1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2          "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
6  <title>Language Compatibility</title>
7  <link type="text/css" rel="stylesheet" href="menu.css">
8  <link type="text/css" rel="stylesheet" href="content.css">
9  <style type="text/css">
10</style>
11</head>
12<body>
13
14<!--#include virtual="menu.html.incl"-->
15
16<div id="content">
17
18<!-- ======================================================================= -->
19<h1>Language Compatibility</h1>
20<!-- ======================================================================= -->
21
22<p>Clang strives to both conform to current language standards (up to C11
23  and C++11) and also to implement many widely-used extensions available
24  in other compilers, so that most correct code will "just work" when
25  compiled with Clang. However, Clang is more strict than other
26  popular compilers, and may reject incorrect code that other
27  compilers allow. This page documents common compatibility and
28  portability issues with Clang to help you understand and fix the
29  problem in your code when Clang emits an error message.</p>
30
31<ul>
32  <li><a href="#c">C compatibility</a>
33    <ul>
34      <li><a href="#inline">C99 inline functions</a></li>
35      <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li>
36      <li><a href="#lvalue-cast">Lvalue casts</a></li>
37      <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li>
38      <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li>
39      <li><a href="#inline-asm">Inline assembly</a></li>
40    </ul>
41  </li>
42  <li><a href="#objective-c">Objective-C compatibility</a>
43    <ul>
44      <li><a href="#super-cast">Cast of super</a></li>
45      <li><a href="#sizeof-interface">Size of interfaces</a></li>
46      <li><a href="#objc_objs-cast">Internal Objective-C types</a></li>
47      <li><a href="#c_variables-class">C variables in @class or @protocol</a></li>
48    </ul>
49  </li>
50  <li><a href="#cxx">C++ compatibility</a>
51    <ul>
52      <li><a href="#vla">Variable-length arrays</a></li>
53      <li><a href="#dep_lookup">Unqualified lookup in templates</a></li>
54      <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li>
55      <li><a href="#undep_incomplete">Incomplete types in templates</a></li>
56      <li><a href="#bad_templates">Templates with no valid instantiations</a></li>
57      <li><a href="#default_init_const">Default initialization of const
58      variable of a class type requires user-defined default
59      constructor</a></li>
60      <li><a href="#param_name_lookup">Parameter name lookup</a></li>
61    </ul>
62  </li>
63  <li><a href="#cxx11">C++11 compatibility</a>
64    <ul>
65      <li><a href="#deleted-special-func">Deleted special member
66  functions</a></li>
67    </ul>
68  </li>
69  <li><a href="#objective-cxx">Objective-C++ compatibility</a>
70    <ul>
71      <li><a href="#implicit-downcasts">Implicit downcasts</a></li>
72    </ul>
73    <ul>
74      <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li>
75    </ul>
76  </li>
77</ul>
78
79<!-- ======================================================================= -->
80<h2 id="c">C compatibility</h2>
81<!-- ======================================================================= -->
82
83<!-- ======================================================================= -->
84<h3 id="inline">C99 inline functions</h3>
85<!-- ======================================================================= -->
86<p>By default, Clang builds C code in GNU C11 mode, so it uses standard C99
87semantics for the <code>inline</code> keyword. These semantics are different
88from those in GNU C89 mode, which is the default mode in versions of GCC
89prior to 5.0. For example, consider the following code:</p>
90<pre>
91inline int add(int i, int j) { return i + j; }
92
93int main() {
94  int i = add(4, 5);
95  return i;
96}
97</pre>
98
99<p>In C99, <code>inline</code> means that a function's definition is
100provided only for inlining, and that there is another definition
101(without <code>inline</code>) somewhere else in the program.  That
102means that this program is incomplete, because if <code>add</code>
103isn't inlined (for example, when compiling without optimization), then
104<code>main</code> will have an unresolved reference to that other
105definition.  Therefore we'll get a (correct) link-time error like this:</p>
106
107<pre>
108Undefined symbols:
109  "_add", referenced from:
110      _main in cc-y1jXIr.o
111</pre>
112
113<p>By contrast, GNU C89 mode (used by default in older versions of GCC) is the
114C89 standard plus a lot of extensions. C89 doesn't have an <code>inline</code>
115keyword, but GCC recognizes it as an extension and just treats it as a hint to
116the optimizer.</p>
117
118<p>There are several ways to fix this problem:</p>
119
120<ul>
121  <li>Change <code>add</code> to a <code>static inline</code>
122  function.  This is usually the right solution if only one
123  translation unit needs to use the function.  <code>static
124  inline</code> functions are always resolved within the translation
125  unit, so you won't have to add a non-<code>inline</code> definition
126  of the function elsewhere in your program.</li>
127
128  <li>Remove the <code>inline</code> keyword from this definition of
129  <code>add</code>.  The <code>inline</code> keyword is not required
130  for a function to be inlined, nor does it guarantee that it will be.
