent.
207     RopePieceBTreeNode *split(unsigned Offset);
208 
209     /// insert - Insert the specified ropepiece into this tree node at the
210     /// specified offset.  The offset is relative, so "0" is the start of the
211     /// node.
212     ///
213     /// If there is no space in this subtree for the extra piece, the extra tree
214     /// node is returned and must be inserted into a parent.
215     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
216 
217 
218     /// erase - Remove NumBytes from this node at the specified offset.  We are
219     /// guaranteed that there is a split at Offset.
220     void erase(unsigned Offset, unsigned NumBytes);
221 
classof(const RopePieceBTreeNode * N)222     static inline bool classof(const RopePieceBTreeNode *N) {
223       return N->isLeaf();
224     }
225   };
226 } // end anonymous namespace
227 
228 /// split - Split the range containing the specified offset so that we are
229 /// guaranteed that there is a place to do an insertion at the specified
230 /// offset.  The offset is relative, so "0" is the start of the node.
231 ///
232 /// If there is no space in this subtree for the extra piece, the extra tree
233 /// node is returned and must be inserted into a parent.
split(unsigned Offset)234 RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
235   // Find the insertion point.  We are guaranteed that there is a split at the
236   // specified offset so find it.
237   if (Offset == 0 || Offset == size()) {
238     // Fastpath for a common case.  There is already a splitpoint at the end.
239     return nullptr;
240   }
241 
242   // Find the piece that this offset lands in.
243   unsigned PieceOffs = 0;
244   unsigned i = 0;
245   while (Offset >= PieceOffs+Pieces[i].size()) {
246     PieceOffs += Pieces[i].size();
247     ++i;
248   }
249 
250   // If there is already a split point at the specified offset, just return
251   // success.
252   if (PieceOffs == Offset)
253     return nullptr;
254 
255   // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
256   // to being Piece relative.
257   unsigned IntraPieceOffset = Offset-PieceOffs;
258 
259   // We do this by shrinking the RopePiece and then doing an insert of the tail.
260   RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
261                  Pieces[i].EndOffs);
262   Size -= Pieces[i].size();
263   Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
264   Size += Pieces[i].size();
265 
266   return insert(Offset, Tail);
267 }
268 
269 
270 /// insert - Insert the specified RopePiece into this tree node at the
271 /// specified offset.  The offset is relative, so "0" is the start of the node.
272 ///
273 /// If there is no space in this subtree for the extra piece, the extra tree
274 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)275 RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
276                                                const RopePiece &R) {
277   // If this node is not full, insert the piece.
278   if (!isFull()) {
279     // Find the insertion point.  We are guaranteed that there is a split at the
280     // specified offset so find it.
281     unsigned i = 0, e = getNumPieces();
282     if (Offset == size()) {
283       // Fastpath for a common case.
284       i = e;
285     } else {
286       unsigned SlotOffs = 0;
287       for (; Offset > SlotOffs; ++i)
288         SlotOffs += getPiece(i).size();
289       assert(SlotOffs == Offset && "Split didn't occur before insertion!");
290     }
291 
292     // For an insertion into a non-full leaf node, just insert the value in
293     // its sorted position.  This requires moving later values over.
294     for (; i != e; --e)
295       Pieces[e] = Pieces[e-1];
296     Pieces[i] = R;
297     ++NumPieces;
298     Size += R.size();
299     return nullptr;
300   }
301 
302   // Otherwise, if this is leaf is full, split it in two halves.  Since this
303   // node is full, it contains 2*WidthFactor values.  We move the first
304   // 'WidthFactor' values to the LHS child (which we leave in this node) and
305   // move the last 'WidthFactor' values into the RHS child.
306 
307   // Create the new node.
308   RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
309 
310   // Move over the last 'WidthFactor' values from here to NewNode.
311   std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
312             &NewNode->Pieces[0]);
313   // Replace old pieces with null RopePieces to drop refcounts.
314   std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
315 
316   // Decrease the number of values in the two nodes.
317   NewNode->NumPieces = NumPieces = WidthFactor;
318 
319   // Recompute the two nodes' size.
320   NewNode->FullRecomputeSizeLocally();
321   FullRecomputeSizeLocally();
322 
323   // Update the list of leaves.
