1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend is responsible for emitting arm_neon.h, which includes
11 // a declaration and definition of each function specified by the ARM NEON
12 // compiler interface.  See ARM document DUI0348B.
13 //
14 // Each NEON instruction is implemented in terms of 1 or more functions which
15 // are suffixed with the element type of the input vectors.  Functions may be
16 // implemented in terms of generic vector operations such as +, *, -, etc. or
17 // by calling a __builtin_-prefixed function which will be handled by clang's
18 // CodeGen library.
19 //
20 // Additional validation code can be generated by this file when runHeader() is
21 // called, rather than the normal run() entry point.
22 //
23 // See also the documentation in include/clang/Basic/arm_neon.td.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/TableGen/Error.h"
35 #include "llvm/TableGen/Record.h"
36 #include "llvm/TableGen/SetTheory.h"
37 #include "llvm/TableGen/TableGenBackend.h"
38 #include <algorithm>
39 #include <deque>
40 #include <map>
41 #include <sstream>
42 #include <string>
43 #include <vector>
44 using namespace llvm;
45 
46 namespace {
47 
48 // While globals are generally bad, this one allows us to perform assertions
49 // liberally and somehow still trace them back to the def they indirectly
50 // came from.
51 static Record *CurrentRecord = nullptr;
assert_with_loc(bool Assertion,const std::string & Str)52 static void assert_with_loc(bool Assertion, const std::string &Str) {
53   if (!Assertion) {
54     if (CurrentRecord)
55       PrintFatalError(CurrentRecord->getLoc(), Str);
56     else
57       PrintFatalError(Str);
58   }
59 }
60 
61 enum ClassKind {
62   ClassNone,
63   ClassI,     // generic integer instruction, e.g., "i8" suffix
64   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
65   ClassW,     // width-specific instruction, e.g., "8" suffix
66   ClassB,     // bitcast arguments with enum argument to specify type
67   ClassL,     // Logical instructions which are op instructions
68               // but we need to not emit any suffix for in our
69               // tests.
70   ClassNoTest // Instructions which we do not test since they are
71               // not TRUE instructions.
72 };
73 
74 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
75 /// builtins.  These must be kept in sync with the flags in
76 /// include/clang/Basic/TargetBuiltins.h.
77 namespace NeonTypeFlags {
78 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
79 
80 enum EltType {
81   Int8,
82   Int16,
83   Int32,
84   Int64,
85   Poly8,
86   Poly16,
87   Poly64,
88   Poly128,
89   Float16,
90   Float32,
91   Float64
92 };
93 }
94 
95 class Intrinsic;
96 class NeonEmitter;
97 class Type;
98 class Variable;
99 
100 //===----------------------------------------------------------------------===//
101 // TypeSpec
102 //===----------------------------------------------------------------------===//
103 
104 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
105 /// for strong typing purposes.
106 ///
107 /// A TypeSpec can be used to create a type.
108 class TypeSpec : public std::string {
109 public:
fromTypeSpecs(StringRef Str)110   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
111     std::vector<TypeSpec> Ret;
112     TypeSpec Acc;
113     for (char I : Str.str()) {
114       if (islower(I)) {
115         Acc.push_back(I);
116         Ret.push_back(TypeSpec(Acc));
117         Acc.clear();
118       } else {
119         Acc.push_back(I);
120       }
121     }
122     return Ret;
123   }
124 };
125 
126 //===----------------------------------------------------------------------===//
127 // Type
128 //===----------------------------------------------------------------------===//
129 
130 /// A Type. Not much more to say here.
131 class Type {
132 private:
133   TypeSpec TS;
134 
135   bool Float, Signed, Immediate, Void, Poly, Constant, Pointer;
136   // ScalarForMangling and NoManglingQ are really not suited to live here as
137   // they are not related to the type. But they live in the TypeSpec (not the
138   // prototype), so this is really the only place to store them.
139   bool ScalarForMangling, NoManglingQ;
140   unsigned Bitwidth, ElementBitwidth, NumVectors;
141 
142 public:
Type()143   Type()
144       : Float(false), Signed(false), Immediate(false), Void(true), Poly(false),
145         Constant(false), Pointer(false), ScalarForMangling(false),
146         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
147 
Type(TypeSpec TS,char CharMod)148   Type(TypeSpec TS, char CharMod)
149       : TS(TS), Float(false), Signed(false), Immediate(false), Void(false),
150         Poly(false), Constant(false), Pointer(false), ScalarForMangling(false),
151         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
152     applyModifier(CharMod);
153   }
154 
155   /// Returns a type representing "void".
getVoid()156   static Type getVoid() { return Type(); }
157 
operator ==(const Type & Other) const158   bool operator==(const Type &Other) const { return str() == Other.str(); }
operator !=(const Type & Other) const159   bool operator!=(const Type &Other) const { return !operator==(Other); }
160 
161   //
162   // Query functions
163   //
isScalarForMangling() const164   bool isScalarForMangling() const { return ScalarForMangling; }
noManglingQ() const165   bool noManglingQ() const { return NoManglingQ; }
166 
isPointer() const167   bool isPointer() const { return Pointer; }
isFloating() const168   bool isFloating() const { return Float; }
isInteger() const169   bool isInteger() const { return !Float && !Poly; }
isSigned() const170   bool isSigned() const { return Signed; }
isImmediate() const171   bool isImmediate() const { return Immediate; }
isScalar() const172   bool isScalar() const { return NumVectors == 0; }
isVector() const173   bool isVector() const { return NumVectors > 0; }
isFloat() const174   bool isFloat() const { return Float && ElementBitwidth == 32; }
isDouble() const175   bool isDouble() const { return Float && ElementBitwidth == 64; }
isHalf() const176   bool isHalf() const { return Float && ElementBitwidth == 16; }
isPoly() const177   bool isPoly() const { return Poly; }
isChar() const178   bool isChar() const { return ElementBitwidth == 8; }
isShort() const179   bool isShort() const { return !Float && ElementBitwidth == 16; }
isInt() const180   bool isInt() const { return !Float && ElementBitwidth == 32; }
isLong() const181   bool isLong() const { return !Float && ElementBitwidth == 64; }
isVoid() const182   bool isVoid() const { return Void; }
getNumElements() const183   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
getSizeInBits() const184   unsigned getSizeInBits() const { return Bitwidth; }
getElementSizeInBits() const185   unsigned getElementSizeInBits() const { return ElementBitwidth; }
getNumVectors() const186   unsigned getNumVectors() const { return NumVectors; }
187 
188   //
189   // Mutator functions
190   //
makeUnsigned()191   void makeUnsigned() { Signed = false; }
makeSigned()192   void makeSigned() { Signed = true; }
makeInteger(unsigned ElemWidth,bool Sign)193   void makeInteger(unsigned ElemWidth, bool Sign) {
194     Float = false;
195     Poly = false;
196     Signed = Sign;
197     Immediate = false;
198     ElementBitwidth = ElemWidth;
199   }
makeImmediate(unsigned ElemWidth)200   void makeImmediate(unsigned ElemWidth) {
201     Float = false;
202     Poly = false;
203     Signed = true;
204     Immediate = true;
205     ElementBitwidth = ElemWidth;
206   }
makeScalar()207   void makeScalar() {
208     Bitwidth = ElementBitwidth;
209     NumVectors = 0;
210   }
makeOneVector()211   void makeOneVector() {
212     assert(isVector());
213     NumVectors = 1;
214   }
doubleLanes()215   void doubleLanes() {
216     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
217     Bitwidth = 128;
218   }
halveLanes()219   void halveLanes() {
220     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
221     Bitwidth = 64;
222   }
223 
224   /// Return the C string representation of a type, which is the typename
225   /// defined in stdint.h or arm_neon.h.
226   std::string str() const;
227 
228   /// Return the string representation of a type, which is an encoded
229   /// string for passing to the BUILTIN() macro in Builtins.def.
230   std::string builtin_str() const;
231 
232   /// Return the value in NeonTypeFlags for this type.
233   unsigned getNeonEnum() const;
234 
235   /// Parse a type from a stdint.h or arm_neon.h typedef name,
236   /// for example uint32x2_t or int64_t.
237   static Type fromTypedefName(StringRef Name);
238 
239 private:
240   /// Creates the type based on the typespec string in TS.
241   /// Sets "Quad" to true if the "Q" or "H" modifiers were
242   /// seen. This is needed by applyModifier as some modifiers
243   /// only take effect if the type size was changed by "Q" or "H".
244   void applyTypespec(bool &Quad);
245   /// Applies a prototype modifier to the type.
246   void applyModifier(char Mod);
247 };
248 
249 //===----------------------------------------------------------------------===//
250 // Variable
251 //===----------------------------------------------------------------------===//
252 
253 /// A variable is a simple class that just has a type and a name.
254 class Variable {
255   Type T;
256   std::string N;
257 
258 public:
Variable()259   Variable() : T(Type::getVoid()), N("") {}
Variable(Type T,std::string N)260   Variable(Type T, std::string N) : T(T), N(N) {}
261 
getType() const262   Type getType() const { return T; }
getName() const263   std::string getName() const { return "__" + N; }
264 };
265 
266 //===----------------------------------------------------------------------===//
267 // Intrinsic
268 //===----------------------------------------------------------------------===//
269 
270 /// The main grunt class. This represents an instantiation of an intrinsic with
271 /// a particular typespec and prototype.
272 class Intrinsic {
273   friend class DagEmitter;
274 
275   /// The Record this intrinsic was created from.
276   Record *R;
277   /// The unmangled name and prototype.
278   std::string Name, Proto;
279   /// The input and output typespecs. InTS == OutTS except when
280   /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
281   TypeSpec OutTS, InTS;
282   /// The base class kind. Most intrinsics use ClassS, which has full type
283   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
284   /// signedness (i32), while some (ClassB) have no type at all, only a width
285   /// (32).
286   ClassKind CK;
287   /// The list of DAGs for the body. May be empty, in which case we should
288   /// emit a builtin call.