131  Some compilers ignore it completely.  Clang treats it as a mild
132  suggestion from the programmer.</li>
133
134  <li>Provide an external (non-<code>inline</code>) definition
135  of <code>add</code> somewhere else in your program.  The two
136  definitions must be equivalent!</li>
137
138  <li>Compile in the GNU C89 dialect by adding
139  <code>-std=gnu89</code> to the set of Clang options. This option is
140  only recommended if the program source cannot be changed or if the
141  program also relies on additional C89-specific behavior that cannot
142  be changed.</li>
143</ul>
144
145<p>All of this only applies to C code; the meaning of <code>inline</code>
146in C++ is very different from its meaning in either GNU89 or C99.</p>
147
148<!-- ======================================================================= -->
149<h3 id="vector_builtins">"missing" vector __builtin functions</h3>
150<!-- ======================================================================= -->
151
152<p>The Intel and AMD manuals document a number "<tt>&lt;*mmintrin.h&gt;</tt>"
153header files, which define a standardized API for accessing vector operations
154on X86 CPUs.  These functions have names like <tt>_mm_xor_ps</tt> and
155<tt>_mm256_addsub_pd</tt>.  Compilers have leeway to implement these functions
156however they want.  Since Clang supports an excellent set of <a
157href="../docs/LanguageExtensions.html#vectors">native vector operations</a>,
158the Clang headers implement these interfaces in terms of the native vector
159operations.
160</p>
161
162<p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to
163builtin function calls, like <tt>__builtin_ia32_paddw128</tt>.  These builtin
164functions are an internal implementation detail of GCC, and are not portable to
165the Intel compiler, the Microsoft compiler, or Clang.  If you get build errors
166mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p>
167
168<p>The same issue occurs for NEON and Altivec for the ARM and PowerPC
169architectures respectively.  For these, make sure to use the &lt;arm_neon.h&gt;
170and &lt;altivec.h&gt; headers.</p>
171
172<p>For x86 architectures this <a href="builtins.py">script</a> should help with
173the manual migration process.  It will rewrite your source files in place to
174use the APIs instead of builtin function calls. Just call it like this:</p>
175
176<pre>
177  builtins.py *.c *.h
178</pre>
179
180<p>and it will rewrite all of the .c and .h files in the current directory to
181use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p>
182
183<!-- ======================================================================= -->
184<h3 id="lvalue-cast">Lvalue casts</h3>
185<!-- ======================================================================= -->
186
187<p>Old versions of GCC permit casting the left-hand side of an assignment to a
188different type. Clang produces an error on similar code, e.g.,</p>
189
190<pre>
191<b>lvalue.c:2:3: <span class="error">error:</span> assignment to cast is illegal, lvalue casts are not supported</b>
192  (int*)addr = val;
193<span class="caret">  ^~~~~~~~~~ ~</span>
194</pre>
195
196<p>To fix this problem, move the cast to the right-hand side. In this
197example, one could use:</p>
198
199<pre>
200  addr = (float *)val;
201</pre>
202
203<!-- ======================================================================= -->
204<h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3>
205<!-- ======================================================================= -->
206
207<p>Clang disallows jumps into the scope of a <tt>__block</tt>
208variable.  Variables marked with <tt>__block</tt> require special
209runtime initialization. A jump into the scope of a <tt>__block</tt>
210variable bypasses this initialization, leaving the variable's metadata
211in an invalid state.  Consider the following code fragment:</p>
212
213<pre>
214int fetch_object_state(struct MyObject *c) {
215  if (!c->active) goto error;
216
217  __block int result;
