1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis member access expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/Overload.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Scope.h"
23 #include "clang/Sema/ScopeInfo.h"
24 #include "clang/Sema/SemaInternal.h"
25
26 using namespace clang;
27 using namespace sema;
28
29 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
30
31 /// Determines if the given class is provably not derived from all of
32 /// the prospective base classes.
isProvablyNotDerivedFrom(Sema & SemaRef,CXXRecordDecl * Record,const BaseSet & Bases)33 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
34 const BaseSet &Bases) {
35 auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
36 return !Bases.count(Base->getCanonicalDecl());
37 };
38 return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
39 }
40
41 enum IMAKind {
42 /// The reference is definitely not an instance member access.
43 IMA_Static,
44
45 /// The reference may be an implicit instance member access.
46 IMA_Mixed,
47
48 /// The reference may be to an instance member, but it might be invalid if
49 /// so, because the context is not an instance method.
50 IMA_Mixed_StaticContext,
51
52 /// The reference may be to an instance member, but it is invalid if
53 /// so, because the context is from an unrelated class.
54 IMA_Mixed_Unrelated,
55
56 /// The reference is definitely an implicit instance member access.
57 IMA_Instance,
58
59 /// The reference may be to an unresolved using declaration.
60 IMA_Unresolved,
61
62 /// The reference is a contextually-permitted abstract member reference.
63 IMA_Abstract,
64
65 /// The reference may be to an unresolved using declaration and the
66 /// context is not an instance method.
67 IMA_Unresolved_StaticContext,
68
69 // The reference refers to a field which is not a member of the containing
70 // class, which is allowed because we're in C++11 mode and the context is
71 // unevaluated.
72 IMA_Field_Uneval_Context,
73
74 /// All possible referrents are instance members and the current
75 /// context is not an instance method.
76 IMA_Error_StaticContext,
77
78 /// All possible referrents are instance members of an unrelated
79 /// class.
80 IMA_Error_Unrelated
81 };
82
83 /// The given lookup names class member(s) and is not being used for
84 /// an address-of-member expression. Classify the type of access
85 /// according to whether it's possible that this reference names an
86 /// instance member. This is best-effort in dependent contexts; it is okay to
87 /// conservatively answer "yes", in which case some errors will simply
88 /// not be caught until template-instantiation.
ClassifyImplicitMemberAccess(Sema & SemaRef,const LookupResult & R)89 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
90 const LookupResult &R) {
91 assert(!R.empty() && (*R.begin())->isCXXClassMember());
92
93 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
94
95 bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
96 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
97
98 if (R.isUnresolvableResult())
99 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
100
101 // Collect all the declaring classes of instance members we find.
102 bool hasNonInstance = false;
103 bool isField = false;
104 BaseSet Classes;
105 for (NamedDecl *D : R) {
106 // Look through any using decls.
107 D = D->getUnderlyingDecl();
108
109 if (D->isCXXInstanceMember()) {
110 isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
111 isa<IndirectFieldDecl>(D);
112
113 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
114 Classes.insert(R->getCanonicalDecl());
115 } else
116 hasNonInstance = true;
117 }
118
119 // If we didn't find any instance members, it can't be an implicit
120 // member reference.
121 if (Classes.empty())
122 return IMA_Static;
123
124 // C++11 [expr.prim.general]p12:
125 // An id-expression that denotes a non-static data member or non-static
126 // member function of a class can only be used:
127 // (...)
128 // - if that id-expression denotes a non-static data member and it
129 // appears in an unevaluated operand.
130 //
131 // This rule is specific to C++11. However, we also permit this form
132 // in unevaluated inline assembly operands, like the operand to a SIZE.
133 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
134 assert(!AbstractInstanceResult);
135 switch (SemaRef.ExprEvalContexts.back().Context) {
136 case Sema::Unevaluated:
137 if (isField && SemaRef.getLangOpts().CPlusPlus11)
138 AbstractInstanceResult = IMA_Field_Uneval_Context;
139 break;
140
141 case Sema::UnevaluatedAbstract:
142 AbstractInstanceResult = IMA_Abstract;
143 break;
144
145 case Sema::ConstantEvaluated:
146 case Sema::PotentiallyEvaluated:
147 case Sema::PotentiallyEvaluatedIfUsed:
148 break;
149 }
150
151 // If the current context is not an instance method, it can't be
152 // an implicit member reference.
153 if (isStaticContext) {
154 if (hasNonInstance)
155 return IMA_Mixed_StaticContext;
156
157 return AbstractInstanceResult ? AbstractInstanceResult
158 : IMA_Error_StaticContext;
159 }
160
161 CXXRecordDecl *contextClass;
162 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
163 contextClass = MD->getParent()->getCanonicalDecl();
164 else
165 contextClass = cast<CXXRecordDecl>(DC);
166
167 // [class.mfct.non-static]p3:
168 // ...is used in the body of a non-static member function of class X,
169 // if name lookup (3.4.1) resolves the name in the id-expression to a
170 // non-static non-type member of some class C [...]
171 // ...if C is not X or a base class of X, the class member access expression
172 // is ill-formed.
173 if (R.getNamingClass() &&
174 contextClass->getCanonicalDecl() !=
175 R.getNamingClass()->getCanonicalDecl()) {
176 // If the naming class is not the current context, this was a qualified
177 // member name lookup, and it's sufficient to check that we have the naming
178 // class as a base class.
179 Classes.clear();
180 Classes.insert(R.getNamingClass()->getCanonicalDecl());
181 }
182
183 // If we can prove that the current context is unrelated to all the
184 // declaring classes, it can't be an implicit member reference (in
185 // which case it's an error if any of those members are selected).
186 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
187 return hasNonInstance ? IMA_Mixed_Unrelated :
188 AbstractInstanceResult ? AbstractInstanceResult :
189 IMA_Error_Unrelated;
190
191 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
192 }
193
194 /// Diagnose a reference to a field with no object available.
diagnoseInstanceReference(Sema & SemaRef,const CXXScopeSpec & SS,NamedDecl * Rep,const DeclarationNameInfo & nameInfo)195 static void diagnoseInstanceReference(Sema &SemaRef,
196 const CXXScopeSpec &SS,
197 NamedDecl *Rep,
198 const DeclarationNameInfo &nameInfo) {
199 SourceLocation Loc = nameInfo.getLoc();
200 SourceRange Range(Loc);
201 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
202
203 // Look through using shadow decls and aliases.
204 Rep = Rep->getUnderlyingDecl();
205
206 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
207 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
208 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
209 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
210
211 bool InStaticMethod = Method && Method->isStatic();
212 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
213
214 if (IsField && InStaticMethod)
215 // "invalid use of member 'x' in static member function"
216 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
217 << Range << nameInfo.getName();
218 else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
219 !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
220 // Unqualified lookup in a non-static member function found a member of an
221 // enclosing class.
222 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
223 << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
224 else if (IsField)
225 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
226 << nameInfo.getName() << Range;
227 else
228 SemaRef.Diag(Loc, diag::err_member_call_without_object)
229 << Range;
230 }
231
232 /// Builds an expression which might be an implicit member expression.
233 ExprResult
BuildPossibleImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,const Scope * S)234 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
235 SourceLocation TemplateKWLoc,
236 LookupResult &R,
237 const TemplateArgumentListInfo *TemplateArgs,
238 const Scope *S) {
239 switch (ClassifyImplicitMemberAccess(*this, R)) {
240 case IMA_Instance:
241 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
242
243 case IMA_Mixed:
244 case IMA_Mixed_Unrelated:
245 case IMA_Unresolved:
246 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
247 S);
248
249 case IMA_Field_Uneval_Context:
250 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
251 << R.getLookupNameInfo().getName();
252 // Fall through.