289   ListInit *Body;
290   /// The architectural #ifdef guard.
291   std::string Guard;
292   /// Set if the Unvailable bit is 1. This means we don't generate a body,
293   /// just an "unavailable" attribute on a declaration.
294   bool IsUnavailable;
295   /// Is this intrinsic safe for big-endian? or does it need its arguments
296   /// reversing?
297   bool BigEndianSafe;
298 
299   /// The types of return value [0] and parameters [1..].
300   std::vector<Type> Types;
301   /// The local variables defined.
302   std::map<std::string, Variable> Variables;
303   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
304   bool NeededEarly;
305   /// UseMacro - set if we should implement using a macro or unset for a
306   ///            function.
307   bool UseMacro;
308   /// The set of intrinsics that this intrinsic uses/requires.
309   std::set<Intrinsic *> Dependencies;
310   /// The "base type", which is Type('d', OutTS). InBaseType is only
311   /// different if CartesianProductOfTypes = 1 (for vreinterpret).
312   Type BaseType, InBaseType;
313   /// The return variable.
314   Variable RetVar;
315   /// A postfix to apply to every variable. Defaults to "".
316   std::string VariablePostfix;
317 
318   NeonEmitter &Emitter;
319   std::stringstream OS;
320 
321 public:
Intrinsic(Record * R,StringRef Name,StringRef Proto,TypeSpec OutTS,TypeSpec InTS,ClassKind CK,ListInit * Body,NeonEmitter & Emitter,StringRef Guard,bool IsUnavailable,bool BigEndianSafe)322   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
323             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
324             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
325       : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
326         CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
327         BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
328         BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
329     // If this builtin takes an immediate argument, we need to #define it rather
330     // than use a standard declaration, so that SemaChecking can range check
331     // the immediate passed by the user.
332     if (Proto.find('i') != std::string::npos)
333       UseMacro = true;
334 
335     // Pointer arguments need to use macros to avoid hiding aligned attributes
336     // from the pointer type.
337     if (Proto.find('p') != std::string::npos ||
338         Proto.find('c') != std::string::npos)
339       UseMacro = true;
340 
341     // It is not permitted to pass or return an __fp16 by value, so intrinsics
342     // taking a scalar float16_t must be implemented as macros.
343     if (OutTS.find('h') != std::string::npos &&
344         Proto.find('s') != std::string::npos)
345       UseMacro = true;
346 
347     // Modify the TypeSpec per-argument to get a concrete Type, and create
348     // known variables for each.
349     // Types[0] is the return value.
350     Types.emplace_back(OutTS, Proto[0]);
351     for (unsigned I = 1; I < Proto.size(); ++I)
352       Types.emplace_back(InTS, Proto[I]);
353   }
354 
355   /// Get the Record that this intrinsic is based off.
getRecord() const356   Record *getRecord() const { return R; }
357   /// Get the set of Intrinsics that this intrinsic calls.
358   /// this is the set of immediate dependencies, NOT the
359   /// transitive closure.
getDependencies() const360   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
361   /// Get the architectural guard string (#ifdef).
getGuard() const362   std::string getGuard() const { return Guard; }
363   /// Get the non-mangled name.
getName() const364   std::string getName() const { return Name; }
365 
366   /// Return true if the intrinsic takes an immediate operand.
hasImmediate() const367   bool hasImmediate() const {
368     return Proto.find('i') != std::string::npos;
369   }
370   /// Return the parameter index of the immediate operand.
getImmediateIdx() const371   unsigned getImmediateIdx() const {
372     assert(hasImmediate());
373     unsigned Idx = Proto.find('i');
374     assert(Idx > 0 && "Can't return an immediate!");
375     return Idx - 1;
376   }
377 
378   /// Return true if the intrinsic takes an splat operand.
hasSplat() const379   bool hasSplat() const { return Proto.find('a') != std::string::npos; }
380   /// Return the parameter index of the splat operand.
getSplatIdx() const381   unsigned getSplatIdx() const {
382     assert(hasSplat());
383     unsigned Idx = Proto.find('a');
384     assert(Idx > 0 && "Can't return a splat!");
385     return Idx - 1;
386   }
387 
getNumParams() const388   unsigned getNumParams() const { return Proto.size() - 1; }
getReturnType() const389   Type getReturnType() const { return Types[0]; }
getParamType(unsigned I) const390   Type getParamType(unsigned I) const { return Types[I + 1]; }
getBaseType() const391   Type getBaseType() const { return BaseType; }
392   /// Return the raw prototype string.
getProto() const393   std::string getProto() const { return Proto; }
394 
395   /// Return true if the prototype has a scalar argument.
396   /// This does not return true for the "splat" code ('a').
397   bool protoHasScalar() const;
398 
399   /// Return the index that parameter PIndex will sit at
400   /// in a generated function call. This is often just PIndex,
401   /// but may not be as things such as multiple-vector operands
402   /// and sret parameters need to be taken into accont.
getGeneratedParamIdx(unsigned PIndex)403   unsigned getGeneratedParamIdx(unsigned PIndex) {
404     unsigned Idx = 0;
405     if (getReturnType().getNumVectors() > 1)
406       // Multiple vectors are passed as sret.
407       ++Idx;
408 
409     for (unsigned I = 0; I < PIndex; ++I)
410       Idx += std::max(1U, getParamType(I).getNumVectors());
411 
412     return Idx;
413   }
414 
hasBody() const415   bool hasBody() const { return Body && Body->getValues().size() > 0; }
416 
setNeededEarly()417   void setNeededEarly() { NeededEarly = true; }
418 
operator <(const Intrinsic & Other) const419   bool operator<(const Intrinsic &Other) const {
420     // Sort lexicographically on a two-tuple (Guard, Name)
421     if (Guard != Other.Guard)
422       return Guard < Other.Guard;
423     return Name < Other.Name;
424   }
425 
getClassKind(bool UseClassBIfScalar=false)426   ClassKind getClassKind(bool UseClassBIfScalar = false) {
427     if (UseClassBIfScalar && !protoHasScalar())
428       return ClassB;
429     return CK;
430   }
431 
432   /// Return the name, mangled with type information.
433   /// If ForceClassS is true, use ClassS (u32/s32) instead
434   /// of the intrinsic's own type class.
435   std::string getMangledName(bool ForceClassS = false) const;
436   /// Return the type code for a builtin function call.
437   std::string getInstTypeCode(Type T, ClassKind CK) const;
438   /// Return the type string for a BUILTIN() macro in Builtins.def.
439   std::string getBuiltinTypeStr();
440 
441   /// Generate the intrinsic, returning code.
442   std::string generate();
443   /// Perform type checking and populate the dependency graph, but
444   /// don't generate code yet.
445   void indexBody();
446 
447 private:
448   std::string mangleName(std::string Name, ClassKind CK) const;
449 
450   void initVariables();
451   std::string replaceParamsIn(std::string S);
452 
453   void emitBodyAsBuiltinCall();
454 
455   void generateImpl(bool ReverseArguments,
456                     StringRef NamePrefix, StringRef CallPrefix);
457   void emitReturn();
458   void emitBody(StringRef CallPrefix);
459   void emitShadowedArgs();
460   void emitArgumentReversal();
461   void emitReturnReversal();
462   void emitReverseVariable(Variable &Dest, Variable &Src);
463   void emitNewLine();
464   void emitClosingBrace();
465   void emitOpeningBrace();
466   void emitPrototype(StringRef NamePrefix);
467 
468   class DagEmitter {
469     Intrinsic &Intr;
470     StringRef CallPrefix;
471 
472   public:
DagEmitter(Intrinsic & Intr,StringRef CallPrefix)473     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
474       Intr(Intr), CallPrefix(CallPrefix) {
475     }
476     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
477     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
478     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
479     std::pair<Type, std::string> emitDagDup(DagInit *DI);
480     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
481     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
482     std::pair<Type, std::string> emitDagCall(DagInit *DI);
483     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
484     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
485     std::pair<Type, std::string> emitDagOp(DagInit *DI);
486     std::pair<Type, std::string> emitDag(DagInit *DI);
487   };
488 
489 };
490 
491 //===----------------------------------------------------------------------===//
492 // NeonEmitter
493 //===----------------------------------------------------------------------===//
494 
495 class NeonEmitter {
496   RecordKeeper &Records;
497   DenseMap<Record *, ClassKind> ClassMap;
498   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
499   unsigned UniqueNumber;
500 
501   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
502   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
503   void genOverloadTypeCheckCode(raw_ostream &OS,
504                                 SmallVectorImpl<Intrinsic *> &Defs);
505   void genIntrinsicRangeCheckCode(raw_ostream &OS,
506                                   SmallVectorImpl<Intrinsic *> &Defs);
507 
508 public:
509   /// Called by Intrinsic - this attempts to get an intrinsic that takes
510   /// the given types as arguments.
511   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types);
512 
513   /// Called by Intrinsic - returns a globally-unique number.
getUniqueNumber()514   unsigned getUniqueNumber() { return UniqueNumber++; }
515 
NeonEmitter(RecordKeeper & R)516   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
517     Record *SI = R.getClass("SInst");
518     Record *II = R.getClass("IInst");
519     Record *WI = R.getClass("WInst");
520     Record *SOpI = R.getClass("SOpInst");
521     Record *IOpI = R.getClass("IOpInst");
522     Record *WOpI = R.getClass("WOpInst");
523     Record *LOpI = R.getClass("LOpInst");
524     Record *NoTestOpI = R.getClass("NoTestOpInst");
525 
526     ClassMap[SI] = ClassS;
527     ClassMap[II] = ClassI;
528     ClassMap[WI] = ClassW;
529     ClassMap[SOpI] = ClassS;
530     ClassMap[IOpI] = ClassI;
531     ClassMap[WOpI] = ClassW;
532     ClassMap[LOpI] = ClassL;
533     ClassMap[NoTestOpI] = ClassNoTest;
534   }
535 
536   // run - Emit arm_neon.h.inc
537   void run(raw_ostream &o);
538 
539   // runHeader - Emit all the __builtin prototypes used in arm_neon.h
540   void runHeader(raw_ostream &o);
541 
542   // runTests - Emit tests for all the Neon intrinsics.