218  run_specially_somehow(^{ result = c->state; });
219  return result;
220
221 error:
222  fprintf(stderr, "error while fetching object state");
223  return -1;
224}
225</pre>
226
227<p>GCC accepts this code, but it produces code that will usually crash
228when <code>result</code> goes out of scope if the jump is taken.  (It's
229possible for this bug to go undetected because it often won't crash if
230the stack is fresh, i.e. still zeroed.)  Therefore, Clang rejects this
231code with a hard error:</p>
232
233<pre>
234<b>t.c:3:5: <span class="error">error:</span> goto into protected scope</b>
235    goto error;
236<span class="caret">    ^</span>
237<b>t.c:5:15: <span class="note">note:</note></b> jump bypasses setup of __block variable
238  __block int result;
239<span class="caret">              ^</span>
240</pre>
241
242<p>The fix is to rewrite the code to not require jumping into a
243<tt>__block</tt> variable's scope, e.g. by limiting that scope:</p>
244
245<pre>
246  {
247    __block int result;
248    run_specially_somehow(^{ result = c->state; });
249    return result;
250  }
251</pre>
252
253<!-- ======================================================================= -->
254<h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt>
255variables</h3>
256<!-- ======================================================================= -->
257
258<p>In the following example code, the <tt>x</tt> variable is used before it is
259defined:</p>
260<pre>
261int f0() {
262  __block int x;
263  return ^(){ return x; }();
264}
265</pre>
266
267<p>By an accident of implementation, GCC and llvm-gcc unintentionally always
268zero initialized <tt>__block</tt> variables. However, any program which depends
269on this behavior is relying on unspecified compiler behavior. Programs must
270explicitly initialize all local block variables before they are used, as with
271other local variables.</p>
272
273<p>Clang does not zero initialize local block variables, and programs which rely
274on such behavior will most likely break when built with Clang.</p>
275
276
277<!-- ======================================================================= -->
278<h3 id="inline-asm">Inline assembly</h3>
279<!-- ======================================================================= -->
280
281<p>In general, Clang is highly compatible with the GCC inline assembly
282extensions, allowing the same set of constraints, modifiers and operands as GCC
283inline assembly.</p>
284
285<p>On targets that use the integrated assembler (such as most X86 targets),
286inline assembly is run through the integrated assembler instead of your system
287assembler (which is most commonly "gas", the GNU assembler).  The LLVM
288integrated assembler is extremely compatible with GAS, but there are a couple of
289minor places where it is more picky, particularly due to outright GAS bugs.</p>
290
291<p>One specific example is that the assembler rejects ambiguous X86 instructions
292that don't have suffixes.  For example:</p>
293
294<pre>
295  asm("add %al, (%rax)");
296  asm("addw $4, (%rax)");
297  asm("add $4, (%rax)");
298</pre>
299
300<p>Both clang and GAS accept the first instruction: because the first
301instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that
302it is an 8-bit add.  The second instruction is accepted by both because the "w"
303suffix indicates that it is a 16-bit add.  The last instruction is accepted by
304GAS even though there is nothing that specifies the size of the instruction (and
305the assembler randomly picks a 32-bit add).  Because it is ambiguous, Clang
306rejects the instruction with this error message:
307</p>
308
309<pre>
310<b>&lt;inline asm&gt;:3:1: <span class="error">error:</span> ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')</b>
311add $4, (%rax)
312<span class="caret">^</span>
313</pre>
314
315<p>To fix this compatibility issue, add an explicit suffix to the instruction:
316this makes your code more clear and is compatible with both GCC and Clang.</p>
317