253 case IMA_Static:
254 case IMA_Abstract:
255 case IMA_Mixed_StaticContext:
256 case IMA_Unresolved_StaticContext:
257 if (TemplateArgs || TemplateKWLoc.isValid())
258 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
259 return BuildDeclarationNameExpr(SS, R, false);
260
261 case IMA_Error_StaticContext:
262 case IMA_Error_Unrelated:
263 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
264 R.getLookupNameInfo());
265 return ExprError();
266 }
267
268 llvm_unreachable("unexpected instance member access kind");
269 }
270
271 /// Determine whether input char is from rgba component set.
272 static bool
IsRGBA(char c)273 IsRGBA(char c) {
274 switch (c) {
275 case 'r':
276 case 'g':
277 case 'b':
278 case 'a':
279 return true;
280 default:
281 return false;
282 }
283 }
284
285 /// Check an ext-vector component access expression.
286 ///
287 /// VK should be set in advance to the value kind of the base
288 /// expression.
289 static QualType
CheckExtVectorComponent(Sema & S,QualType baseType,ExprValueKind & VK,SourceLocation OpLoc,const IdentifierInfo * CompName,SourceLocation CompLoc)290 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
291 SourceLocation OpLoc, const IdentifierInfo *CompName,
292 SourceLocation CompLoc) {
293 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
294 // see FIXME there.
295 //
296 // FIXME: This logic can be greatly simplified by splitting it along
297 // halving/not halving and reworking the component checking.
298 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
299
300 // The vector accessor can't exceed the number of elements.
301 const char *compStr = CompName->getNameStart();
302
303 // This flag determines whether or not the component is one of the four
304 // special names that indicate a subset of exactly half the elements are
305 // to be selected.
306 bool HalvingSwizzle = false;
307
308 // This flag determines whether or not CompName has an 's' char prefix,
309 // indicating that it is a string of hex values to be used as vector indices.
310 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
311
312 bool HasRepeated = false;
313 bool HasIndex[16] = {};
314
315 int Idx;
316
317 // Check that we've found one of the special components, or that the component
318 // names must come from the same set.
319 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
320 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
321 HalvingSwizzle = true;
322 } else if (!HexSwizzle &&
323 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
324 bool HasRGBA = IsRGBA(*compStr);
325 do {
326 if (HasRGBA != IsRGBA(*compStr))
327 break;
328 if (HasIndex[Idx]) HasRepeated = true;
329 HasIndex[Idx] = true;
330 compStr++;
331 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
332 } else {
333 if (HexSwizzle) compStr++;
334 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
335 if (HasIndex[Idx]) HasRepeated = true;
336 HasIndex[Idx] = true;
337 compStr++;
338 }
339 }
340
341 if (!HalvingSwizzle && *compStr) {
342 // We didn't get to the end of the string. This means the component names
343 // didn't come from the same set *or* we encountered an illegal name.
344 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
345 << StringRef(compStr, 1) << SourceRange(CompLoc);
346 return QualType();
347 }
348
349 // Ensure no component accessor exceeds the width of the vector type it
350 // operates on.
351 if (!HalvingSwizzle) {
352 compStr = CompName->getNameStart();
353
354 if (HexSwizzle)
355 compStr++;
356
357 while (*compStr) {
358 if (!vecType->isAccessorWithinNumElements(*compStr++)) {
359 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
360 << baseType << SourceRange(CompLoc);
361 return QualType();
362 }
363 }
364 }
365
366 // The component accessor looks fine - now we need to compute the actual type.
367 // The vector type is implied by the component accessor. For example,
368 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
369 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
370 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
371 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
372 : CompName->getLength();
373 if (HexSwizzle)
374 CompSize--;
375
376 if (CompSize == 1)
377 return vecType->getElementType();
378
379 if (HasRepeated) VK = VK_RValue;
380
381 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
382 // Now look up the TypeDefDecl from the vector type. Without this,
383 // diagostics look bad. We want extended vector types to appear built-in.
384 for (Sema::ExtVectorDeclsType::iterator
385 I = S.ExtVectorDecls.begin(S.getExternalSource()),
386 E = S.ExtVectorDecls.end();
387 I != E; ++I) {
388 if ((*I)->getUnderlyingType() == VT)
389 return S.Context.getTypedefType(*I);
390 }
391
392 return VT; // should never get here (a typedef type should always be found).
393 }
394
FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl * PDecl,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)395 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
396 IdentifierInfo *Member,
397 const Selector &Sel,
398 ASTContext &Context) {
399 if (Member)
400 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
401 return PD;
402 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
403 return OMD;
404
405 for (const auto *I : PDecl->protocols()) {
406 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
407 Context))
408 return D;
409 }
410 return nullptr;
411 }
412
FindGetterSetterNameDecl(const ObjCObjectPointerType * QIdTy,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)413 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
414 IdentifierInfo *Member,
415 const Selector &Sel,
416 ASTContext &Context) {
417 // Check protocols on qualified interfaces.
418 Decl *GDecl = nullptr;
419 for (const auto *I : QIdTy->quals()) {
420 if (Member)
421 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
422 GDecl = PD;
423 break;
424 }
425 // Also must look for a getter or setter name which uses property syntax.
426 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
427 GDecl = OMD;
428 break;
429 }
430 }
431 if (!GDecl) {
432 for (const auto *I : QIdTy->quals()) {
433 // Search in the protocol-qualifier list of current protocol.
434 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
435 if (GDecl)
436 return GDecl;
437 }
438 }
439 return GDecl;
440 }
441
442 ExprResult
ActOnDependentMemberExpr(Expr * BaseExpr,QualType BaseType,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)443 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
444 bool IsArrow, SourceLocation OpLoc,
445 const CXXScopeSpec &SS,
446 SourceLocation TemplateKWLoc,
447 NamedDecl *FirstQualifierInScope,
448 const DeclarationNameInfo &NameInfo,
449 const TemplateArgumentListInfo *TemplateArgs) {
450 // Even in dependent contexts, try to diagnose base expressions with
451 // obviously wrong types, e.g.:
452 //
453 // T* t;
454 // t.f;
455 //
456 // In Obj-C++, however, the above expression is valid, since it could be
457 // accessing the 'f' property if T is an Obj-C interface. The extra check
458 // allows this, while still reporting an error if T is a struct pointer.
459 if (!IsArrow) {
460 const PointerType *PT = BaseType->getAs<PointerType>();
461 if (PT && (!getLangOpts().ObjC1 ||
462 PT->getPointeeType()->isRecordType())) {
463 assert(BaseExpr && "cannot happen with implicit member accesses");
464 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
465 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
466 return ExprError();
467 }
468 }
469
470 assert(BaseType->isDependentType() ||
471 NameInfo.getName().isDependentName() ||
472 isDependentScopeSpecifier(SS));
473
474 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
475 // must have pointer type, and the accessed type is the pointee.
476 return CXXDependentScopeMemberExpr::Create(
477 Context, BaseExpr, BaseType, IsArrow, OpLoc,
478 SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
479 NameInfo, TemplateArgs);
480 }
481
482 /// We know that the given qualified member reference points only to
483 /// declarations which do not belong to the static type of the base
484 /// expression. Diagnose the problem.