543   void runTests(raw_ostream &o);
544 };
545 
546 } // end anonymous namespace
547 
548 //===----------------------------------------------------------------------===//
549 // Type implementation
550 //===----------------------------------------------------------------------===//
551 
str() const552 std::string Type::str() const {
553   if (Void)
554     return "void";
555   std::string S;
556 
557   if (!Signed && isInteger())
558     S += "u";
559 
560   if (Poly)
561     S += "poly";
562   else if (Float)
563     S += "float";
564   else
565     S += "int";
566 
567   S += utostr(ElementBitwidth);
568   if (isVector())
569     S += "x" + utostr(getNumElements());
570   if (NumVectors > 1)
571     S += "x" + utostr(NumVectors);
572   S += "_t";
573 
574   if (Constant)
575     S += " const";
576   if (Pointer)
577     S += " *";
578 
579   return S;
580 }
581 
builtin_str() const582 std::string Type::builtin_str() const {
583   std::string S;
584   if (isVoid())
585     return "v";
586 
587   if (Pointer)
588     // All pointers are void pointers.
589     S += "v";
590   else if (isInteger())
591     switch (ElementBitwidth) {
592     case 8: S += "c"; break;
593     case 16: S += "s"; break;
594     case 32: S += "i"; break;
595     case 64: S += "Wi"; break;
596     case 128: S += "LLLi"; break;
597     default: llvm_unreachable("Unhandled case!");
598     }
599   else
600     switch (ElementBitwidth) {
601     case 16: S += "h"; break;
602     case 32: S += "f"; break;
603     case 64: S += "d"; break;
604     default: llvm_unreachable("Unhandled case!");
605     }
606 
607   if (isChar() && !Pointer)
608     // Make chars explicitly signed.
609     S = "S" + S;
610   else if (isInteger() && !Pointer && !Signed)
611     S = "U" + S;
612 
613   // Constant indices are "int", but have the "constant expression" modifier.
614   if (isImmediate()) {
615     assert(isInteger() && isSigned());
616     S = "I" + S;
617   }
618 
619   if (isScalar()) {
620     if (Constant) S += "C";
621     if (Pointer) S += "*";
622     return S;
623   }
624 
625   std::string Ret;
626   for (unsigned I = 0; I < NumVectors; ++I)
627     Ret += "V" + utostr(getNumElements()) + S;
628 
629   return Ret;
630 }
631 
getNeonEnum() const632 unsigned Type::getNeonEnum() const {
633   unsigned Addend;
634   switch (ElementBitwidth) {
635   case 8: Addend = 0; break;
636   case 16: Addend = 1; break;
637   case 32: Addend = 2; break;
638   case 64: Addend = 3; break;
639   case 128: Addend = 4; break;
640   default: llvm_unreachable("Unhandled element bitwidth!");
641   }
642 
643   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
644   if (Poly) {
645     // Adjustment needed because Poly32 doesn't exist.
646     if (Addend >= 2)
647       --Addend;
648     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
649   }
650   if (Float) {
651     assert(Addend != 0 && "Float8 doesn't exist!");
652     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
653   }
654 
655   if (Bitwidth == 128)
656     Base |= (unsigned)NeonTypeFlags::QuadFlag;
657   if (isInteger() && !Signed)
658     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
659 
660   return Base;
661 }
662 
fromTypedefName(StringRef Name)663 Type Type::fromTypedefName(StringRef Name) {
664   Type T;
665   T.Void = false;
666   T.Float = false;
667   T.Poly = false;
668 
669   if (Name.front() == 'u') {
670     T.Signed = false;
671     Name = Name.drop_front();
672   } else {
673     T.Signed = true;
674   }
675 
676   if (Name.startswith("float")) {
677     T.Float = true;
678     Name = Name.drop_front(5);
679   } else if (Name.startswith("poly")) {
680     T.Poly = true;
681     Name = Name.drop_front(4);
682   } else {
683     assert(Name.startswith("int"));
684     Name = Name.drop_front(3);
685   }
686 
687   unsigned I = 0;
688   for (I = 0; I < Name.size(); ++I) {
689     if (!isdigit(Name[I]))
690       break;
691   }
692   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
693   Name = Name.drop_front(I);
694 
695   T.Bitwidth = T.ElementBitwidth;
696   T.NumVectors = 1;
697 
698   if (Name.front() == 'x') {
699     Name = Name.drop_front();
700     unsigned I = 0;
701     for (I = 0; I < Name.size(); ++I) {
702       if (!isdigit(Name[I]))
703         break;
704     }
705     unsigned NumLanes;
706     Name.substr(0, I).getAsInteger(10, NumLanes);
707     Name = Name.drop_front(I);
708     T.Bitwidth = T.ElementBitwidth * NumLanes;
709   } else {
710     // Was scalar.
711     T.NumVectors = 0;
712   }
713   if (Name.front() == 'x') {
714     Name = Name.drop_front();
715     unsigned I = 0;
716     for (I = 0; I < Name.size(); ++I) {
717       if (!isdigit(Name[I]))
718         break;
719     }
720     Name.substr(0, I).getAsInteger(10, T.NumVectors);
721     Name = Name.drop_front(I);
722   }
723 
724   assert(Name.startswith("_t") && "Malformed typedef!");
725   return T;
726 }
727 
applyTypespec(bool & Quad)728 void Type::applyTypespec(bool &Quad) {
729   std::string S = TS;
730   ScalarForMangling = false;
731   Void = false;
732   Poly = Float = false;
733   ElementBitwidth = ~0U;
734   Signed = true;
735   NumVectors = 1;
736 
737   for (char I : S) {
738     switch (I) {
739     case 'S':
740       ScalarForMangling = true;
741       break;
742     case 'H':
743       NoManglingQ = true;
744       Quad = true;
745       break;
746     case 'Q':
747       Quad = true;
748       break;
749     case 'P':
750       Poly = true;
751       break;
752     case 'U':
753       Signed = false;
754       break;
755     case 'c':
756       ElementBitwidth = 8;
757       break;
758     case 'h':
759       Float = true;
760     // Fall through
761     case 's':
762       ElementBitwidth = 16;
763       break;
764     case 'f':
765       Float = true;
766     // Fall through
767     case 'i':
768       ElementBitwidth = 32;
769       break;
770     case 'd':
771       Float = true;
772     // Fall through
773     case 'l':
774       ElementBitwidth = 64;
775       break;
776     case 'k':
777       ElementBitwidth = 128;
778       // Poly doesn't have a 128x1 type.
779       if (Poly)
780         NumVectors = 0;
781       break;
782     default:
783       llvm_unreachable("Unhandled type code!");
784     }
785   }
786   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
787 
788   Bitwidth = Quad ? 128 : 64;
789 }
790 
applyModifier(char Mod)791 void Type::applyModifier(char Mod) {
792   bool AppliedQuad = false;
793   applyTypespec(AppliedQuad);
794 
795   switch (Mod) {
796   case 'v':
797     Void = true;
798     break;
799   case 't':
800     if (Poly) {
801       Poly = false;
802       Signed = false;
803     }
804     break;
805   case 'b':
806     Signed = false;
807     Float = false;
808     Poly = false;
809     NumVectors = 0;
810     Bitwidth = ElementBitwidth;
811     break;
812   case '$':
813     Signed = true;
814     Float = false;
815     Poly = false;
816     NumVectors = 0;
817     Bitwidth = ElementBitwidth;
818     break;
819   case 'u':
820     Signed = false;
821     Poly = false;
822     Float = false;
823     break;
824   case 'x':
825     Signed = true;
826     assert(!Poly && "'u' can't be used with poly types!");
827     Float = false;
828     break;
829   case 'o':
830     Bitwidth = ElementBitwidth = 64;
831     NumVectors = 0;
832     Float = true;
833     break;
834   case 'y':
835     Bitwidth = ElementBitwidth = 32;
836     NumVectors = 0;
837     Float = true;
838     break;
839   case 'f':
840     Float = true;
841     ElementBitwidth = 32;
842     break;
843   case 'F':
844     Float = true;
845     ElementBitwidth = 64;
846     break;
847   case 'g':
848     if (AppliedQuad)
849       Bitwidth /= 2;
850     break;
851   case 'j':
852     if (!AppliedQuad)
853       Bitwidth *= 2;
854     break;
855   case 'w':
856     ElementBitwidth *= 2;
857     Bitwidth *= 2;
858     break;
859   case 'n':
860     ElementBitwidth *= 2;
861     break;
862   case 'i':
863     Float = false;
864     Poly = false;
865     ElementBitwidth = Bitwidth = 32;
866     NumVectors = 0;
867     Signed = true;
868     Immediate = true;
869     break;
870   case 'l':
871     Float = false;
872     Poly = false;
873     ElementBitwidth = Bitwidth = 64;
874     NumVectors = 0;
875     Signed = false;
876     Immediate = true;
877     break;
878   case 'z':
879     ElementBitwidth /= 2;
880     Bitwidth = ElementBitwidth;
881     NumVectors = 0;
882     break;
883   case 'r':
884     ElementBitwidth *= 2;
885     Bitwidth = ElementBitwidth;
886     NumVectors = 0;
887     break;
888   case 's':
889   case 'a':
890     Bitwidth = ElementBitwidth;
891     NumVectors = 0;
892     break;
893   case 'k':
894     Bitwidth *= 2;
895     break;
896   case 'c':
897     Constant = true;
898   // Fall through
899   case 'p':
900     Pointer = true;
901     Bitwidth = ElementBitwidth;
902     NumVectors = 0;
903     break;
904   case 'h':
905     ElementBitwidth /= 2;
906     break;
907   case 'q':
908     ElementBitwidth /= 2;
909     Bitwidth *= 2;
910     break;
911   case 'e':
912     ElementBitwidth /= 2;
913     Signed = false;
914     break;
915   case 'm':
916     ElementBitwidth /= 2;
917     Bitwidth /= 2;
918     break;
919   case 'd':
920     break;
921   case '2':
922     NumVectors = 2;
923     break;
924   case '3':
925     NumVectors = 3;
926     break;
927   case '4':
928     NumVectors = 4;
929     break;
930   case 'B':
931     NumVectors = 2;
932     if (!AppliedQuad)
933       Bitwidth *= 2;
934     break;
935   case 'C':
936     NumVectors = 3;
937     if (!AppliedQuad)
938       Bitwidth *= 2;
939     break;
940   case 'D':
941     NumVectors = 4;
942     if (!AppliedQuad)
943       Bitwidth *= 2;
944     break;
945   default:
946     llvm_unreachable("Unhandled character!");
947   }
948 }
949 
950 //===----------------------------------------------------------------------===//
951 // Intrinsic implementation
952 //===----------------------------------------------------------------------===//
953 
getInstTypeCode(Type T,ClassKind CK) const954 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
955   char typeCode = '\0';
956   bool printNumber = true;
957 
958   if (CK == ClassB)
959     return "";
960 
961   if (T.isPoly())
962     typeCode = 'p';
963   else if (T.isInteger())
964     typeCode = T.isSigned() ? 's' : 'u';
965   else
966     typeCode = 'f';
967 
968   if (CK == ClassI) {
969     switch (typeCode) {
970     default:
971       break;
972     case 's':
973     case 'u':
974     case 'p':
975       typeCode = 'i';
976       break;
977     }
978   }
979   if (CK == ClassB) {
980     typeCode = '\0';
981   }
982 
983   std::string S;
984   if (typeCode != '\0')
985     S.push_back(typeCode);
986   if (printNumber)
987     S += utostr(T.getElementSizeInBits());
988 
989   return S;
990 }
991 
isFloatingPointProtoModifier(char Mod)992 static bool isFloatingPointProtoModifier(char Mod) {
993   return Mod == 'F' || Mod == 'f';
994 }
995 
getBuiltinTypeStr()996 std::string Intrinsic::getBuiltinTypeStr() {
997   ClassKind LocalCK = getClassKind(true);
998   std::string S;
999 
1000   Type RetT = getReturnType();
1001   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1002       !RetT.isFloating())
1003     RetT.makeInteger(RetT.getElementSizeInBits(), false);
1004 
1005   // Since the return value must be one type, return a vector type of the
1006   // appropriate width which we will bitcast.  An exception is made for
1007   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1008   // fashion, storing them to a pointer arg.