318<!-- ======================================================================= -->
319<h2 id="objective-c">Objective-C compatibility</h2>
320<!-- ======================================================================= -->
321
322<!-- ======================================================================= -->
323<h3 id="super-cast">Cast of super</h3>
324<!-- ======================================================================= -->
325
326<p>GCC treats the <code>super</code> identifier as an expression that
327can, among other things, be cast to a different type. Clang treats
328<code>super</code> as a context-sensitive keyword, and will reject a
329type-cast of <code>super</code>:</p>
330
331<pre>
332<b>super.m:11:12: <span class="error">error:</span> cannot cast 'super' (it isn't an expression)</b>
333  [(Super*)super add:4];
334<span class="caret">   ~~~~~~~~^</span>
335</pre>
336
337<p>To fix this problem, remove the type cast, e.g.</p>
338<pre>
339  [super add:4];
340</pre>
341
342<!-- ======================================================================= -->
343<h3 id="sizeof-interface">Size of interfaces</h3>
344<!-- ======================================================================= -->
345
346<p>When using the "non-fragile" Objective-C ABI in use, the size of an
347Objective-C class may change over time as instance variables are added
348(or removed). For this reason, Clang rejects the application of the
349<code>sizeof</code> operator to an Objective-C class when using this
350ABI:</p>
351
352<pre>
353<b>sizeof.m:4:14: <span class="error">error:</span> invalid application of 'sizeof' to interface 'NSArray' in non-fragile ABI</b>
354  int size = sizeof(NSArray);
355<span class="caret">             ^     ~~~~~~~~~</span>
356</pre>
357
358<p>Code that relies on the size of an Objective-C class is likely to
359be broken anyway, since that size is not actually constant. To address
360this problem, use the Objective-C runtime API function
361<code>class_getInstanceSize()</code>:</p>
362
363<pre>
364  class_getInstanceSize([NSArray class])
365</pre>
366
367<!-- ======================================================================= -->
368<h3 id="objc_objs-cast">Internal Objective-C types</h3>
369<!-- ======================================================================= -->
370
371<p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>,
372<tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types
373<tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the
374internal Objective-C structures as implementation detail and won't do implicit conversions:
375
376<pre>
377<b>t.mm:11:2: <span class="error">error:</span> no matching function for call to 'f'</b>
378        f((struct objc_object *)p);
379<span class="caret">        ^</span>
380<b>t.mm:5:6: <span class="note">note:</note></b> candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument
381void f(id x);
382<span class="caret">     ^</span>
383</pre>
384
385<p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt>
386instead of the internal types.</p>
387
388<!-- ======================================================================= -->
389<h3 id="c_variables-class">C variables in @interface or @protocol</h3>
390<!-- ======================================================================= -->
391
392<p>GCC allows the declaration of C variables in
393an <code>@interface</code> or <code>@protocol</code>
394declaration. Clang does not allow variable declarations to appear
395within these declarations unless they are marked <code>extern</code>.</p>
396
397<p>Variables may still be declared in an @implementation.</p>
398
399<pre>
400@interface XX
401int a;         // not allowed in clang
402int b = 1;     // not allowed in clang
403extern int c;  // allowed
404@end
405
406</pre>
407
408<!-- ======================================================================= -->
409<h2 id="cxx">C++ compatibility</h2>
410<!-- ======================================================================= -->