DiagnoseQualifiedMemberReference(Sema & SemaRef,Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,NamedDecl * rep,const DeclarationNameInfo & nameInfo)485 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
486 Expr *BaseExpr,
487 QualType BaseType,
488 const CXXScopeSpec &SS,
489 NamedDecl *rep,
490 const DeclarationNameInfo &nameInfo) {
491 // If this is an implicit member access, use a different set of
492 // diagnostics.
493 if (!BaseExpr)
494 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
495
496 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
497 << SS.getRange() << rep << BaseType;
498 }
499
500 // Check whether the declarations we found through a nested-name
501 // specifier in a member expression are actually members of the base
502 // type. The restriction here is:
503 //
504 // C++ [expr.ref]p2:
505 // ... In these cases, the id-expression shall name a
506 // member of the class or of one of its base classes.
507 //
508 // So it's perfectly legitimate for the nested-name specifier to name
509 // an unrelated class, and for us to find an overload set including
510 // decls from classes which are not superclasses, as long as the decl
511 // we actually pick through overload resolution is from a superclass.
CheckQualifiedMemberReference(Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,const LookupResult & R)512 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
513 QualType BaseType,
514 const CXXScopeSpec &SS,
515 const LookupResult &R) {
516 CXXRecordDecl *BaseRecord =
517 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
518 if (!BaseRecord) {
519 // We can't check this yet because the base type is still
520 // dependent.
521 assert(BaseType->isDependentType());
522 return false;
523 }
524
525 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
526 // If this is an implicit member reference and we find a
527 // non-instance member, it's not an error.
528 if (!BaseExpr && !(*I)->isCXXInstanceMember())
529 return false;
530
531 // Note that we use the DC of the decl, not the underlying decl.
532 DeclContext *DC = (*I)->getDeclContext();
533 while (DC->isTransparentContext())
534 DC = DC->getParent();
535
536 if (!DC->isRecord())
537 continue;
538
539 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
540 if (BaseRecord->getCanonicalDecl() == MemberRecord ||
541 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
542 return false;
543 }
544
545 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
546 R.getRepresentativeDecl(),
547 R.getLookupNameInfo());
548 return true;
549 }
550
551 namespace {
552
553 // Callback to only accept typo corrections that are either a ValueDecl or a
554 // FunctionTemplateDecl and are declared in the current record or, for a C++
555 // classes, one of its base classes.
556 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
557 public:
RecordMemberExprValidatorCCC(const RecordType * RTy)558 explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
559 : Record(RTy->getDecl()) {
560 // Don't add bare keywords to the consumer since they will always fail
561 // validation by virtue of not being associated with any decls.
562 WantTypeSpecifiers = false;
563 WantExpressionKeywords = false;
564 WantCXXNamedCasts = false;
565 WantFunctionLikeCasts = false;
566 WantRemainingKeywords = false;
567 }
568
ValidateCandidate(const TypoCorrection & candidate)569 bool ValidateCandidate(const TypoCorrection &candidate) override {
570 NamedDecl *ND = candidate.getCorrectionDecl();
571 // Don't accept candidates that cannot be member functions, constants,
572 // variables, or templates.
573 if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
574 return false;
575
576 // Accept candidates that occur in the current record.
577 if (Record->containsDecl(ND))
578 return true;
579
580 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
581 // Accept candidates that occur in any of the current class' base classes.
582 for (const auto &BS : RD->bases()) {
583 if (const RecordType *BSTy =
584 dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
585 if (BSTy->getDecl()->containsDecl(ND))
586 return true;
587 }
588 }
589 }
590
591 return false;
592 }
593
594 private:
595 const RecordDecl *const Record;
596 };
597
598 }
599
LookupMemberExprInRecord(Sema & SemaRef,LookupResult & R,Expr * BaseExpr,const RecordType * RTy,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,bool HasTemplateArgs,TypoExpr * & TE)600 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
601 Expr *BaseExpr,
602 const RecordType *RTy,
603 SourceLocation OpLoc, bool IsArrow,
604 CXXScopeSpec &SS, bool HasTemplateArgs,
605 TypoExpr *&TE) {
606 SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
607 RecordDecl *RDecl = RTy->getDecl();
608 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
609 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
610 diag::err_typecheck_incomplete_tag,
611 BaseRange))
612 return true;
613
614 if (HasTemplateArgs) {
615 // LookupTemplateName doesn't expect these both to exist simultaneously.
616 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
617
618 bool MOUS;
619 SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
620 return false;
621 }
622
623 DeclContext *DC = RDecl;
624 if (SS.isSet()) {
625 // If the member name was a qualified-id, look into the
626 // nested-name-specifier.
627 DC = SemaRef.computeDeclContext(SS, false);
628
629 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
630 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
631 << SS.getRange() << DC;
632 return true;
633 }
634
635 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
636
637 if (!isa<TypeDecl>(DC)) {
638 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
639 << DC << SS.getRange();
640 return true;
641 }
642 }
643
644 // The record definition is complete, now look up the member.
645 SemaRef.LookupQualifiedName(R, DC, SS);
646
647 if (!R.empty())
648 return false;
649
650 DeclarationName Typo = R.getLookupName();
651 SourceLocation TypoLoc = R.getNameLoc();
652
653 struct QueryState {
654 Sema &SemaRef;
655 DeclarationNameInfo NameInfo;
656 Sema::LookupNameKind LookupKind;
657 Sema::RedeclarationKind Redecl;
658 };
659 QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
660 R.isForRedeclaration() ? Sema::ForRedeclaration
661 : Sema::NotForRedeclaration};
662 TE = SemaRef.CorrectTypoDelayed(
663 R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS,
664 llvm::make_unique<RecordMemberExprValidatorCCC>(RTy),
665 [=, &SemaRef](const TypoCorrection &TC) {
666 if (TC) {
667 assert(!TC.isKeyword() &&
668 "Got a keyword as a correction for a member!");
669 bool DroppedSpecifier =
670 TC.WillReplaceSpecifier() &&
671 Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
672 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
673 << Typo << DC << DroppedSpecifier
674 << SS.getRange());
675 } else {
676 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
677 }
678 },
679 [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
680 LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
681 R.clear(); // Ensure there's no decls lingering in the shared state.
682 R.suppressDiagnostics();
683 R.setLookupName(TC.getCorrection());
684 for (NamedDecl *ND : TC)
685 R.addDecl(ND);
686 R.resolveKind();
687 return SemaRef.BuildMemberReferenceExpr(
688 BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
689 nullptr, R, nullptr, nullptr);
690 },
691 Sema::CTK_ErrorRecovery, DC);
692
693 return false;
694 }
695
696 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
697 ExprResult &BaseExpr, bool &IsArrow,
698 SourceLocation OpLoc, CXXScopeSpec &SS,
699 Decl *ObjCImpDecl, bool HasTemplateArgs);
700
701 ExprResult
BuildMemberReferenceExpr(Expr * Base,QualType BaseType,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,const Scope * S,ActOnMemberAccessExtraArgs * ExtraArgs)702 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
703 SourceLocation OpLoc, bool IsArrow,
704 CXXScopeSpec &SS,
705 SourceLocation TemplateKWLoc,
706 NamedDecl *FirstQualifierInScope,
707 const DeclarationNameInfo &NameInfo,
708 const TemplateArgumentListInfo *TemplateArgs,
709 const Scope *S,
710 ActOnMemberAccessExtraArgs *ExtraArgs) {
711 if (BaseType->isDependentType() ||
712 (SS.isSet() && isDependentScopeSpecifier(SS)))
713 return ActOnDependentMemberExpr(Base, BaseType,
714 IsArrow, OpLoc,
715 SS, TemplateKWLoc, FirstQualifierInScope,
716 NameInfo, TemplateArgs);
717
718 LookupResult R(*this, NameInfo, LookupMemberName);
719
720 // Implicit member accesses.