1009   if (RetT.getNumVectors() > 1) {
1010     S += "vv*"; // void result with void* first argument
1011   } else {
1012     if (RetT.isPoly())
1013       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1014     if (!RetT.isScalar() && !RetT.isSigned())
1015       RetT.makeSigned();
1016 
1017     bool ForcedVectorFloatingType = isFloatingPointProtoModifier(Proto[0]);
1018     if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
1019       // Cast to vector of 8-bit elements.
1020       RetT.makeInteger(8, true);
1021 
1022     S += RetT.builtin_str();
1023   }
1024 
1025   for (unsigned I = 0; I < getNumParams(); ++I) {
1026     Type T = getParamType(I);
1027     if (T.isPoly())
1028       T.makeInteger(T.getElementSizeInBits(), false);
1029 
1030     bool ForcedFloatingType = isFloatingPointProtoModifier(Proto[I + 1]);
1031     if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
1032       T.makeInteger(8, true);
1033     // Halves always get converted to 8-bit elements.
1034     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1035       T.makeInteger(8, true);
1036 
1037     if (LocalCK == ClassI)
1038       T.makeSigned();
1039 
1040     if (hasImmediate() && getImmediateIdx() == I)
1041       T.makeImmediate(32);
1042 
1043     S += T.builtin_str();
1044   }
1045 
1046   // Extra constant integer to hold type class enum for this function, e.g. s8
1047   if (LocalCK == ClassB)
1048     S += "i";
1049 
1050   return S;
1051 }
1052 
getMangledName(bool ForceClassS) const1053 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1054   // Check if the prototype has a scalar operand with the type of the vector
1055   // elements.  If not, bitcasting the args will take care of arg checking.
1056   // The actual signedness etc. will be taken care of with special enums.
1057   ClassKind LocalCK = CK;
1058   if (!protoHasScalar())
1059     LocalCK = ClassB;
1060 
1061   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1062 }
1063 
mangleName(std::string Name,ClassKind LocalCK) const1064 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1065   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1066   std::string S = Name;
1067 
1068   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1069       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32")
1070     return Name;
1071 
1072   if (typeCode.size() > 0) {
1073     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1074     if (Name.size() >= 3 && isdigit(Name.back()) &&
1075         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1076       S.insert(S.length() - 3, "_" + typeCode);
1077     else
1078       S += "_" + typeCode;
1079   }
1080 
1081   if (BaseType != InBaseType) {
1082     // A reinterpret - out the input base type at the end.
1083     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1084   }
1085 
1086   if (LocalCK == ClassB)
1087     S += "_v";
1088 
1089   // Insert a 'q' before the first '_' character so that it ends up before
1090   // _lane or _n on vector-scalar operations.
1091   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1092     size_t Pos = S.find('_');
1093     S.insert(Pos, "q");
1094   }
1095 
1096   char Suffix = '\0';
1097   if (BaseType.isScalarForMangling()) {
1098     switch (BaseType.getElementSizeInBits()) {
1099     case 8: Suffix = 'b'; break;
1100     case 16: Suffix = 'h'; break;
1101     case 32: Suffix = 's'; break;
1102     case 64: Suffix = 'd'; break;
1103     default: llvm_unreachable("Bad suffix!");
1104     }
1105   }
1106   if (Suffix != '\0') {
1107     size_t Pos = S.find('_');
1108     S.insert(Pos, &Suffix, 1);
1109   }
1110 
1111   return S;
1112 }
1113 
replaceParamsIn(std::string S)1114 std::string Intrinsic::replaceParamsIn(std::string S) {
1115   while (S.find('$') != std::string::npos) {
1116     size_t Pos = S.find('$');
1117     size_t End = Pos + 1;
1118     while (isalpha(S[End]))
1119       ++End;
1120 
1121     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1122     assert_with_loc(Variables.find(VarName) != Variables.end(),
1123                     "Variable not defined!");
1124     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1125   }
1126 
1127   return S;
1128 }
1129 
initVariables()1130 void Intrinsic::initVariables() {
1131   Variables.clear();
1132 
1133   // Modify the TypeSpec per-argument to get a concrete Type, and create
1134   // known variables for each.
1135   for (unsigned I = 1; I < Proto.size(); ++I) {
1136     char NameC = '0' + (I - 1);
1137     std::string Name = "p";
1138     Name.push_back(NameC);
1139 
1140     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1141   }
1142   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1143 }
1144 
emitPrototype(StringRef NamePrefix)1145 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1146   if (UseMacro)
1147     OS << "#define ";
1148   else
1149     OS << "__ai " << Types[0].str() << " ";
1150 
1151   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1152 
1153   for (unsigned I = 0; I < getNumParams(); ++I) {
1154     if (I != 0)
1155       OS << ", ";
1156 
1157     char NameC = '0' + I;
1158     std::string Name = "p";
1159     Name.push_back(NameC);
1160     assert(Variables.find(Name) != Variables.end());
1161     Variable &V = Variables[Name];
1162 
1163     if (!UseMacro)
1164       OS << V.getType().str() << " ";
1165     OS << V.getName();
1166   }
1167 
1168   OS << ")";
1169 }
1170 
emitOpeningBrace()1171 void Intrinsic::emitOpeningBrace() {
1172   if (UseMacro)
1173     OS << " __extension__ ({";
1174   else
1175     OS << " {";
1176   emitNewLine();
1177 }
1178 
emitClosingBrace()1179 void Intrinsic::emitClosingBrace() {
1180   if (UseMacro)
1181     OS << "})";
1182   else
1183     OS << "}";
1184 }
1185 
emitNewLine()1186 void Intrinsic::emitNewLine() {
1187   if (UseMacro)
1188     OS << " \\\n";
1189   else
1190     OS << "\n";
1191 }
1192 
emitReverseVariable(Variable & Dest,Variable & Src)1193 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1194   if (Dest.getType().getNumVectors() > 1) {
1195     emitNewLine();
1196 
1197     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1198       OS << "  " << Dest.getName() << ".val[" << utostr(K) << "] = "
1199          << "__builtin_shufflevector("
1200          << Src.getName() << ".val[" << utostr(K) << "], "
1201          << Src.getName() << ".val[" << utostr(K) << "]";
1202       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1203         OS << ", " << utostr(J);
1204       OS << ");";
1205       emitNewLine();
1206     }
1207   } else {
1208     OS << "  " << Dest.getName()
1209        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1210     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1211       OS << ", " << utostr(J);
1212     OS << ");";
1213     emitNewLine();
1214   }
1215 }
1216 
emitArgumentReversal()1217 void Intrinsic::emitArgumentReversal() {
1218   if (BigEndianSafe)
1219     return;
1220 
1221   // Reverse all vector arguments.
1222   for (unsigned I = 0; I < getNumParams(); ++I) {
1223     std::string Name = "p" + utostr(I);
1224     std::string NewName = "rev" + utostr(I);
1225 
1226     Variable &V = Variables[Name];
1227     Variable NewV(V.getType(), NewName + VariablePostfix);
1228 
1229     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1230       continue;
1231 
1232     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1233     emitReverseVariable(NewV, V);
1234     V = NewV;
1235   }
1236 }
1237 
emitReturnReversal()1238 void Intrinsic::emitReturnReversal() {
1239   if (BigEndianSafe)
1240     return;
1241   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1242       getReturnType().getNumElements() == 1)
1243     return;
1244   emitReverseVariable(RetVar, RetVar);
1245 }
1246 
1247 
emitShadowedArgs()1248 void Intrinsic::emitShadowedArgs() {
1249   // Macro arguments are not type-checked like inline function arguments,
1250   // so assign them to local temporaries to get the right type checking.