324   NewNode->insertAfterLeafInOrder(this);
325 
326   // These insertions can't fail.
327   if (this->size() >= Offset)
328     this->insert(Offset, R);
329   else
330     NewNode->insert(Offset - this->size(), R);
331   return NewNode;
332 }
333 
334 /// erase - Remove NumBytes from this node at the specified offset.  We are
335 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)336 void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
337   // Since we are guaranteed that there is a split at Offset, we start by
338   // finding the Piece that starts there.
339   unsigned PieceOffs = 0;
340   unsigned i = 0;
341   for (; Offset > PieceOffs; ++i)
342     PieceOffs += getPiece(i).size();
343   assert(PieceOffs == Offset && "Split didn't occur before erase!");
344 
345   unsigned StartPiece = i;
346 
347   // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
348   // all of them.
349   for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
350     PieceOffs += getPiece(i).size();
351 
352   // If we exactly include the last one, include it in the region to delete.
353   if (Offset+NumBytes == PieceOffs+getPiece(i).size())
354     PieceOffs += getPiece(i).size(), ++i;
355 
356   // If we completely cover some RopePieces, erase them now.
357   if (i != StartPiece) {
358     unsigned NumDeleted = i-StartPiece;
359     for (; i != getNumPieces(); ++i)
360       Pieces[i-NumDeleted] = Pieces[i];
361 
362     // Drop references to dead rope pieces.
363     std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
364               RopePiece());
365     NumPieces -= NumDeleted;
366 
367     unsigned CoverBytes = PieceOffs-Offset;
368     NumBytes -= CoverBytes;
369     Size -= CoverBytes;
370   }
371 
372   // If we completely removed some stuff, we could be done.
373   if (NumBytes == 0) return;
374 
375   // Okay, now might be erasing part of some Piece.  If this is the case, then
376   // move the start point of the piece.
377   assert(getPiece(StartPiece).size() > NumBytes);
378   Pieces[StartPiece].StartOffs += NumBytes;
379 
380   // The size of this node just shrunk by NumBytes.
381   Size -= NumBytes;
382 }
383 
384 //===----------------------------------------------------------------------===//
385 // RopePieceBTreeInterior Class
386 //===----------------------------------------------------------------------===//
387 
388 namespace {
389   /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
390   /// which holds up to 2*WidthFactor pointers to child nodes.
391   class RopePieceBTreeInterior : public RopePieceBTreeNode {
392     /// NumChildren - This holds the number of children currently active in the
393     /// Children array.
394     unsigned char NumChildren;
395     RopePieceBTreeNode *Children[2*WidthFactor];
396   public:
RopePieceBTreeInterior()397     RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
398 
RopePieceBTreeInterior(RopePieceBTreeNode * LHS,RopePieceBTreeNode * RHS)399     RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
400     : RopePieceBTreeNode(false) {
401       Children[0] = LHS;
402       Children[1] = RHS;
403       NumChildren = 2;
404       Size = LHS->size() + RHS->size();
405     }
406 
~RopePieceBTreeInterior()407     ~RopePieceBTreeInterior() {
408       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
409         Children[i]->Destroy();
410     }
411 
isFull() const412     bool isFull() const { return NumChildren == 2*WidthFactor; }
413 
getNumChildren() const414     unsigned getNumChildren() const { return NumChildren; }
getChild(unsigned i) const415     const RopePieceBTreeNode *getChild(unsigned i) const {
416       assert(i < NumChildren && "invalid child #");
417       return Children[i];
418     }
getChild(unsigned i)419     RopePieceBTreeNode *getChild(unsigned i) {
420       assert(i < NumChildren && "invalid child #");
421       return Children[i];
422     }
423 
424     /// FullRecomputeSizeLocally - Recompute the Size field of this node by
425     /// summing up the sizes of the child nodes.
FullRecomputeSizeLocally()426     void FullRecomputeSizeLocally() {
427       Size = 0;
428       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
429         Size += getChild(i)->size();
430     }
431 
432 
433     /// split - Split the range containing the specified offset so that we are
434     /// guaranteed that there is a place to do an insertion at the specified
435     /// offset.  The offset is relative, so "0" is the start of the node.