721 if (!Base) {
722 TypoExpr *TE = nullptr;
723 QualType RecordTy = BaseType;
724 if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
725 if (LookupMemberExprInRecord(*this, R, nullptr,
726 RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
727 SS, TemplateArgs != nullptr, TE))
728 return ExprError();
729 if (TE)
730 return TE;
731
732 // Explicit member accesses.
733 } else {
734 ExprResult BaseResult = Base;
735 ExprResult Result = LookupMemberExpr(
736 *this, R, BaseResult, IsArrow, OpLoc, SS,
737 ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
738 TemplateArgs != nullptr);
739
740 if (BaseResult.isInvalid())
741 return ExprError();
742 Base = BaseResult.get();
743
744 if (Result.isInvalid())
745 return ExprError();
746
747 if (Result.get())
748 return Result;
749
750 // LookupMemberExpr can modify Base, and thus change BaseType
751 BaseType = Base->getType();
752 }
753
754 return BuildMemberReferenceExpr(Base, BaseType,
755 OpLoc, IsArrow, SS, TemplateKWLoc,
756 FirstQualifierInScope, R, TemplateArgs, S,
757 false, ExtraArgs);
758 }
759
760 static ExprResult
761 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
762 SourceLocation OpLoc, const CXXScopeSpec &SS,
763 FieldDecl *Field, DeclAccessPair FoundDecl,
764 const DeclarationNameInfo &MemberNameInfo);
765
766 ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec & SS,SourceLocation loc,IndirectFieldDecl * indirectField,DeclAccessPair foundDecl,Expr * baseObjectExpr,SourceLocation opLoc)767 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
768 SourceLocation loc,
769 IndirectFieldDecl *indirectField,
770 DeclAccessPair foundDecl,
771 Expr *baseObjectExpr,
772 SourceLocation opLoc) {
773 // First, build the expression that refers to the base object.
774
775 bool baseObjectIsPointer = false;
776 Qualifiers baseQuals;
777
778 // Case 1: the base of the indirect field is not a field.
779 VarDecl *baseVariable = indirectField->getVarDecl();
780 CXXScopeSpec EmptySS;
781 if (baseVariable) {
782 assert(baseVariable->getType()->isRecordType());
783
784 // In principle we could have a member access expression that
785 // accesses an anonymous struct/union that's a static member of
786 // the base object's class. However, under the current standard,
787 // static data members cannot be anonymous structs or unions.
788 // Supporting this is as easy as building a MemberExpr here.
789 assert(!baseObjectExpr && "anonymous struct/union is static data member?");
790
791 DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
792
793 ExprResult result
794 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
795 if (result.isInvalid()) return ExprError();
796
797 baseObjectExpr = result.get();
798 baseObjectIsPointer = false;
799 baseQuals = baseObjectExpr->getType().getQualifiers();
800
801 // Case 2: the base of the indirect field is a field and the user
802 // wrote a member expression.
803 } else if (baseObjectExpr) {
804 // The caller provided the base object expression. Determine
805 // whether its a pointer and whether it adds any qualifiers to the
806 // anonymous struct/union fields we're looking into.
807 QualType objectType = baseObjectExpr->getType();
808
809 if (const PointerType *ptr = objectType->getAs<PointerType>()) {
810 baseObjectIsPointer = true;
811 objectType = ptr->getPointeeType();
812 } else {
813 baseObjectIsPointer = false;
814 }
815 baseQuals = objectType.getQualifiers();
816
817 // Case 3: the base of the indirect field is a field and we should
818 // build an implicit member access.
819 } else {
820 // We've found a member of an anonymous struct/union that is
821 // inside a non-anonymous struct/union, so in a well-formed
822 // program our base object expression is "this".
823 QualType ThisTy = getCurrentThisType();
824 if (ThisTy.isNull()) {
825 Diag(loc, diag::err_invalid_member_use_in_static_method)
826 << indirectField->getDeclName();
827 return ExprError();
828 }
829
830 // Our base object expression is "this".
831 CheckCXXThisCapture(loc);
832 baseObjectExpr
833 = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
834 baseObjectIsPointer = true;
835 baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
836 }
837
838 // Build the implicit member references to the field of the
839 // anonymous struct/union.
840 Expr *result = baseObjectExpr;
841 IndirectFieldDecl::chain_iterator
842 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
843
844 // Build the first member access in the chain with full information.
845 if (!baseVariable) {
846 FieldDecl *field = cast<FieldDecl>(*FI);
847
848 // Make a nameInfo that properly uses the anonymous name.
849 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
850
851 result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
852 SourceLocation(), EmptySS, field,
853 foundDecl, memberNameInfo).get();
854 if (!result)
855 return ExprError();
856
857 // FIXME: check qualified member access
858 }
859
860 // In all cases, we should now skip the first declaration in the chain.
861 ++FI;
862
863 while (FI != FEnd) {
864 FieldDecl *field = cast<FieldDecl>(*FI++);
865
866 // FIXME: these are somewhat meaningless
867 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
868 DeclAccessPair fakeFoundDecl =
869 DeclAccessPair::make(field, field->getAccess());
870
871 result =
872 BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
873 SourceLocation(), (FI == FEnd ? SS : EmptySS),
874 field, fakeFoundDecl, memberNameInfo).get();
875 }
876
877 return result;
878 }
879
880 static ExprResult
BuildMSPropertyRefExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,MSPropertyDecl * PD,const DeclarationNameInfo & NameInfo)881 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
882 const CXXScopeSpec &SS,
883 MSPropertyDecl *PD,
884 const DeclarationNameInfo &NameInfo) {
885 // Property names are always simple identifiers and therefore never
886 // require any interesting additional storage.
887 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
888 S.Context.PseudoObjectTy, VK_LValue,
889 SS.getWithLocInContext(S.Context),
890 NameInfo.getLoc());
891 }
892
893 /// \brief Build a MemberExpr AST node.
BuildMemberExpr(Sema & SemaRef,ASTContext & C,Expr * Base,bool isArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs=nullptr)894 static MemberExpr *BuildMemberExpr(
895 Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
896 SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
897 ValueDecl *Member, DeclAccessPair FoundDecl,
898 const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK,
899 ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr) {
900 assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
901 MemberExpr *E = MemberExpr::Create(
902 C, Base, isArrow, OpLoc, SS.getWithLocInContext(C), TemplateKWLoc, Member,
903 FoundDecl, MemberNameInfo, TemplateArgs, Ty, VK, OK);
904 SemaRef.MarkMemberReferenced(E);
905 return E;
906 }
907
908 /// \brief Determine if the given scope is within a function-try-block handler.
IsInFnTryBlockHandler(const Scope * S)909 static bool IsInFnTryBlockHandler(const Scope *S) {
910 // Walk the scope stack until finding a FnTryCatchScope, or leave the
911 // function scope. If a FnTryCatchScope is found, check whether the TryScope
912 // flag is set. If it is not, it's a function-try-block handler.