1251   if (!UseMacro)
1252     return;
1253 
1254   for (unsigned I = 0; I < getNumParams(); ++I) {
1255     // Do not create a temporary for an immediate argument.
1256     // That would defeat the whole point of using a macro!
1257     if (hasImmediate() && Proto[I+1] == 'i')
1258       continue;
1259     // Do not create a temporary for pointer arguments. The input
1260     // pointer may have an alignment hint.
1261     if (getParamType(I).isPointer())
1262       continue;
1263 
1264     std::string Name = "p" + utostr(I);
1265 
1266     assert(Variables.find(Name) != Variables.end());
1267     Variable &V = Variables[Name];
1268 
1269     std::string NewName = "s" + utostr(I);
1270     Variable V2(V.getType(), NewName + VariablePostfix);
1271 
1272     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1273        << V.getName() << ";";
1274     emitNewLine();
1275 
1276     V = V2;
1277   }
1278 }
1279 
1280 // We don't check 'a' in this function, because for builtin function the
1281 // argument matching to 'a' uses a vector type splatted from a scalar type.
protoHasScalar() const1282 bool Intrinsic::protoHasScalar() const {
1283   return (Proto.find('s') != std::string::npos ||
1284           Proto.find('z') != std::string::npos ||
1285           Proto.find('r') != std::string::npos ||
1286           Proto.find('b') != std::string::npos ||
1287           Proto.find('$') != std::string::npos ||
1288           Proto.find('y') != std::string::npos ||
1289           Proto.find('o') != std::string::npos);
1290 }
1291 
emitBodyAsBuiltinCall()1292 void Intrinsic::emitBodyAsBuiltinCall() {
1293   std::string S;
1294 
1295   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1296   // sret-like argument.
1297   bool SRet = getReturnType().getNumVectors() >= 2;
1298 
1299   StringRef N = Name;
1300   if (hasSplat()) {
1301     // Call the non-splat builtin: chop off the "_n" suffix from the name.
1302     assert(N.endswith("_n"));
1303     N = N.drop_back(2);
1304   }
1305 
1306   ClassKind LocalCK = CK;
1307   if (!protoHasScalar())
1308     LocalCK = ClassB;
1309 
1310   if (!getReturnType().isVoid() && !SRet)
1311     S += "(" + RetVar.getType().str() + ") ";
1312 
1313   S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
1314 
1315   if (SRet)
1316     S += "&" + RetVar.getName() + ", ";
1317 
1318   for (unsigned I = 0; I < getNumParams(); ++I) {
1319     Variable &V = Variables["p" + utostr(I)];
1320     Type T = V.getType();
1321 
1322     // Handle multiple-vector values specially, emitting each subvector as an
1323     // argument to the builtin.
1324     if (T.getNumVectors() > 1) {
1325       // Check if an explicit cast is needed.
1326       std::string Cast;
1327       if (T.isChar() || T.isPoly() || !T.isSigned()) {
1328         Type T2 = T;
1329         T2.makeOneVector();
1330         T2.makeInteger(8, /*Signed=*/true);
1331         Cast = "(" + T2.str() + ")";
1332       }
1333 
1334       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1335         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1336       continue;
1337     }
1338 
1339     std::string Arg;
1340     Type CastToType = T;
1341     if (hasSplat() && I == getSplatIdx()) {
1342       Arg = "(" + BaseType.str() + ") {";
1343       for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
1344         if (J != 0)
1345           Arg += ", ";
1346         Arg += V.getName();
1347       }
1348       Arg += "}";
1349 
1350       CastToType = BaseType;
1351     } else {
1352       Arg = V.getName();
1353     }
1354 
1355     // Check if an explicit cast is needed.
1356     if (CastToType.isVector()) {
1357       CastToType.makeInteger(8, true);
1358       Arg = "(" + CastToType.str() + ")" + Arg;
1359     }
1360 
1361     S += Arg + ", ";
1362   }
1363 
1364   // Extra constant integer to hold type class enum for this function, e.g. s8
1365   if (getClassKind(true) == ClassB) {
1366     Type ThisTy = getReturnType();
1367     if (Proto[0] == 'v' || isFloatingPointProtoModifier(Proto[0]))
1368       ThisTy = getParamType(0);
1369     if (ThisTy.isPointer())
1370       ThisTy = getParamType(1);
1371 
1372     S += utostr(ThisTy.getNeonEnum());
1373   } else {
1374     // Remove extraneous ", ".
1375     S.pop_back();
1376     S.pop_back();
1377   }
1378   S += ");";
1379 
1380   std::string RetExpr;
1381   if (!SRet && !RetVar.getType().isVoid())
1382     RetExpr = RetVar.getName() + " = ";
1383 
1384   OS << "  " << RetExpr << S;
1385   emitNewLine();
1386 }
1387 
emitBody(StringRef CallPrefix)1388 void Intrinsic::emitBody(StringRef CallPrefix) {
1389   std::vector<std::string> Lines;
1390 
1391   assert(RetVar.getType() == Types[0]);
1392   // Create a return variable, if we're not void.
1393   if (!RetVar.getType().isVoid()) {
1394     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1395     emitNewLine();
1396   }
1397 
1398   if (!Body || Body->getValues().size() == 0) {
1399     // Nothing specific to output - must output a builtin.
1400     emitBodyAsBuiltinCall();
1401     return;
1402   }
1403 
1404   // We have a list of "things to output". The last should be returned.
1405   for (auto *I : Body->getValues()) {
1406     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1407       Lines.push_back(replaceParamsIn(SI->getAsString()));
1408     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1409       DagEmitter DE(*this, CallPrefix);
1410       Lines.push_back(DE.emitDag(DI).second + ";");
1411     }
1412   }
1413 
1414   assert(!Lines.empty() && "Empty def?");
1415   if (!RetVar.getType().isVoid())
1416     Lines.back().insert(0, RetVar.getName() + " = ");
1417 
1418   for (auto &L : Lines) {
1419     OS << "  " << L;
1420     emitNewLine();
1421   }
1422 }
1423 
emitReturn()1424 void Intrinsic::emitReturn() {
1425   if (RetVar.getType().isVoid())
1426     return;
1427   if (UseMacro)
1428     OS << "  " << RetVar.getName() << ";";
1429   else
1430     OS << "  return " << RetVar.getName() << ";";
1431   emitNewLine();
1432 }
1433 
emitDag(DagInit * DI)1434 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1435   // At this point we should only be seeing a def.
1436   DefInit *DefI = cast<DefInit>(DI->getOperator());
1437   std::string Op = DefI->getAsString();
1438 
1439   if (Op == "cast" || Op == "bitcast")
1440     return emitDagCast(DI, Op == "bitcast");
1441   if (Op == "shuffle")
1442     return emitDagShuffle(DI);
1443   if (Op == "dup")
1444     return emitDagDup(DI);
1445   if (Op == "splat")
1446     return emitDagSplat(DI);
1447   if (Op == "save_temp")
1448     return emitDagSaveTemp(DI);
1449   if (Op == "op")
1450     return emitDagOp(DI);
1451   if (Op == "call")
1452     return emitDagCall(DI);
1453   if (Op == "name_replace")
1454     return emitDagNameReplace(DI);
1455   if (Op == "literal")
1456     return emitDagLiteral(DI);
1457   assert_with_loc(false, "Unknown operation!");
1458   return std::make_pair(Type::getVoid(), "");
1459 }
1460 
emitDagOp(DagInit * DI)1461 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1462   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1463   if (DI->getNumArgs() == 2) {
1464     // Unary op.
1465     std::pair<Type, std::string> R =
1466         emitDagArg(DI->getArg(1), DI->getArgName(1));
1467     return std::make_pair(R.first, Op + R.second);
1468   } else {
1469     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1470     std::pair<Type, std::string> R1 =
1471         emitDagArg(DI->getArg(1), DI->getArgName(1));
1472     std::pair<Type, std::string> R2 =
1473         emitDagArg(DI->getArg(2), DI->getArgName(2));
1474     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1475     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1476   }
1477 }
1478 
emitDagCall(DagInit * DI)1479 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
1480   std::vector<Type> Types;
1481   std::vector<std::string> Values;
1482   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1483     std::pair<Type, std::string> R =
1484         emitDagArg(DI->getArg(I + 1), DI->getArgName(I + 1));
1485     Types.push_back(R.first);
1486     Values.push_back(R.second);
1487   }
1488 
1489   // Look up the called intrinsic.
1490   std::string N;
1491   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1492     N = SI->getAsUnquotedString();
1493   else
1494     N = emitDagArg(DI->getArg(0), "").second;
1495   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types);
1496 
1497   // Make sure the callee is known as an early def.
1498   Callee.setNeededEarly();
1499   Intr.Dependencies.insert(&Callee);
1500 
1501   // Now create the call itself.
1502   std::string S = CallPrefix.str() + Callee.getMangledName(true) + "(";
1503   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1504     if (I != 0)
1505       S += ", ";
1506     S += Values[I];
1507   }
1508   S += ")";
1509 
1510   return std::make_pair(Callee.getReturnType(), S);
1511 }
1512 
emitDagCast(DagInit * DI,bool IsBitCast)1513 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1514                                                                 bool IsBitCast){
1515   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1516   std::pair<Type, std::string> R = emitDagArg(
1517       DI->getArg(DI->getNumArgs() - 1), DI->getArgName(DI->getNumArgs() - 1));
1518   Type castToType = R.first;
1519   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1520 
1521     // MOD can take several forms:
1522     //   1. $X - take the type of parameter / variable X.
1523     //   2. The value "R" - take the type of the return type.
1524     //   3. a type string
1525     //   4. The value "U" or "S" to switch the signedness.