436     ///
437     /// If there is no space in this subtree for the extra piece, the extra tree
438     /// node is returned and must be inserted into a parent.
439     RopePieceBTreeNode *split(unsigned Offset);
440 
441 
442     /// insert - Insert the specified ropepiece into this tree node at the
443     /// specified offset.  The offset is relative, so "0" is the start of the
444     /// node.
445     ///
446     /// If there is no space in this subtree for the extra piece, the extra tree
447     /// node is returned and must be inserted into a parent.
448     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
449 
450     /// HandleChildPiece - A child propagated an insertion result up to us.
451     /// Insert the new child, and/or propagate the result further up the tree.
452     RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
453 
454     /// erase - Remove NumBytes from this node at the specified offset.  We are
455     /// guaranteed that there is a split at Offset.
456     void erase(unsigned Offset, unsigned NumBytes);
457 
classof(const RopePieceBTreeNode * N)458     static inline bool classof(const RopePieceBTreeNode *N) {
459       return !N->isLeaf();
460     }
461   };
462 } // end anonymous namespace
463 
464 /// split - Split the range containing the specified offset so that we are
465 /// guaranteed that there is a place to do an insertion at the specified
466 /// offset.  The offset is relative, so "0" is the start of the node.
467 ///
468 /// If there is no space in this subtree for the extra piece, the extra tree
469 /// node is returned and must be inserted into a parent.
split(unsigned Offset)470 RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
471   // Figure out which child to split.
472   if (Offset == 0 || Offset == size())
473     return nullptr; // If we have an exact offset, we're already split.
474 
475   unsigned ChildOffset = 0;
476   unsigned i = 0;
477   for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
478     ChildOffset += getChild(i)->size();
479 
480   // If already split there, we're done.
481   if (ChildOffset == Offset)
482     return nullptr;
483 
484   // Otherwise, recursively split the child.
485   if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
486     return HandleChildPiece(i, RHS);
487   return nullptr; // Done!
488 }
489 
490 /// insert - Insert the specified ropepiece into this tree node at the
491 /// specified offset.  The offset is relative, so "0" is the start of the
492 /// node.
493 ///
494 /// If there is no space in this subtree for the extra piece, the extra tree
495 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)496 RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
497                                                    const RopePiece &R) {
498   // Find the insertion point.  We are guaranteed that there is a split at the
499   // specified offset so find it.
500   unsigned i = 0, e = getNumChildren();
501 
502   unsigned ChildOffs = 0;
503   if (Offset == size()) {
504     // Fastpath for a common case.  Insert at end of last child.
505     i = e-1;
506     ChildOffs = size()-getChild(i)->size();
507   } else {
508     for (; Offset > ChildOffs+getChild(i)->size(); ++i)
509       ChildOffs += getChild(i)->size();
510   }
511 
512   Size += R.size();
513 
514   // Insert at the end of this child.
515   if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
516     return HandleChildPiece(i, RHS);
517 
518   return nullptr;
519 }
520 
521 /// HandleChildPiece - A child propagated an insertion result up to us.
522 /// Insert the new child, and/or propagate the result further up the tree.
523 RopePieceBTreeNode *
HandleChildPiece(unsigned i,RopePieceBTreeNode * RHS)524 RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
525   // Otherwise the child propagated a subtree up to us as a new child.  See if
526   // we have space for it here.
527   if (!isFull()) {
528     // Insert RHS after child 'i'.
529     if (i + 1 != getNumChildren())
530       memmove(&Children[i+2], &Children[i+1],
531               (getNumChildren()-i-1)*sizeof(Children[0]));
532     Children[i+1] = RHS;
533     ++NumChildren;
534     return nullptr;
535   }
536 
537   // Okay, this node is full.  Split it in half, moving WidthFactor children to
538   // a newly allocated interior node.
539 
540   // Create the new node.
541   RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
542 
543   // Move over the last 'WidthFactor' values from here to NewNode.
544   memcpy(&NewNode->Children[0], &Children[WidthFactor],
545          WidthFactor*sizeof(Children[0]));
546 
547   // Decrease the number of values in the two nodes.
548   NewNode->NumChildren = NumChildren = WidthFactor;
549 
550   // Finally, insert the two new children in the side the can (now) hold them.
551   // These insertions can't fail.