913 for (; S != S->getFnParent(); S = S->getParent()) {
914 if (S->getFlags() & Scope::FnTryCatchScope)
915 return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
916 }
917 return false;
918 }
919
920 ExprResult
BuildMemberReferenceExpr(Expr * BaseExpr,QualType BaseExprType,SourceLocation OpLoc,bool IsArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,const Scope * S,bool SuppressQualifierCheck,ActOnMemberAccessExtraArgs * ExtraArgs)921 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
922 SourceLocation OpLoc, bool IsArrow,
923 const CXXScopeSpec &SS,
924 SourceLocation TemplateKWLoc,
925 NamedDecl *FirstQualifierInScope,
926 LookupResult &R,
927 const TemplateArgumentListInfo *TemplateArgs,
928 const Scope *S,
929 bool SuppressQualifierCheck,
930 ActOnMemberAccessExtraArgs *ExtraArgs) {
931 QualType BaseType = BaseExprType;
932 if (IsArrow) {
933 assert(BaseType->isPointerType());
934 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
935 }
936 R.setBaseObjectType(BaseType);
937
938 LambdaScopeInfo *const CurLSI = getCurLambda();
939 // If this is an implicit member reference and the overloaded
940 // name refers to both static and non-static member functions
941 // (i.e. BaseExpr is null) and if we are currently processing a lambda,
942 // check if we should/can capture 'this'...
943 // Keep this example in mind:
944 // struct X {
945 // void f(int) { }
946 // static void f(double) { }
947 //
948 // int g() {
949 // auto L = [=](auto a) {
950 // return [](int i) {
951 // return [=](auto b) {
952 // f(b);
953 // //f(decltype(a){});
954 // };
955 // };
956 // };
957 // auto M = L(0.0);
958 // auto N = M(3);
959 // N(5.32); // OK, must not error.
960 // return 0;
961 // }
962 // };
963 //
964 if (!BaseExpr && CurLSI) {
965 SourceLocation Loc = R.getNameLoc();
966 if (SS.getRange().isValid())
967 Loc = SS.getRange().getBegin();
968 DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
969 // If the enclosing function is not dependent, then this lambda is
970 // capture ready, so if we can capture this, do so.
971 if (!EnclosingFunctionCtx->isDependentContext()) {
972 // If the current lambda and all enclosing lambdas can capture 'this' -
973 // then go ahead and capture 'this' (since our unresolved overload set
974 // contains both static and non-static member functions).
975 if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
976 CheckCXXThisCapture(Loc);
977 } else if (CurContext->isDependentContext()) {
978 // ... since this is an implicit member reference, that might potentially
979 // involve a 'this' capture, mark 'this' for potential capture in
980 // enclosing lambdas.
981 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
982 CurLSI->addPotentialThisCapture(Loc);
983 }
984 }
985 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
986 DeclarationName MemberName = MemberNameInfo.getName();
987 SourceLocation MemberLoc = MemberNameInfo.getLoc();
988
989 if (R.isAmbiguous())
990 return ExprError();
991
992 // [except.handle]p10: Referring to any non-static member or base class of an
993 // object in the handler for a function-try-block of a constructor or
994 // destructor for that object results in undefined behavior.
995 const auto *FD = getCurFunctionDecl();
996 if (S && BaseExpr && FD &&
997 (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
998 isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
999 IsInFnTryBlockHandler(S))
1000 Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
1001 << isa<CXXDestructorDecl>(FD);
1002
1003 if (R.empty()) {
1004 // Rederive where we looked up.
1005 DeclContext *DC = (SS.isSet()
1006 ? computeDeclContext(SS, false)
1007 : BaseType->getAs<RecordType>()->getDecl());
1008
1009 if (ExtraArgs) {
1010 ExprResult RetryExpr;
1011 if (!IsArrow && BaseExpr) {
1012 SFINAETrap Trap(*this, true);
1013 ParsedType ObjectType;
1014 bool MayBePseudoDestructor = false;
1015 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1016 OpLoc, tok::arrow, ObjectType,
1017 MayBePseudoDestructor);
1018 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1019 CXXScopeSpec TempSS(SS);
1020 RetryExpr = ActOnMemberAccessExpr(
1021 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1022 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1023 }
1024 if (Trap.hasErrorOccurred())
1025 RetryExpr = ExprError();
1026 }
1027 if (RetryExpr.isUsable()) {
1028 Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1029 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1030 return RetryExpr;
1031 }
1032 }
1033
1034 Diag(R.getNameLoc(), diag::err_no_member)
1035 << MemberName << DC
1036 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1037 return ExprError();
1038 }
1039
1040 // Diagnose lookups that find only declarations from a non-base
1041 // type. This is possible for either qualified lookups (which may
1042 // have been qualified with an unrelated type) or implicit member
1043 // expressions (which were found with unqualified lookup and thus
1044 // may have come from an enclosing scope). Note that it's okay for
1045 // lookup to find declarations from a non-base type as long as those
1046 // aren't the ones picked by overload resolution.
1047 if ((SS.isSet() || !BaseExpr ||
1048 (isa<CXXThisExpr>(BaseExpr) &&
1049 cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1050 !SuppressQualifierCheck &&
1051 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1052 return ExprError();
1053
1054 // Construct an unresolved result if we in fact got an unresolved
1055 // result.
1056 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1057 // Suppress any lookup-related diagnostics; we'll do these when we
1058 // pick a member.
1059 R.suppressDiagnostics();
1060
1061 UnresolvedMemberExpr *MemExpr
1062 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1063 BaseExpr, BaseExprType,
1064 IsArrow, OpLoc,
1065 SS.getWithLocInContext(Context),
1066 TemplateKWLoc, MemberNameInfo,
1067 TemplateArgs, R.begin(), R.end());
1068
1069 return MemExpr;
1070 }
1071
1072 assert(R.isSingleResult());
1073 DeclAccessPair FoundDecl = R.begin().getPair();
1074 NamedDecl *MemberDecl = R.getFoundDecl();
1075
1076 // FIXME: diagnose the presence of template arguments now.
1077
1078 // If the decl being referenced had an error, return an error for this
1079 // sub-expr without emitting another error, in order to avoid cascading
1080 // error cases.
1081 if (MemberDecl->isInvalidDecl())
1082 return ExprError();
1083
1084 // Handle the implicit-member-access case.
1085 if (!BaseExpr) {
1086 // If this is not an instance member, convert to a non-member access.
1087 if (!MemberDecl->isCXXInstanceMember())
1088 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
1089
1090 SourceLocation Loc = R.getNameLoc();
1091 if (SS.getRange().isValid())
1092 Loc = SS.getRange().getBegin();
1093 CheckCXXThisCapture(Loc);
1094 BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1095 }
1096
1097 // Check the use of this member.
1098 if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1099 return ExprError();
1100
1101 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1102 return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, OpLoc, SS, FD,
1103 FoundDecl, MemberNameInfo);
1104
1105 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1106 return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1107 MemberNameInfo);
1108
1109 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1110 // We may have found a field within an anonymous union or struct
1111 // (C++ [class.union]).
1112 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1113 FoundDecl, BaseExpr,
1114 OpLoc);
1115
1116 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1117 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1118 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
1119 Var->getType().getNonReferenceType(), VK_LValue,
1120 OK_Ordinary);
1121 }
1122
1123 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1124 ExprValueKind valueKind;
1125 QualType type;
1126 if (MemberFn->isInstance()) {
1127 valueKind = VK_RValue;
1128 type = Context.BoundMemberTy;
1129 } else {
1130 valueKind = VK_LValue;
1131 type = MemberFn->getType();
1132 }
1133
1134 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1135 TemplateKWLoc, MemberFn, FoundDecl, MemberNameInfo,
1136 type, valueKind, OK_Ordinary);
1137 }
1138 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1139
1140 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1141 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1142 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
1143 Enum->getType(), VK_RValue, OK_Ordinary);
1144 }
1145
1146 // We found something that we didn't expect. Complain.