411
412<!-- ======================================================================= -->
413<h3 id="vla">Variable-length arrays</h3>
414<!-- ======================================================================= -->
415
416<p>GCC and C99 allow an array's size to be determined at run
417time. This extension is not permitted in standard C++. However, Clang
418supports such variable length arrays in very limited circumstances for
419compatibility with GNU C and C99 programs:</p>
420
421<ul>
422  <li>The element type of a variable length array must be a POD
423  ("plain old data") type, which means that it cannot have any
424  user-declared constructors or destructors, any base classes, or any
425  members of non-POD type. All C types are POD types.</li>
426
427  <li>Variable length arrays cannot be used as the type of a non-type
428template parameter.</li> </ul>
429
430<p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code:
431
432<ol>
433<li>replace the variable length array with a fixed-size array if you can
434    determine a reasonable upper bound at compile time; sometimes this is as
435    simple as changing <tt>int size = ...;</tt> to <tt>const int size
436    = ...;</tt> (if the initializer is a compile-time constant);</li>
437<li>use <tt>std::vector</tt> or some other suitable container type;
438    or</li>
439<li>allocate the array on the heap instead using <tt>new Type[]</tt> -
440    just remember to <tt>delete[]</tt> it.</li>
441</ol>
442
443<!-- ======================================================================= -->
444<h3 id="dep_lookup">Unqualified lookup in templates</h3>
445<!-- ======================================================================= -->
446
447<p>Some versions of GCC accept the following invalid code:
448
449<pre>
450template &lt;typename T&gt; T Squared(T x) {
451  return Multiply(x, x);
452}
453
454int Multiply(int x, int y) {
455  return x * y;
456}
457
458int main() {
459  Squared(5);
460}
461</pre>
462
463<p>Clang complains:
464
465<pre>
466<b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b>
467  return Multiply(x, x);
468<span class="caret">         ^</span>
469<b>my_file.cpp:10:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Squared&lt;int&gt;' requested here
470  Squared(5);
471<span class="caret">  ^</span>
472<b>my_file.cpp:5:5: <span class="note">note:</span></b> 'Multiply' should be declared prior to the call site
473int Multiply(int x, int y) {
474<span class="caret">    ^</span>
475</pre>
476
477<p>The C++ standard says that unqualified names like <q>Multiply</q>
478are looked up in two ways.
479
480<p>First, the compiler does <i>unqualified lookup</i> in the scope
481where the name was written.  For a template, this means the lookup is
482done at the point where the template is defined, not where it's
483instantiated.  Since <tt>Multiply</tt> hasn't been declared yet at
484this point, unqualified lookup won't find it.
485
486<p>Second, if the name is called like a function, then the compiler
487also does <i>argument-dependent lookup</i> (ADL).  (Sometimes
488unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for
489more information.)  In ADL, the compiler looks at the types of all the
490arguments to the call.  When it finds a class type, it looks up the
491name in that class's namespace; the result is all the declarations it
492finds in those namespaces, plus the declarations from unqualified
493lookup.  However, the compiler doesn't do ADL until it knows all the
494argument types.
495
496<p>In our example, <tt>Multiply</tt> is called with dependent
497arguments, so ADL isn't done until the template is instantiated.  At
498that point, the arguments both have type <tt>int</tt>, which doesn't
499contain any class types, and so ADL doesn't look in any namespaces.
500Since neither form of lookup found the declaration
501of <tt>Multiply</tt>, the code doesn't compile.
502
503<p>Here's another example, this time using overloaded operators,
504which obey very similar rules.