552   if (i < WidthFactor)
553     this->HandleChildPiece(i, RHS);
554   else
555     NewNode->HandleChildPiece(i-WidthFactor, RHS);
556 
557   // Recompute the two nodes' size.
558   NewNode->FullRecomputeSizeLocally();
559   FullRecomputeSizeLocally();
560   return NewNode;
561 }
562 
563 /// erase - Remove NumBytes from this node at the specified offset.  We are
564 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)565 void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
566   // This will shrink this node by NumBytes.
567   Size -= NumBytes;
568 
569   // Find the first child that overlaps with Offset.
570   unsigned i = 0;
571   for (; Offset >= getChild(i)->size(); ++i)
572     Offset -= getChild(i)->size();
573 
574   // Propagate the delete request into overlapping children, or completely
575   // delete the children as appropriate.
576   while (NumBytes) {
577     RopePieceBTreeNode *CurChild = getChild(i);
578 
579     // If we are deleting something contained entirely in the child, pass on the
580     // request.
581     if (Offset+NumBytes < CurChild->size()) {
582       CurChild->erase(Offset, NumBytes);
583       return;
584     }
585 
586     // If this deletion request starts somewhere in the middle of the child, it
587     // must be deleting to the end of the child.
588     if (Offset) {
589       unsigned BytesFromChild = CurChild->size()-Offset;
590       CurChild->erase(Offset, BytesFromChild);
591       NumBytes -= BytesFromChild;
592       // Start at the beginning of the next child.
593       Offset = 0;
594       ++i;
595       continue;
596     }
597 
598     // If the deletion request completely covers the child, delete it and move
599     // the rest down.
600     NumBytes -= CurChild->size();
601     CurChild->Destroy();
602     --NumChildren;
603     if (i != getNumChildren())
604       memmove(&Children[i], &Children[i+1],
605               (getNumChildren()-i)*sizeof(Children[0]));
606   }
607 }
608 
609 //===----------------------------------------------------------------------===//
610 // RopePieceBTreeNode Implementation
611 //===----------------------------------------------------------------------===//
612 
Destroy()613 void RopePieceBTreeNode::Destroy() {
614   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
615     delete Leaf;
616   else
617     delete cast<RopePieceBTreeInterior>(this);
618 }
619 
620 /// split - Split the range containing the specified offset so that we are
621 /// guaranteed that there is a place to do an insertion at the specified
622 /// offset.  The offset is relative, so "0" is the start of the node.
623 ///
624 /// If there is no space in this subtree for the extra piece, the extra tree
625 /// node is returned and must be inserted into a parent.
split(unsigned Offset)626 RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
627   assert(Offset <= size() && "Invalid offset to split!");
628   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
629     return Leaf->split(Offset);
630   return cast<RopePieceBTreeInterior>(this)->split(Offset);
631 }
632 
633 /// insert - Insert the specified ropepiece into this tree node at the
634 /// specified offset.  The offset is relative, so "0" is the start of the
635 /// node.
636 ///
637 /// If there is no space in this subtree for the extra piece, the extra tree
638 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)639 RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
640                                                const RopePiece &R) {
641   assert(Offset <= size() && "Invalid offset to insert!");
642   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
643     return Leaf->insert(Offset, R);
644   return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
645 }
646 
647 /// erase - Remove NumBytes from this node at the specified offset.  We are
648 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)649 void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
650   assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
651   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
652     return Leaf->erase(Offset, NumBytes);
653   return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
654 }
655 
656 
657 //===----------------------------------------------------------------------===//
658 // RopePieceBTreeIterator Implementation
659 //===----------------------------------------------------------------------===//
660 
getCN(const void * P)661 static const RopePieceBTreeLeaf *getCN(const void *P) {
662   return static_cast<const RopePieceBTreeLeaf*>(P);
663 }
664 
665 // begin iterator.
RopePieceBTreeIterator(const void * n)666 RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
667   const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
668 
669   // Walk down the left side of the tree until we get to a leaf.
670   while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
671     N = IN->getChild(0);
672 
673   // We must have at least one leaf.
674   CurNode = cast<RopePieceBTreeLeaf>(N);
675 
676   // If we found a leaf that happens to be empty, skip over it until we get
677   // to something full.