1147 if (isa<TypeDecl>(MemberDecl))
1148 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1149 << MemberName << BaseType << int(IsArrow);
1150 else
1151 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1152 << MemberName << BaseType << int(IsArrow);
1153
1154 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1155 << MemberName;
1156 R.suppressDiagnostics();
1157 return ExprError();
1158 }
1159
1160 /// Given that normal member access failed on the given expression,
1161 /// and given that the expression's type involves builtin-id or
1162 /// builtin-Class, decide whether substituting in the redefinition
1163 /// types would be profitable. The redefinition type is whatever
1164 /// this translation unit tried to typedef to id/Class; we store
1165 /// it to the side and then re-use it in places like this.
ShouldTryAgainWithRedefinitionType(Sema & S,ExprResult & base)1166 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1167 const ObjCObjectPointerType *opty
1168 = base.get()->getType()->getAs<ObjCObjectPointerType>();
1169 if (!opty) return false;
1170
1171 const ObjCObjectType *ty = opty->getObjectType();
1172
1173 QualType redef;
1174 if (ty->isObjCId()) {
1175 redef = S.Context.getObjCIdRedefinitionType();
1176 } else if (ty->isObjCClass()) {
1177 redef = S.Context.getObjCClassRedefinitionType();
1178 } else {
1179 return false;
1180 }
1181
1182 // Do the substitution as long as the redefinition type isn't just a
1183 // possibly-qualified pointer to builtin-id or builtin-Class again.
1184 opty = redef->getAs<ObjCObjectPointerType>();
1185 if (opty && !opty->getObjectType()->getInterface())
1186 return false;
1187
1188 base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1189 return true;
1190 }
1191
isRecordType(QualType T)1192 static bool isRecordType(QualType T) {
1193 return T->isRecordType();
1194 }
isPointerToRecordType(QualType T)1195 static bool isPointerToRecordType(QualType T) {
1196 if (const PointerType *PT = T->getAs<PointerType>())
1197 return PT->getPointeeType()->isRecordType();
1198 return false;
1199 }
1200
1201 /// Perform conversions on the LHS of a member access expression.
1202 ExprResult
PerformMemberExprBaseConversion(Expr * Base,bool IsArrow)1203 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1204 if (IsArrow && !Base->getType()->isFunctionType())
1205 return DefaultFunctionArrayLvalueConversion(Base);
1206
1207 return CheckPlaceholderExpr(Base);
1208 }
1209
1210 /// Look up the given member of the given non-type-dependent
1211 /// expression. This can return in one of two ways:
1212 /// * If it returns a sentinel null-but-valid result, the caller will
1213 /// assume that lookup was performed and the results written into
1214 /// the provided structure. It will take over from there.
1215 /// * Otherwise, the returned expression will be produced in place of
1216 /// an ordinary member expression.
1217 ///
1218 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1219 /// fixed for ObjC++.
LookupMemberExpr(Sema & S,LookupResult & R,ExprResult & BaseExpr,bool & IsArrow,SourceLocation OpLoc,CXXScopeSpec & SS,Decl * ObjCImpDecl,bool HasTemplateArgs)1220 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1221 ExprResult &BaseExpr, bool &IsArrow,
1222 SourceLocation OpLoc, CXXScopeSpec &SS,
1223 Decl *ObjCImpDecl, bool HasTemplateArgs) {
1224 assert(BaseExpr.get() && "no base expression");
1225
1226 // Perform default conversions.
1227 BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1228 if (BaseExpr.isInvalid())
1229 return ExprError();
1230
1231 QualType BaseType = BaseExpr.get()->getType();
1232 assert(!BaseType->isDependentType());
1233
1234 DeclarationName MemberName = R.getLookupName();
1235 SourceLocation MemberLoc = R.getNameLoc();
1236
1237 // For later type-checking purposes, turn arrow accesses into dot
1238 // accesses. The only access type we support that doesn't follow
1239 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1240 // and those never use arrows, so this is unaffected.
1241 if (IsArrow) {
1242 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1243 BaseType = Ptr->getPointeeType();
1244 else if (const ObjCObjectPointerType *Ptr
1245 = BaseType->getAs<ObjCObjectPointerType>())
1246 BaseType = Ptr->getPointeeType();
1247 else if (BaseType->isRecordType()) {
1248 // Recover from arrow accesses to records, e.g.:
1249 // struct MyRecord foo;
1250 // foo->bar
1251 // This is actually well-formed in C++ if MyRecord has an
1252 // overloaded operator->, but that should have been dealt with
1253 // by now--or a diagnostic message already issued if a problem
1254 // was encountered while looking for the overloaded operator->.
1255 if (!S.getLangOpts().CPlusPlus) {
1256 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1257 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1258 << FixItHint::CreateReplacement(OpLoc, ".");
1259 }
1260 IsArrow = false;
1261 } else if (BaseType->isFunctionType()) {
1262 goto fail;
1263 } else {
1264 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1265 << BaseType << BaseExpr.get()->getSourceRange();
1266 return ExprError();
1267 }
1268 }
1269
1270 // Handle field access to simple records.
1271 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1272 TypoExpr *TE = nullptr;
1273 if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy,
1274 OpLoc, IsArrow, SS, HasTemplateArgs, TE))
1275 return ExprError();
1276
1277 // Returning valid-but-null is how we indicate to the caller that
1278 // the lookup result was filled in. If typo correction was attempted and
1279 // failed, the lookup result will have been cleared--that combined with the
1280 // valid-but-null ExprResult will trigger the appropriate diagnostics.
1281 return ExprResult(TE);
1282 }
1283
1284 // Handle ivar access to Objective-C objects.
1285 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1286 if (!SS.isEmpty() && !SS.isInvalid()) {
1287 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1288 << 1 << SS.getScopeRep()
1289 << FixItHint::CreateRemoval(SS.getRange());
1290 SS.clear();
1291 }
1292
1293 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1294
1295 // There are three cases for the base type:
1296 // - builtin id (qualified or unqualified)
1297 // - builtin Class (qualified or unqualified)
1298 // - an interface
1299 ObjCInterfaceDecl *IDecl = OTy->getInterface();
1300 if (!IDecl) {
1301 if (S.getLangOpts().ObjCAutoRefCount &&
1302 (OTy->isObjCId() || OTy->isObjCClass()))
1303 goto fail;
1304 // There's an implicit 'isa' ivar on all objects.
1305 // But we only actually find it this way on objects of type 'id',
1306 // apparently.
1307 if (OTy->isObjCId() && Member->isStr("isa"))
1308 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1309 OpLoc, S.Context.getObjCClassType());
1310 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1311 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1312 ObjCImpDecl, HasTemplateArgs);
1313 goto fail;
1314 }
1315
1316 if (S.RequireCompleteType(OpLoc, BaseType,
1317 diag::err_typecheck_incomplete_tag,
1318 BaseExpr.get()))
1319 return ExprError();
1320
1321 ObjCInterfaceDecl *ClassDeclared = nullptr;
1322 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1323
1324 if (!IV) {
1325 // Attempt to correct for typos in ivar names.
1326 auto Validator = llvm::make_unique<DeclFilterCCC<ObjCIvarDecl>>();
1327 Validator->IsObjCIvarLookup = IsArrow;
1328 if (TypoCorrection Corrected = S.CorrectTypo(
1329 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1330 std::move(Validator), Sema::CTK_ErrorRecovery, IDecl)) {
1331 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1332 S.diagnoseTypo(
1333 Corrected,
1334 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1335 << IDecl->getDeclName() << MemberName);
1336
1337 // Figure out the class that declares the ivar.