1526     //   5. The value "H" or "D" to half or double the bitwidth.
1527     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1528     if (DI->getArgName(ArgIdx).size()) {
1529       assert_with_loc(Intr.Variables.find(DI->getArgName(ArgIdx)) !=
1530                       Intr.Variables.end(),
1531                       "Variable not found");
1532       castToType = Intr.Variables[DI->getArgName(ArgIdx)].getType();
1533     } else {
1534       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1535       assert_with_loc(SI, "Expected string type or $Name for cast type");
1536 
1537       if (SI->getAsUnquotedString() == "R") {
1538         castToType = Intr.getReturnType();
1539       } else if (SI->getAsUnquotedString() == "U") {
1540         castToType.makeUnsigned();
1541       } else if (SI->getAsUnquotedString() == "S") {
1542         castToType.makeSigned();
1543       } else if (SI->getAsUnquotedString() == "H") {
1544         castToType.halveLanes();
1545       } else if (SI->getAsUnquotedString() == "D") {
1546         castToType.doubleLanes();
1547       } else if (SI->getAsUnquotedString() == "8") {
1548         castToType.makeInteger(8, true);
1549       } else {
1550         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1551         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1552       }
1553     }
1554   }
1555 
1556   std::string S;
1557   if (IsBitCast) {
1558     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1559     // a temporary.
1560     std::string N = "reint";
1561     unsigned I = 0;
1562     while (Intr.Variables.find(N) != Intr.Variables.end())
1563       N = "reint" + utostr(++I);
1564     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1565 
1566     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1567             << R.second << ";";
1568     Intr.emitNewLine();
1569 
1570     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1571   } else {
1572     // Emit a normal (static) cast.
1573     S = "(" + castToType.str() + ")(" + R.second + ")";
1574   }
1575 
1576   return std::make_pair(castToType, S);
1577 }
1578 
emitDagShuffle(DagInit * DI)1579 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1580   // See the documentation in arm_neon.td for a description of these operators.
1581   class LowHalf : public SetTheory::Operator {
1582   public:
1583     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1584                ArrayRef<SMLoc> Loc) override {
1585       SetTheory::RecSet Elts2;
1586       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1587       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1588     }
1589   };
1590   class HighHalf : public SetTheory::Operator {
1591   public:
1592     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1593                ArrayRef<SMLoc> Loc) override {
1594       SetTheory::RecSet Elts2;
1595       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1596       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1597     }
1598   };
1599   class Rev : public SetTheory::Operator {
1600     unsigned ElementSize;
1601 
1602   public:
1603     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1604     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1605                ArrayRef<SMLoc> Loc) override {
1606       SetTheory::RecSet Elts2;
1607       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1608 
1609       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1610       VectorSize /= ElementSize;
1611 
1612       std::vector<Record *> Revved;
1613       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1614         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1615           Revved.push_back(Elts2[VI + LI]);
1616         }
1617       }
1618 
1619       Elts.insert(Revved.begin(), Revved.end());
1620     }
1621   };
1622   class MaskExpander : public SetTheory::Expander {
1623     unsigned N;
1624 
1625   public:
1626     MaskExpander(unsigned N) : N(N) {}
1627     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1628       unsigned Addend = 0;
1629       if (R->getName() == "mask0")
1630         Addend = 0;
1631       else if (R->getName() == "mask1")
1632         Addend = N;
1633       else
1634         return;
1635       for (unsigned I = 0; I < N; ++I)
1636         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1637     }
1638   };
1639 
1640   // (shuffle arg1, arg2, sequence)
1641   std::pair<Type, std::string> Arg1 =
1642       emitDagArg(DI->getArg(0), DI->getArgName(0));
1643   std::pair<Type, std::string> Arg2 =
1644       emitDagArg(DI->getArg(1), DI->getArgName(1));
1645   assert_with_loc(Arg1.first == Arg2.first,
1646                   "Different types in arguments to shuffle!");
1647 
1648   SetTheory ST;
1649   SetTheory::RecSet Elts;
1650   ST.addOperator("lowhalf", llvm::make_unique<LowHalf>());
1651   ST.addOperator("highhalf", llvm::make_unique<HighHalf>());
1652   ST.addOperator("rev",
1653                  llvm::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1654   ST.addExpander("MaskExpand",
1655                  llvm::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1656   ST.evaluate(DI->getArg(2), Elts, None);
1657 
1658   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1659   for (auto &E : Elts) {
1660     StringRef Name = E->getName();
1661     assert_with_loc(Name.startswith("sv"),
1662                     "Incorrect element kind in shuffle mask!");
1663     S += ", " + Name.drop_front(2).str();
1664   }
1665   S += ")";
1666 
1667   // Recalculate the return type - the shuffle may have halved or doubled it.
1668   Type T(Arg1.first);
1669   if (Elts.size() > T.getNumElements()) {
1670     assert_with_loc(
1671         Elts.size() == T.getNumElements() * 2,
1672         "Can only double or half the number of elements in a shuffle!");
1673     T.doubleLanes();
1674   } else if (Elts.size() < T.getNumElements()) {
1675     assert_with_loc(
1676         Elts.size() == T.getNumElements() / 2,
1677         "Can only double or half the number of elements in a shuffle!");
1678     T.halveLanes();
1679   }
1680 
1681   return std::make_pair(T, S);
1682 }
1683 
emitDagDup(DagInit * DI)1684 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1685   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1686   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1687   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1688 
1689   Type T = Intr.getBaseType();
1690   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1691   std::string S = "(" + T.str() + ") {";
1692   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1693     if (I != 0)
1694       S += ", ";
1695     S += A.second;
1696   }
1697   S += "}";
1698 
1699   return std::make_pair(T, S);
1700 }
1701 
emitDagSplat(DagInit * DI)1702 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1703   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1704   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1705   std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), DI->getArgName(1));
1706 
1707   assert_with_loc(B.first.isScalar(),
1708                   "splat() requires a scalar int as the second argument");
1709 
1710   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1711   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1712     S += ", " + B.second;
1713   }
1714   S += ")";
1715 
1716   return std::make_pair(Intr.getBaseType(), S);
1717 }
1718 
emitDagSaveTemp(DagInit * DI)1719 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1720   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1721   std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), DI->getArgName(1));
1722 
1723   assert_with_loc(!A.first.isVoid(),
1724                   "Argument to save_temp() must have non-void type!");
1725 
1726   std::string N = DI->getArgName(0);
1727   assert_with_loc(N.size(), "save_temp() expects a name as the first argument");
1728 
1729   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1730                   "Variable already defined!");
1731   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1732 
1733   std::string S =
1734       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1735 
1736   return std::make_pair(Type::getVoid(), S);
1737 }
1738 
1739 std::pair<Type, std::string>
emitDagNameReplace(DagInit * DI)1740 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1741   std::string S = Intr.Name;
1742 
1743   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1744   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1745   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1746 
1747   size_t Idx = S.find(ToReplace);
1748 
1749   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1750   S.replace(Idx, ToReplace.size(), ReplaceWith);
1751 
1752   return std::make_pair(Type::getVoid(), S);
1753 }
1754 
emitDagLiteral(DagInit * DI)1755 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1756   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1757   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1758   return std::make_pair(Type::fromTypedefName(Ty), Value);
1759 }
1760 
1761 std::pair<Type, std::string>
emitDagArg(Init * Arg,std::string ArgName)1762 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1763   if (ArgName.size()) {
1764     assert_with_loc(!Arg->isComplete(),
1765                     "Arguments must either be DAGs or names, not both!");
1766     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1767                     "Variable not defined!");
1768     Variable &V = Intr.Variables[ArgName];
1769     return std::make_pair(V.getType(), V.getName());
1770   }
1771 
1772   assert(Arg && "Neither ArgName nor Arg?!");
1773   DagInit *DI = dyn_cast<DagInit>(Arg);
1774   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1775 
1776   return emitDag(DI);
1777 }
1778 
generate()1779 std::string Intrinsic::generate() {
1780   // Little endian intrinsics are simple and don't require any argument
1781   // swapping.
1782   OS << "#ifdef __LITTLE_ENDIAN__\n";
1783 
1784   generateImpl(false, "", "");
1785 
1786   OS << "#else\n";
1787 
1788   // Big endian intrinsics are more complex. The user intended these
1789   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1790   // but we load as-if (V)LD1. So we should swap all arguments and
1791   // swap the return value too.
1792   //
1793   // If we call sub-intrinsics, we should call a version that does
1794   // not re-swap the arguments!
1795   generateImpl(true, "", "__noswap_");
1796 
1797   // If we're needed early, create a non-swapping variant for
1798   // big-endian.
1799   if (NeededEarly) {
1800     generateImpl(false, "__noswap_", "__noswap_");
1801   }
1802   OS << "#endif\n\n";
1803 
1804   return OS.str();
1805 }
1806 
generateImpl(bool ReverseArguments,StringRef NamePrefix,StringRef CallPrefix)1807 void Intrinsic::generateImpl(bool ReverseArguments,
1808                              StringRef NamePrefix, StringRef CallPrefix) {
1809   CurrentRecord = R;
1810 
1811   // If we call a macro, our local variables may be corrupted due to
1812   // lack of proper lexical scoping. So, add a globally unique postfix
1813   // to every variable.
1814   //
1815   // indexBody() should have set up the Dependencies set by now.