678   while (CurNode && getCN(CurNode)->getNumPieces() == 0)
679     CurNode = getCN(CurNode)->getNextLeafInOrder();
680 
681   if (CurNode)
682     CurPiece = &getCN(CurNode)->getPiece(0);
683   else  // Empty tree, this is an end() iterator.
684     CurPiece = nullptr;
685   CurChar = 0;
686 }
687 
MoveToNextPiece()688 void RopePieceBTreeIterator::MoveToNextPiece() {
689   if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
690     CurChar = 0;
691     ++CurPiece;
692     return;
693   }
694 
695   // Find the next non-empty leaf node.
696   do
697     CurNode = getCN(CurNode)->getNextLeafInOrder();
698   while (CurNode && getCN(CurNode)->getNumPieces() == 0);
699 
700   if (CurNode)
701     CurPiece = &getCN(CurNode)->getPiece(0);
702   else // Hit end().
703     CurPiece = nullptr;
704   CurChar = 0;
705 }
706 
707 //===----------------------------------------------------------------------===//
708 // RopePieceBTree Implementation
709 //===----------------------------------------------------------------------===//
710 
getRoot(void * P)711 static RopePieceBTreeNode *getRoot(void *P) {
712   return static_cast<RopePieceBTreeNode*>(P);
713 }
714 
RopePieceBTree()715 RopePieceBTree::RopePieceBTree() {
716   Root = new RopePieceBTreeLeaf();
717 }
RopePieceBTree(const RopePieceBTree & RHS)718 RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
719   assert(RHS.empty() && "Can't copy non-empty tree yet");
720   Root = new RopePieceBTreeLeaf();
721 }
~RopePieceBTree()722 RopePieceBTree::~RopePieceBTree() {
723   getRoot(Root)->Destroy();
724 }
725 
size() const726 unsigned RopePieceBTree::size() const {
727   return getRoot(Root)->size();
728 }
729 
clear()730 void RopePieceBTree::clear() {
731   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
732     Leaf->clear();
733   else {
734     getRoot(Root)->Destroy();
735     Root = new RopePieceBTreeLeaf();
736   }
737 }
738 
insert(unsigned Offset,const RopePiece & R)739 void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
740   // #1. Split at Offset.
741   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
742     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
743 
744   // #2. Do the insertion.
745   if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
746     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
747 }
748 
erase(unsigned Offset,unsigned NumBytes)749 void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
750   // #1. Split at Offset.
751   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
752     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
753 
754   // #2. Do the erasing.
755   getRoot(Root)->erase(Offset, NumBytes);
756 }
757 
758 //===----------------------------------------------------------------------===//
759 // RewriteRope Implementation
760 //===----------------------------------------------------------------------===//
761 
762 /// MakeRopeString - This copies the specified byte range into some instance of
763 /// RopeRefCountString, and return a RopePiece that represents it.  This uses
764 /// the AllocBuffer object to aggregate requests for small strings into one
765 /// allocation instead of doing tons of tiny allocations.
MakeRopeString(const char * Start,const char * End)766 RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
767   unsigned Len = End-Start;
768   assert(Len && "Zero length RopePiece is invalid!");
769 
770   // If we have space for this string in the current alloc buffer, use it.
771   if (AllocOffs+Len <= AllocChunkSize) {
772     memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
773     AllocOffs += Len;
774     return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
775   }
776 
777   // If we don't have enough room because this specific allocation is huge,
778   // just allocate a new rope piece for it alone.
779   if (Len > AllocChunkSize) {
780     unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
781     RopeRefCountString *Res =
782       reinterpret_cast<RopeRefCountString *>(new char[Size]);
783     Res->RefCount = 0;
784     memcpy(Res->Data, Start, End-Start);
785     return RopePiece(Res, 0, End-Start);
786   }
787 
788   // Otherwise, this was a small request but we just don't have space for it
789   // Make a new chunk and share it with later allocations.
790 
791   unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
792   RopeRefCountString *Res =
793       reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
794   Res->RefCount = 0;
795   memcpy(Res->Data, Start, Len);
796   AllocBuffer = Res;
797   AllocOffs = Len;
798 
799   return RopePiece(AllocBuffer, 0, Len);
800 }
801 
802 
803