505
506<pre>#include &lt;iostream&gt;
507
508template&lt;typename T&gt;
509void Dump(const T&amp; value) {
510  std::cout &lt;&lt; value &lt;&lt; "\n";
511}
512
513namespace ns {
514  struct Data {};
515}
516
517std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
518  return out &lt;&lt; "Some data";
519}
520
521void Use() {
522  Dump(ns::Data());
523}</pre>
524
525<p>Again, Clang complains:</p>
526
527<pre>
528<b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator&lt;&lt;' that is neither visible in the template definition nor found by argument-dependent lookup</b>
529  std::cout &lt;&lt; value &lt;&lt; "\n";
530<span class="caret">            ^</span>
531<b>my_file2.cpp:17:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Dump&lt;ns::Data&gt;' requested here
532  Dump(ns::Data());
533<span class="caret">  ^</span>
534<b>my_file2.cpp:12:15: <span class="note">note:</span></b> 'operator&lt;&lt;' should be declared prior to the call site or in namespace 'ns'
535std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
536<span class="caret">              ^</span>
537</pre>
538
539<p>Just like before, unqualified lookup didn't find any declarations
540with the name <tt>operator&lt;&lt;</tt>.  Unlike before, the argument
541types both contain class types: one of them is an instance of the
542class template type <tt>std::basic_ostream</tt>, and the other is the
543type <tt>ns::Data</tt> that we declared above.  Therefore, ADL will
544look in the namespaces <tt>std</tt> and <tt>ns</tt> for
545an <tt>operator&lt;&lt;</tt>.  Since one of the argument types was
546still dependent during the template definition, ADL isn't done until
547the template is instantiated during <tt>Use</tt>, which means that
548the <tt>operator&lt;&lt;</tt> we want it to find has already been
549declared.  Unfortunately, it was declared in the global namespace, not
550in either of the namespaces that ADL will look in!
551
552<p>There are two ways to fix this problem:</p>
553<ol><li>Make sure the function you want to call is declared before the
554template that might call it.  This is the only option if none of its
555argument types contain classes.  You can do this either by moving the
556template definition, or by moving the function definition, or by
557adding a forward declaration of the function before the template.</li>
558<li>Move the function into the same namespace as one of its arguments
559so that ADL applies.</li></ol>
560
561<p>For more information about argument-dependent lookup, see
562[basic.lookup.argdep].  For more information about the ordering of
563lookup in templates, see [temp.dep.candidate].
564
565<!-- ======================================================================= -->
566<h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3>
567<!-- ======================================================================= -->
568
569Some versions of GCC accept the following invalid code:
570
571<pre>
572template &lt;typename T&gt; struct Base {
573  void DoThis(T x) {}
574  static void DoThat(T x) {}
575};
576
577template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
578  void Work(T x) {
579    DoThis(x);  // Invalid!
580    DoThat(x);  // Invalid!
581  }
582};
583</pre>
584
585Clang correctly rejects it with the following errors
586(when <tt>Derived</tt> is eventually instantiated):
587
588<pre>
589<b>my_file.cpp:8:5: <span class="error">error:</span> use of undeclared identifier 'DoThis'</b>
590    DoThis(x);
591<span class="caret">    ^</span>
592    this-&gt;
593<b>my_file.cpp:2:8: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class
594  void DoThis(T x) {}
595<span class="caret">       ^</span>
596<b>my_file.cpp:9:5: <span class="error">error:</span> use of undeclared identifier 'DoThat'</b>
597    DoThat(x);
598<span class="caret">    ^</span>
599    this-&gt;
600<b>my_file.cpp:3:15: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class
601  static void DoThat(T x) {}
602</pre>
603
604Like we said <a href="#dep_lookup">above</a>, unqualified names like
605<tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template
606<tt>Derived</tt> is defined, not when it's instantiated.  When we look
607up a name used in a class, we usually look into the base classes.
608However, we can't look into the base class <tt>Base&lt;T&gt;</tt>
609because its type depends on the template argument <tt>T</tt>, so the
610standard says we should just ignore it.  See [temp.dep]p3 for details.
611
612<p>The fix, as Clang tells you, is to tell the compiler that we want a
613class member by prefixing the calls with <tt>this-&gt;</tt>:
614
615<pre>
616  void Work(T x) {
617    <b>this-&gt;</b>DoThis(x);
618    <b>this-&gt;</b>DoThat(x);
619  }
620</pre>
621
622Alternatively, you can tell the compiler exactly where to look:
623
624<pre>
625  void Work(T x) {
626    <b>Base&lt;T&gt;</b>::DoThis(x);
627    <b>Base&lt;T&gt;</b>::DoThat(x);
628  }
629</pre>
630
631This works whether the methods are static or not, but be careful:
632if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual
633dispatch!