1338 assert(!ClassDeclared);
1339 Decl *D = cast<Decl>(IV->getDeclContext());
1340 if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1341 D = CAT->getClassInterface();
1342 ClassDeclared = cast<ObjCInterfaceDecl>(D);
1343 } else {
1344 if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1345 S.Diag(MemberLoc, diag::err_property_found_suggest)
1346 << Member << BaseExpr.get()->getType()
1347 << FixItHint::CreateReplacement(OpLoc, ".");
1348 return ExprError();
1349 }
1350
1351 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1352 << IDecl->getDeclName() << MemberName
1353 << BaseExpr.get()->getSourceRange();
1354 return ExprError();
1355 }
1356 }
1357
1358 assert(ClassDeclared);
1359
1360 // If the decl being referenced had an error, return an error for this
1361 // sub-expr without emitting another error, in order to avoid cascading
1362 // error cases.
1363 if (IV->isInvalidDecl())
1364 return ExprError();
1365
1366 // Check whether we can reference this field.
1367 if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1368 return ExprError();
1369 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1370 IV->getAccessControl() != ObjCIvarDecl::Package) {
1371 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1372 if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1373 ClassOfMethodDecl = MD->getClassInterface();
1374 else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1375 // Case of a c-function declared inside an objc implementation.
1376 // FIXME: For a c-style function nested inside an objc implementation
1377 // class, there is no implementation context available, so we pass
1378 // down the context as argument to this routine. Ideally, this context
1379 // need be passed down in the AST node and somehow calculated from the
1380 // AST for a function decl.
1381 if (ObjCImplementationDecl *IMPD =
1382 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1383 ClassOfMethodDecl = IMPD->getClassInterface();
1384 else if (ObjCCategoryImplDecl* CatImplClass =
1385 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1386 ClassOfMethodDecl = CatImplClass->getClassInterface();
1387 }
1388 if (!S.getLangOpts().DebuggerSupport) {
1389 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1390 if (!declaresSameEntity(ClassDeclared, IDecl) ||
1391 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1392 S.Diag(MemberLoc, diag::error_private_ivar_access)
1393 << IV->getDeclName();
1394 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1395 // @protected
1396 S.Diag(MemberLoc, diag::error_protected_ivar_access)
1397 << IV->getDeclName();
1398 }
1399 }
1400 bool warn = true;
1401 if (S.getLangOpts().ObjCAutoRefCount) {
1402 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1403 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1404 if (UO->getOpcode() == UO_Deref)
1405 BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1406
1407 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1408 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1409 S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1410 warn = false;
1411 }
1412 }
1413 if (warn) {
1414 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1415 ObjCMethodFamily MF = MD->getMethodFamily();
1416 warn = (MF != OMF_init && MF != OMF_dealloc &&
1417 MF != OMF_finalize &&
1418 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1419 }
1420 if (warn)
1421 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1422 }
1423
1424 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1425 IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1426 IsArrow);
1427
1428 if (S.getLangOpts().ObjCAutoRefCount) {
1429 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1430 if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1431 S.recordUseOfEvaluatedWeak(Result);
1432 }
1433 }
1434
1435 return Result;
1436 }
1437
1438 // Objective-C property access.
1439 const ObjCObjectPointerType *OPT;
1440 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1441 if (!SS.isEmpty() && !SS.isInvalid()) {
1442 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1443 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1444 SS.clear();
1445 }
1446
1447 // This actually uses the base as an r-value.
1448 BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1449 if (BaseExpr.isInvalid())
1450 return ExprError();
1451
1452 assert(S.Context.hasSameUnqualifiedType(BaseType,
1453 BaseExpr.get()->getType()));
1454
1455 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1456
1457 const ObjCObjectType *OT = OPT->getObjectType();
1458
1459 // id, with and without qualifiers.
1460 if (OT->isObjCId()) {
1461 // Check protocols on qualified interfaces.
1462 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1463 if (Decl *PMDecl =
1464 FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1465 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1466 // Check the use of this declaration
1467 if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1468 return ExprError();
1469
1470 return new (S.Context)
1471 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1472 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1473 }
1474
1475 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1476 // Check the use of this method.
1477 if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
1478 return ExprError();
1479 Selector SetterSel =
1480 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1481 S.PP.getSelectorTable(),
1482 Member);
1483 ObjCMethodDecl *SMD = nullptr;
1484 if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1485 /*Property id*/ nullptr,
1486 SetterSel, S.Context))
1487 SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1488
1489 return new (S.Context)
1490 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1491 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1492 }
1493 }
1494 // Use of id.member can only be for a property reference. Do not
1495 // use the 'id' redefinition in this case.
1496 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1497 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1498 ObjCImpDecl, HasTemplateArgs);
1499
1500 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1501 << MemberName << BaseType);
1502 }
1503
1504 // 'Class', unqualified only.
1505 if (OT->isObjCClass()) {
1506 // Only works in a method declaration (??!).
1507 ObjCMethodDecl *MD = S.getCurMethodDecl();
1508 if (!MD) {
1509 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1510 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1511 ObjCImpDecl, HasTemplateArgs);
1512
1513 goto fail;
1514 }
1515
1516 // Also must look for a getter name which uses property syntax.
1517 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1518 ObjCInterfaceDecl *IFace = MD->getClassInterface();
1519 ObjCMethodDecl *Getter;
1520 if ((Getter = IFace->lookupClassMethod(Sel))) {
1521 // Check the use of this method.
1522 if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1523 return ExprError();
1524 } else
1525 Getter = IFace->lookupPrivateMethod(Sel, false);
1526 // If we found a getter then this may be a valid dot-reference, we
1527 // will look for the matching setter, in case it is needed.
1528 Selector SetterSel =
1529 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1530 S.PP.getSelectorTable(),
1531 Member);
1532 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1533 if (!Setter) {
1534 // If this reference is in an @implementation, also check for 'private'
1535 // methods.
1536 Setter = IFace->lookupPrivateMethod(SetterSel, false);
1537 }
1538
1539 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1540 return ExprError();
1541
1542 if (Getter || Setter) {
1543 return new (S.Context) ObjCPropertyRefExpr(
1544 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1545 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1546 }
1547
1548 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1549 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1550 ObjCImpDecl, HasTemplateArgs);
1551
1552 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1553 << MemberName << BaseType);
1554 }
1555
1556 // Normal property access.
1557 return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1558 MemberLoc, SourceLocation(), QualType(),
1559 false);
1560 }
1561
1562 // Handle 'field access' to vectors, such as 'V.xx'.
1563 if (BaseType->isExtVectorType()) {
1564 // FIXME: this expr should store IsArrow.
1565 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1566 ExprValueKind VK;
1567 if (IsArrow)
1568 VK = VK_LValue;
1569 else {
1570 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
1571 VK = POE->getSyntacticForm()->getValueKind();
1572 else
1573 VK = BaseExpr.get()->getValueKind();
1574 }
1575 QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1576 Member, MemberLoc);
1577 if (ret.isNull())
1578 return ExprError();
1579
1580 return new (S.Context)
1581 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1582 }
1583
1584 // Adjust builtin-sel to the appropriate redefinition type if that's
1585 // not just a pointer to builtin-sel again.
1586 if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1587 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1588 BaseExpr = S.ImpCastExprToType(
1589 BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1590 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1591 ObjCImpDecl, HasTemplateArgs);
1592 }
1593
1594 // Failure cases.