1816   for (auto *I : Dependencies)
1817     if (I->UseMacro) {
1818       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1819       break;
1820     }
1821 
1822   initVariables();
1823 
1824   emitPrototype(NamePrefix);
1825 
1826   if (IsUnavailable) {
1827     OS << " __attribute__((unavailable));";
1828   } else {
1829     emitOpeningBrace();
1830     emitShadowedArgs();
1831     if (ReverseArguments)
1832       emitArgumentReversal();
1833     emitBody(CallPrefix);
1834     if (ReverseArguments)
1835       emitReturnReversal();
1836     emitReturn();
1837     emitClosingBrace();
1838   }
1839   OS << "\n";
1840 
1841   CurrentRecord = nullptr;
1842 }
1843 
indexBody()1844 void Intrinsic::indexBody() {
1845   CurrentRecord = R;
1846 
1847   initVariables();
1848   emitBody("");
1849   OS.str("");
1850 
1851   CurrentRecord = nullptr;
1852 }
1853 
1854 //===----------------------------------------------------------------------===//
1855 // NeonEmitter implementation
1856 //===----------------------------------------------------------------------===//
1857 
getIntrinsic(StringRef Name,ArrayRef<Type> Types)1858 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
1859   // First, look up the name in the intrinsic map.
1860   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1861                   ("Intrinsic '" + Name + "' not found!").str());
1862   auto &V = IntrinsicMap.find(Name.str())->second;
1863   std::vector<Intrinsic *> GoodVec;
1864 
1865   // Create a string to print if we end up failing.
1866   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1867   for (unsigned I = 0; I < Types.size(); ++I) {
1868     if (I != 0)
1869       ErrMsg += ", ";
1870     ErrMsg += Types[I].str();
1871   }
1872   ErrMsg += ")'\n";
1873   ErrMsg += "Available overloads:\n";
1874 
1875   // Now, look through each intrinsic implementation and see if the types are
1876   // compatible.
1877   for (auto &I : V) {
1878     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1879     ErrMsg += "(";
1880     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1881       if (A != 0)
1882         ErrMsg += ", ";
1883       ErrMsg += I.getParamType(A).str();
1884     }
1885     ErrMsg += ")\n";
1886 
1887     if (I.getNumParams() != Types.size())
1888       continue;
1889 
1890     bool Good = true;
1891     for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
1892       if (I.getParamType(Arg) != Types[Arg]) {
1893         Good = false;
1894         break;
1895       }
1896     }
1897     if (Good)
1898       GoodVec.push_back(&I);
1899   }
1900 
1901   assert_with_loc(GoodVec.size() > 0,
1902                   "No compatible intrinsic found - " + ErrMsg);
1903   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1904 
1905   return *GoodVec.front();
1906 }
1907 
createIntrinsic(Record * R,SmallVectorImpl<Intrinsic * > & Out)1908 void NeonEmitter::createIntrinsic(Record *R,
1909                                   SmallVectorImpl<Intrinsic *> &Out) {
1910   std::string Name = R->getValueAsString("Name");
1911   std::string Proto = R->getValueAsString("Prototype");
1912   std::string Types = R->getValueAsString("Types");
1913   Record *OperationRec = R->getValueAsDef("Operation");
1914   bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
1915   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1916   std::string Guard = R->getValueAsString("ArchGuard");
1917   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1918 
1919   // Set the global current record. This allows assert_with_loc to produce
1920   // decent location information even when highly nested.
1921   CurrentRecord = R;
1922 
1923   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1924 
1925   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1926 
1927   ClassKind CK = ClassNone;
1928   if (R->getSuperClasses().size() >= 2)
1929     CK = ClassMap[R->getSuperClasses()[1]];
1930 
1931   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1932   for (auto TS : TypeSpecs) {
1933     if (CartesianProductOfTypes) {
1934       Type DefaultT(TS, 'd');
1935       for (auto SrcTS : TypeSpecs) {
1936         Type DefaultSrcT(SrcTS, 'd');
1937         if (TS == SrcTS ||
1938             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1939           continue;
1940         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1941       }
1942     } else {
1943       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1944     }
1945   }
1946 
1947   std::sort(NewTypeSpecs.begin(), NewTypeSpecs.end());
1948   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1949 		     NewTypeSpecs.end());
1950   auto &Entry = IntrinsicMap[Name];
1951 
1952   for (auto &I : NewTypeSpecs) {
1953     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1954                        Guard, IsUnavailable, BigEndianSafe);
1955     Out.push_back(&Entry.back());
1956   }
1957 
1958   CurrentRecord = nullptr;
1959 }
1960 
1961 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1962 /// declaration of builtins, checking for unique builtin declarations.
genBuiltinsDef(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)1963 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1964                                  SmallVectorImpl<Intrinsic *> &Defs) {
1965   OS << "#ifdef GET_NEON_BUILTINS\n";
1966 
1967   // We only want to emit a builtin once, and we want to emit them in
1968   // alphabetical order, so use a std::set.
1969   std::set<std::string> Builtins;
1970 
1971   for (auto *Def : Defs) {
1972     if (Def->hasBody())
1973       continue;
1974     // Functions with 'a' (the splat code) in the type prototype should not get
1975     // their own builtin as they use the non-splat variant.
1976     if (Def->hasSplat())
1977       continue;
1978 
1979     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
1980 
1981     S += Def->getBuiltinTypeStr();
1982     S += "\", \"n\")";
1983 
1984     Builtins.insert(S);
1985   }
1986 
1987   for (auto &S : Builtins)
1988     OS << S << "\n";
1989   OS << "#endif\n\n";
1990 }
1991 
1992 /// Generate the ARM and AArch64 overloaded type checking code for
1993 /// SemaChecking.cpp, checking for unique builtin declarations.
genOverloadTypeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)1994 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
1995                                            SmallVectorImpl<Intrinsic *> &Defs) {
1996   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
1997 
1998   // We record each overload check line before emitting because subsequent Inst
1999   // definitions may extend the number of permitted types (i.e. augment the
2000   // Mask). Use std::map to avoid sorting the table by hash number.
2001   struct OverloadInfo {
2002     uint64_t Mask;
2003     int PtrArgNum;
2004     bool HasConstPtr;
2005     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2006   };
2007   std::map<std::string, OverloadInfo> OverloadMap;
2008 
2009   for (auto *Def : Defs) {
2010     // If the def has a body (that is, it has Operation DAGs), it won't call
2011     // __builtin_neon_* so we don't need to generate a definition for it.
2012     if (Def->hasBody())
2013       continue;
2014     // Functions with 'a' (the splat code) in the type prototype should not get
2015     // their own builtin as they use the non-splat variant.
2016     if (Def->hasSplat())
2017       continue;
2018     // Functions which have a scalar argument cannot be overloaded, no need to
2019     // check them if we are emitting the type checking code.
2020     if (Def->protoHasScalar())
2021       continue;
2022 
2023     uint64_t Mask = 0ULL;
2024     Type Ty = Def->getReturnType();
2025     if (Def->getProto()[0] == 'v' ||
2026         isFloatingPointProtoModifier(Def->getProto()[0]))
2027       Ty = Def->getParamType(0);
2028     if (Ty.isPointer())
2029       Ty = Def->getParamType(1);
2030 
2031     Mask |= 1ULL << Ty.getNeonEnum();
2032 
2033     // Check if the function has a pointer or const pointer argument.
2034     std::string Proto = Def->getProto();
2035     int PtrArgNum = -1;
2036     bool HasConstPtr = false;
2037     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2038       char ArgType = Proto[I + 1];
2039       if (ArgType == 'c') {
2040         HasConstPtr = true;
2041         PtrArgNum = I;
2042         break;
2043       }
2044       if (ArgType == 'p') {
2045         PtrArgNum = I;
2046         break;
2047       }
2048     }
2049     // For sret builtins, adjust the pointer argument index.
2050     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2051       PtrArgNum += 1;
2052 
2053     std::string Name = Def->getName();
2054     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2055     // and vst1_lane intrinsics.  Using a pointer to the vector element
2056     // type with one of those operations causes codegen to select an aligned
2057     // load/store instruction.  If you want an unaligned operation,
2058     // the pointer argument needs to have less alignment than element type,
2059     // so just accept any pointer type.
2060     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2061       PtrArgNum = -1;
2062       HasConstPtr = false;
2063     }
2064 
2065     if (Mask) {
2066       std::string Name = Def->getMangledName();
2067       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2068       OverloadInfo &OI = OverloadMap[Name];
2069       OI.Mask |= Mask;
2070       OI.PtrArgNum |= PtrArgNum;
2071       OI.HasConstPtr = HasConstPtr;
2072     }
2073   }
2074 
2075   for (auto &I : OverloadMap) {
2076     OverloadInfo &OI = I.second;
2077 
2078     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2079     OS << "mask = 0x" << utohexstr(OI.Mask) << "ULL";
2080     if (OI.PtrArgNum >= 0)
2081       OS << "; PtrArgNum = " << OI.PtrArgNum;
2082     if (OI.HasConstPtr)
2083       OS << "; HasConstPtr = true";
2084     OS << "; break;\n";
2085   }
2086   OS << "#endif\n\n";
2087 }
2088 
2089 void
genIntrinsicRangeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2090 NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2091                                         SmallVectorImpl<Intrinsic *> &Defs) {
2092   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2093 
2094   std::set<std::string> Emitted;
2095 
2096   for (auto *Def : Defs) {
2097     if (Def->hasBody())
2098       continue;
2099     // Functions with 'a' (the splat code) in the type prototype should not get
2100     // their own builtin as they use the non-splat variant.
2101     if (Def->hasSplat())
2102       continue;
2103     // Functions which do not have an immediate do not need to have range
2104     // checking code emitted.
2105     if (!Def->hasImmediate())
2106       continue;
2107     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2108       continue;
2109 
2110     std::string LowerBound, UpperBound;
2111 
2112     Record *R = Def->getRecord();
2113     if (R->getValueAsBit("isVCVT_N")) {
2114       // VCVT between floating- and fixed-point values takes an immediate
2115       // in the range [1, 32) for f32 or [1, 64) for f64.
2116       LowerBound = "1";
2117       if (Def->getBaseType().getElementSizeInBits() == 32)
2118         UpperBound = "31";
2119       else
2120         UpperBound = "63";
2121     } else if (R->getValueAsBit("isScalarShift")) {
2122       // Right shifts have an 'r' in the name, left shifts do not. Convert
2123       // instructions have the same bounds and right shifts.