634
635<!-- ======================================================================= -->
636<h3 id="undep_incomplete">Incomplete types in templates</h3>
637<!-- ======================================================================= -->
638
639The following code is invalid, but compilers are allowed to accept it:
640
641<pre>
642  class IOOptions;
643  template &lt;class T&gt; bool read(T &amp;value) {
644    IOOptions opts;
645    return read(opts, value);
646  }
647
648  class IOOptions { bool ForceReads; };
649  bool read(const IOOptions &amp;opts, int &amp;x);
650  template bool read&lt;&gt;(int &amp;);
651</pre>
652
653The standard says that types which don't depend on template parameters
654must be complete when a template is defined if they affect the
655program's behavior.  However, the standard also says that compilers
656are free to not enforce this rule.  Most compilers enforce it to some
657extent; for example, it would be an error in GCC to
658write <tt>opts.ForceReads</tt> in the code above.  In Clang, we feel
659that enforcing the rule consistently lets us provide a better
660experience, but unfortunately it also means we reject some code that
661other compilers accept.
662
663<p>We've explained the rule here in very imprecise terms; see
664[temp.res]p8 for details.
665
666<!-- ======================================================================= -->
667<h3 id="bad_templates">Templates with no valid instantiations</h3>
668<!-- ======================================================================= -->
669
670The following code contains a typo: the programmer
671meant <tt>init()</tt> but wrote <tt>innit()</tt> instead.
672
673<pre>
674  template &lt;class T&gt; class Processor {
675    ...
676    void init();
677    ...
678  };
679  ...
680  template &lt;class T&gt; void process() {
681    Processor&lt;T&gt; processor;
682    processor.innit();       // <-- should be 'init()'
683    ...
684  }
685</pre>
686
687Unfortunately, we can't flag this mistake as soon as we see it: inside
688a template, we're not allowed to make assumptions about "dependent
689types" like <tt>Processor&lt;T&gt;</tt>.  Suppose that later on in
690this file the programmer adds an explicit specialization
691of <tt>Processor</tt>, like so:
692
693<pre>
694  template &lt;&gt; class Processor&lt;char*&gt; {
695    void innit();
696  };
697</pre>
698
699Now the program will work &mdash; as long as the programmer only ever
700instantiates <tt>process()</tt> with <tt>T = char*</tt>!  This is why
701it's hard, and sometimes impossible, to diagnose mistakes in a
702template definition before it's instantiated.
703
704<p>The standard says that a template with no valid instantiations is
705ill-formed.  Clang tries to do as much checking as possible at
706definition-time instead of instantiation-time: not only does this
707produce clearer diagnostics, but it also substantially improves
708compile times when using pre-compiled headers.  The downside to this
709philosophy is that Clang sometimes fails to process files because they
710contain broken templates that are no longer used.  The solution is
711simple: since the code is unused, just remove it.
712
713<!-- ======================================================================= -->
714<h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3>
715<!-- ======================================================================= -->
716
717If a <tt>class</tt> or <tt>struct</tt> has no user-defined default
718constructor, C++ doesn't allow you to default construct a <tt>const</tt>
719instance of it like this ([dcl.init], p9):
720
721<pre>
722class Foo {
723 public:
724  // The compiler-supplied default constructor works fine, so we
725  // don't bother with defining one.
726  ...
727};
728
729void Bar() {
730  const Foo foo;  // Error!
731  ...
732}
733</pre>
734
735To fix this, you can define a default constructor for the class:
736
737<pre>
738class Foo {
739 public:
740  Foo() {}
741  ...
742};
743
744void Bar() {
745  const Foo foo;  // Now the compiler is happy.