1595 fail:
1596
1597 // Recover from dot accesses to pointers, e.g.:
1598 // type *foo;
1599 // foo.bar
1600 // This is actually well-formed in two cases:
1601 // - 'type' is an Objective C type
1602 // - 'bar' is a pseudo-destructor name which happens to refer to
1603 // the appropriate pointer type
1604 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1605 if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1606 MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1607 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1608 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1609 << FixItHint::CreateReplacement(OpLoc, "->");
1610
1611 // Recurse as an -> access.
1612 IsArrow = true;
1613 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1614 ObjCImpDecl, HasTemplateArgs);
1615 }
1616 }
1617
1618 // If the user is trying to apply -> or . to a function name, it's probably
1619 // because they forgot parentheses to call that function.
1620 if (S.tryToRecoverWithCall(
1621 BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1622 /*complain*/ false,
1623 IsArrow ? &isPointerToRecordType : &isRecordType)) {
1624 if (BaseExpr.isInvalid())
1625 return ExprError();
1626 BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1627 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1628 ObjCImpDecl, HasTemplateArgs);
1629 }
1630
1631 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1632 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1633
1634 return ExprError();
1635 }
1636
1637 /// The main callback when the parser finds something like
1638 /// expression . [nested-name-specifier] identifier
1639 /// expression -> [nested-name-specifier] identifier
1640 /// where 'identifier' encompasses a fairly broad spectrum of
1641 /// possibilities, including destructor and operator references.
1642 ///
1643 /// \param OpKind either tok::arrow or tok::period
1644 /// \param ObjCImpDecl the current Objective-C \@implementation
1645 /// decl; this is an ugly hack around the fact that Objective-C
1646 /// \@implementations aren't properly put in the context chain
ActOnMemberAccessExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,Decl * ObjCImpDecl)1647 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1648 SourceLocation OpLoc,
1649 tok::TokenKind OpKind,
1650 CXXScopeSpec &SS,
1651 SourceLocation TemplateKWLoc,
1652 UnqualifiedId &Id,
1653 Decl *ObjCImpDecl) {
1654 if (SS.isSet() && SS.isInvalid())
1655 return ExprError();
1656
1657 // Warn about the explicit constructor calls Microsoft extension.
1658 if (getLangOpts().MicrosoftExt &&
1659 Id.getKind() == UnqualifiedId::IK_ConstructorName)
1660 Diag(Id.getSourceRange().getBegin(),
1661 diag::ext_ms_explicit_constructor_call);
1662
1663 TemplateArgumentListInfo TemplateArgsBuffer;
1664
1665 // Decompose the name into its component parts.
1666 DeclarationNameInfo NameInfo;
1667 const TemplateArgumentListInfo *TemplateArgs;
1668 DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1669 NameInfo, TemplateArgs);
1670
1671 DeclarationName Name = NameInfo.getName();
1672 bool IsArrow = (OpKind == tok::arrow);
1673
1674 NamedDecl *FirstQualifierInScope
1675 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1676
1677 // This is a postfix expression, so get rid of ParenListExprs.
1678 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1679 if (Result.isInvalid()) return ExprError();
1680 Base = Result.get();
1681
1682 if (Base->getType()->isDependentType() || Name.isDependentName() ||
1683 isDependentScopeSpecifier(SS)) {
1684 return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1685 TemplateKWLoc, FirstQualifierInScope,
1686 NameInfo, TemplateArgs);
1687 }
1688
1689 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1690 return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
1691 TemplateKWLoc, FirstQualifierInScope,
1692 NameInfo, TemplateArgs, S, &ExtraArgs);
1693 }
1694
1695 static ExprResult
BuildFieldReferenceExpr(Sema & S,Expr * BaseExpr,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,FieldDecl * Field,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo)1696 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1697 SourceLocation OpLoc, const CXXScopeSpec &SS,
1698 FieldDecl *Field, DeclAccessPair FoundDecl,
1699 const DeclarationNameInfo &MemberNameInfo) {
1700 // x.a is an l-value if 'a' has a reference type. Otherwise:
1701 // x.a is an l-value/x-value/pr-value if the base is (and note
1702 // that *x is always an l-value), except that if the base isn't
1703 // an ordinary object then we must have an rvalue.
1704 ExprValueKind VK = VK_LValue;
1705 ExprObjectKind OK = OK_Ordinary;
1706 if (!IsArrow) {
1707 if (BaseExpr->getObjectKind() == OK_Ordinary)
1708 VK = BaseExpr->getValueKind();
1709 else
1710 VK = VK_RValue;
1711 }
1712 if (VK != VK_RValue && Field->isBitField())
1713 OK = OK_BitField;
1714
1715 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1716 QualType MemberType = Field->getType();
1717 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1718 MemberType = Ref->getPointeeType();
1719 VK = VK_LValue;
1720 } else {
1721 QualType BaseType = BaseExpr->getType();
1722 if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1723
1724 Qualifiers BaseQuals = BaseType.getQualifiers();
1725
1726 // GC attributes are never picked up by members.
1727 BaseQuals.removeObjCGCAttr();
1728
1729 // CVR attributes from the base are picked up by members,
1730 // except that 'mutable' members don't pick up 'const'.
1731 if (Field->isMutable()) BaseQuals.removeConst();
1732
1733 Qualifiers MemberQuals
1734 = S.Context.getCanonicalType(MemberType).getQualifiers();
1735
1736 assert(!MemberQuals.hasAddressSpace());
1737
1738
1739 Qualifiers Combined = BaseQuals + MemberQuals;
1740 if (Combined != MemberQuals)
1741 MemberType = S.Context.getQualifiedType(MemberType, Combined);
1742 }
1743
1744 S.UnusedPrivateFields.remove(Field);
1745
1746 ExprResult Base =
1747 S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1748 FoundDecl, Field);
1749 if (Base.isInvalid())
1750 return ExprError();
1751 return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, OpLoc, SS,
1752 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1753 MemberNameInfo, MemberType, VK, OK);
1754 }
1755
1756 /// Builds an implicit member access expression. The current context
1757 /// is known to be an instance method, and the given unqualified lookup
1758 /// set is known to contain only instance members, at least one of which
1759 /// is from an appropriate type.
1760 ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool IsKnownInstance,const Scope * S)1761 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1762 SourceLocation TemplateKWLoc,
1763 LookupResult &R,
1764 const TemplateArgumentListInfo *TemplateArgs,
1765 bool IsKnownInstance, const Scope *S) {
1766 assert(!R.empty() && !R.isAmbiguous());
1767
1768 SourceLocation loc = R.getNameLoc();
1769
1770 // If this is known to be an instance access, go ahead and build an
1771 // implicit 'this' expression now.
1772 // 'this' expression now.
1773 QualType ThisTy = getCurrentThisType();
1774 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1775
1776 Expr *baseExpr = nullptr; // null signifies implicit access
1777 if (IsKnownInstance) {
1778 SourceLocation Loc = R.getNameLoc();
1779 if (SS.getRange().isValid())
1780 Loc = SS.getRange().getBegin();
1781 CheckCXXThisCapture(Loc);
1782 baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1783 }
1784
1785 return BuildMemberReferenceExpr(baseExpr, ThisTy,
1786 /*OpLoc*/ SourceLocation(),
1787 /*IsArrow*/ true,
1788 SS, TemplateKWLoc,
1789 /*FirstQualifierInScope*/ nullptr,
1790 R, TemplateArgs, S);
1791 }
1792