2124       if (Def->getName().find('r') != std::string::npos ||
2125           Def->getName().find("cvt") != std::string::npos)
2126         LowerBound = "1";
2127 
2128       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2129     } else if (R->getValueAsBit("isShift")) {
2130       // Builtins which are overloaded by type will need to have their upper
2131       // bound computed at Sema time based on the type constant.
2132 
2133       // Right shifts have an 'r' in the name, left shifts do not.
2134       if (Def->getName().find('r') != std::string::npos)
2135         LowerBound = "1";
2136       UpperBound = "RFT(TV, true)";
2137     } else if (Def->getClassKind(true) == ClassB) {
2138       // ClassB intrinsics have a type (and hence lane number) that is only
2139       // known at runtime.
2140       if (R->getValueAsBit("isLaneQ"))
2141         UpperBound = "RFT(TV, false, true)";
2142       else
2143         UpperBound = "RFT(TV, false, false)";
2144     } else {
2145       // The immediate generally refers to a lane in the preceding argument.
2146       assert(Def->getImmediateIdx() > 0);
2147       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2148       UpperBound = utostr(T.getNumElements() - 1);
2149     }
2150 
2151     // Calculate the index of the immediate that should be range checked.
2152     unsigned Idx = Def->getNumParams();
2153     if (Def->hasImmediate())
2154       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2155 
2156     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2157        << "i = " << Idx << ";";
2158     if (LowerBound.size())
2159       OS << " l = " << LowerBound << ";";
2160     if (UpperBound.size())
2161       OS << " u = " << UpperBound << ";";
2162     OS << " break;\n";
2163 
2164     Emitted.insert(Def->getMangledName());
2165   }
2166 
2167   OS << "#endif\n\n";
2168 }
2169 
2170 /// runHeader - Emit a file with sections defining:
2171 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2172 /// 2. the SemaChecking code for the type overload checking.
2173 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
runHeader(raw_ostream & OS)2174 void NeonEmitter::runHeader(raw_ostream &OS) {
2175   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2176 
2177   SmallVector<Intrinsic *, 128> Defs;
2178   for (auto *R : RV)
2179     createIntrinsic(R, Defs);
2180 
2181   // Generate shared BuiltinsXXX.def
2182   genBuiltinsDef(OS, Defs);
2183 
2184   // Generate ARM overloaded type checking code for SemaChecking.cpp
2185   genOverloadTypeCheckCode(OS, Defs);
2186 
2187   // Generate ARM range checking code for shift/lane immediates.
2188   genIntrinsicRangeCheckCode(OS, Defs);
2189 }
2190 
2191 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2192 /// is comprised of type definitions and function declarations.
run(raw_ostream & OS)2193 void NeonEmitter::run(raw_ostream &OS) {
2194   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2195         "------------------------------"
2196         "---===\n"
2197         " *\n"
2198         " * Permission is hereby granted, free of charge, to any person "
2199         "obtaining "
2200         "a copy\n"
2201         " * of this software and associated documentation files (the "
2202         "\"Software\"),"
2203         " to deal\n"
2204         " * in the Software without restriction, including without limitation "
2205         "the "
2206         "rights\n"
2207         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2208         "and/or sell\n"
2209         " * copies of the Software, and to permit persons to whom the Software "
2210         "is\n"
2211         " * furnished to do so, subject to the following conditions:\n"
2212         " *\n"
2213         " * The above copyright notice and this permission notice shall be "
2214         "included in\n"
2215         " * all copies or substantial portions of the Software.\n"
2216         " *\n"
2217         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2218         "EXPRESS OR\n"
2219         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2220         "MERCHANTABILITY,\n"
2221         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2222         "SHALL THE\n"
2223         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2224         "OTHER\n"
2225         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2226         "ARISING FROM,\n"
2227         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2228         "DEALINGS IN\n"
2229         " * THE SOFTWARE.\n"
2230         " *\n"
2231         " *===-----------------------------------------------------------------"
2232         "---"
2233         "---===\n"
2234         " */\n\n";
2235 
2236   OS << "#ifndef __ARM_NEON_H\n";
2237   OS << "#define __ARM_NEON_H\n\n";
2238 
2239   OS << "#if !defined(__ARM_NEON)\n";
2240   OS << "#error \"NEON support not enabled\"\n";
2241   OS << "#endif\n\n";
2242 
2243   OS << "#include <stdint.h>\n\n";
2244 
2245   // Emit NEON-specific scalar typedefs.
2246   OS << "typedef float float32_t;\n";
2247   OS << "typedef __fp16 float16_t;\n";
2248 
2249   OS << "#ifdef __aarch64__\n";
2250   OS << "typedef double float64_t;\n";
2251   OS << "#endif\n\n";
2252 
2253   // For now, signedness of polynomial types depends on target
2254   OS << "#ifdef __aarch64__\n";
2255   OS << "typedef uint8_t poly8_t;\n";
2256   OS << "typedef uint16_t poly16_t;\n";
2257   OS << "typedef uint64_t poly64_t;\n";
2258   OS << "typedef __uint128_t poly128_t;\n";
2259   OS << "#else\n";
2260   OS << "typedef int8_t poly8_t;\n";
2261   OS << "typedef int16_t poly16_t;\n";
2262   OS << "#endif\n";
2263 
2264   // Emit Neon vector typedefs.
2265   std::string TypedefTypes(
2266       "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
2267   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2268 
2269   // Emit vector typedefs.
2270   bool InIfdef = false;
2271   for (auto &TS : TDTypeVec) {
2272     bool IsA64 = false;
2273     Type T(TS, 'd');
2274     if (T.isDouble() || (T.isPoly() && T.isLong()))
2275       IsA64 = true;
2276 
2277     if (InIfdef && !IsA64) {
2278       OS << "#endif\n";
2279       InIfdef = false;
2280     }
2281     if (!InIfdef && IsA64) {
2282       OS << "#ifdef __aarch64__\n";
2283       InIfdef = true;
2284     }
2285 
2286     if (T.isPoly())
2287       OS << "typedef __attribute__((neon_polyvector_type(";
2288     else
2289       OS << "typedef __attribute__((neon_vector_type(";
2290 
2291     Type T2 = T;
2292     T2.makeScalar();
2293     OS << utostr(T.getNumElements()) << "))) ";
2294     OS << T2.str();
2295     OS << " " << T.str() << ";\n";
2296   }
2297   if (InIfdef)
2298     OS << "#endif\n";
2299   OS << "\n";
2300 
2301   // Emit struct typedefs.
2302   InIfdef = false;
2303   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2304     for (auto &TS : TDTypeVec) {
2305       bool IsA64 = false;
2306       Type T(TS, 'd');
2307       if (T.isDouble() || (T.isPoly() && T.isLong()))
2308         IsA64 = true;
2309 
2310       if (InIfdef && !IsA64) {
2311         OS << "#endif\n";
2312         InIfdef = false;
2313       }
2314       if (!InIfdef && IsA64) {
2315         OS << "#ifdef __aarch64__\n";
2316         InIfdef = true;
2317       }
2318 
2319       char M = '2' + (NumMembers - 2);
2320       Type VT(TS, M);
2321       OS << "typedef struct " << VT.str() << " {\n";
2322       OS << "  " << T.str() << " val";
2323       OS << "[" << utostr(NumMembers) << "]";
2324       OS << ";\n} ";
2325       OS << VT.str() << ";\n";
2326       OS << "\n";
2327     }
2328   }
2329   if (InIfdef)
2330     OS << "#endif\n";
2331   OS << "\n";
2332 
2333   OS << "#define __ai static inline __attribute__((__always_inline__, "
2334         "__nodebug__))\n\n";
2335 
2336   SmallVector<Intrinsic *, 128> Defs;
2337   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2338   for (auto *R : RV)
2339     createIntrinsic(R, Defs);
2340 
2341   for (auto *I : Defs)
2342     I->indexBody();
2343 
2344   std::stable_sort(
2345       Defs.begin(), Defs.end(),
2346       [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
2347 
2348   // Only emit a def when its requirements have been met.
2349   // FIXME: This loop could be made faster, but it's fast enough for now.
2350   bool MadeProgress = true;
2351   std::string InGuard = "";
2352   while (!Defs.empty() && MadeProgress) {
2353     MadeProgress = false;
2354 
2355     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2356          I != Defs.end(); /*No step*/) {
2357       bool DependenciesSatisfied = true;
2358       for (auto *II : (*I)->getDependencies()) {
2359         if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
2360           DependenciesSatisfied = false;
2361       }
2362       if (!DependenciesSatisfied) {
2363         // Try the next one.
2364         ++I;
2365         continue;
2366       }
2367 
2368       // Emit #endif/#if pair if needed.
2369       if ((*I)->getGuard() != InGuard) {
2370         if (!InGuard.empty())
2371           OS << "#endif\n";
2372         InGuard = (*I)->getGuard();
2373         if (!InGuard.empty())
2374           OS << "#if " << InGuard << "\n";
2375       }
2376 
2377       // Actually generate the intrinsic code.
2378       OS << (*I)->generate();
2379 
2380       MadeProgress = true;
2381       I = Defs.erase(I);
2382     }
2383   }
2384   assert(Defs.empty() && "Some requirements were not satisfied!");
2385   if (!InGuard.empty())
2386     OS << "#endif\n";
2387 
2388   OS << "\n";
2389   OS << "#undef __ai\n\n";
2390   OS << "#endif /* __ARM_NEON_H */\n";
2391 }
2392 
2393 namespace clang {
EmitNeon(RecordKeeper & Records,raw_ostream & OS)2394 void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2395   NeonEmitter(Records).run(OS);
2396 }
EmitNeonSema(RecordKeeper & Records,raw_ostream & OS)2397 void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2398   NeonEmitter(Records).runHeader(OS);
2399 }
EmitNeonTest(RecordKeeper & Records,raw_ostream & OS)2400 void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2401   llvm_unreachable("Neon test generation no longer implemented!");
2402 }
2403 } // End namespace clang
2404