746  ...
747}
748</pre>
749
750<!-- ======================================================================= -->
751<h3 id="param_name_lookup">Parameter name lookup</h3>
752<!-- ======================================================================= -->
753
754<p>Due to a bug in its implementation, GCC allows the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p>
755<blockquote>
756<pre>
757void f(int a, int a);
758</pre>
759</blockquote>
760<p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p>
761
762<!-- ======================================================================= -->
763<h2 id="cxx11">C++11 compatibility</h2>
764<!-- ======================================================================= -->
765
766<!-- ======================================================================= -->
767<h3 id="deleted-special-func">Deleted special member functions</h3>
768<!-- ======================================================================= -->
769
770<p>In C++11, the explicit declaration of a move constructor or a move
771assignment operator within a class deletes the implicit declaration
772of the copy constructor and copy assignment operator. This change came
773fairly late in the C++11 standardization process, so early
774implementations of C++11 (including Clang before 3.0, GCC before 4.7,
775and Visual Studio 2010) do not implement this rule, leading them to
776accept this ill-formed code:</p>
777
778<pre>
779struct X {
780  X(X&amp;&amp;); <i>// deletes implicit copy constructor:</i>
781  <i>// X(const X&amp;) = delete;</i>
782};
783
784void f(X x);
785void g(X x) {
786  f(x); <i>// error: X has a deleted copy constructor</i>
787}
788</pre>
789
790<p>This affects some early C++11 code, including Boost's popular <a
791href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a>
792up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is
793<a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p>
794
795<!-- ======================================================================= -->
796<h2 id="objective-cxx">Objective-C++ compatibility</h2>
797<!-- ======================================================================= -->
798
799<!-- ======================================================================= -->
800<h3 id="implicit-downcasts">Implicit downcasts</h3>
801<!-- ======================================================================= -->
802
803<p>Due to a bug in its implementation, GCC allows implicit downcasts
804of Objective-C pointers (from a base class to a derived class) when
805calling functions. Such code is inherently unsafe, since the object
806might not actually be an instance of the derived class, and is
807rejected by Clang. For example, given this code:</p>
808
809<pre>
810@interface Base @end
811@interface Derived : Base @end
812
813void f(Derived *p);
814void g(Base *p) {
815  f(p);
816}
817</pre>
818
819<p>Clang produces the following error:</p>
820
821<pre>
822<b>downcast.mm:6:3: <span class="error">error:</span> no matching function for call to 'f'</b>
823  f(p);
824<span class="caret">  ^</span>
825<b>downcast.mm:4:6: <span class="note">note:</note></b> candidate function not viable: cannot convert from
826      superclass 'Base *' to subclass 'Derived *' for 1st argument
827void f(Derived *p);
828<span class="caret">     ^</span>
829</pre>
830
831<p>If the downcast is actually correct (e.g., because the code has
832already checked that the object has the appropriate type), add an
833explicit cast:</p>
834
835<pre>
836  f((Derived *)base);
837</pre>
838
839<!-- ======================================================================= -->
840<h3 id="class-as-property-name">Using <code>class</code> as a property name</h3>
841<!-- ======================================================================= -->
842
843<p>In C and Objective-C, <code>class</code> is a normal identifier and
844can be used to name fields, ivars, methods, and so on.  In
845C++, <code>class</code> is a keyword.  For compatibility with existing
846code, Clang permits <code>class</code> to be used as part of a method
847selector in Objective-C++, but this does not extend to any other part
848of the language.  In particular, it is impossible to use property dot
849syntax in Objective-C++ with the property name <code>class</code>, so
850the following code will fail to parse:</p>
851
852<pre>
853@interface I {
854int cls;
855}
856+ (int)class;
857@end
858
859@implementation  I
860- (int) Meth { return I.class; }
861@end
862</pre>
863
864<p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p>
865
866</div>
867</body>
868</html>
869