1 //===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // // This file implements the following soft-float comparison routines:
11 //
12 //   __eqtf2   __getf2   __unordtf2
13 //   __letf2   __gttf2
14 //   __lttf2
15 //   __netf2
16 //
17 // The semantics of the routines grouped in each column are identical, so there
18 // is a single implementation for each, and wrappers to provide the other names.
19 //
20 // The main routines behave as follows:
21 //
22 //   __letf2(a,b) returns -1 if a < b
23 //                         0 if a == b
24 //                         1 if a > b
25 //                         1 if either a or b is NaN
26 //
27 //   __getf2(a,b) returns -1 if a < b
28 //                         0 if a == b
29 //                         1 if a > b
30 //                        -1 if either a or b is NaN
31 //
32 //   __unordtf2(a,b) returns 0 if both a and b are numbers
33 //                           1 if either a or b is NaN
34 //
35 // Note that __letf2( ) and __getf2( ) are identical except in their handling of
36 // NaN values.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #define QUAD_PRECISION
41 #include "fp_lib.h"
42 
43 #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
44 enum LE_RESULT {
45     LE_LESS      = -1,
46     LE_EQUAL     =  0,
47     LE_GREATER   =  1,
48     LE_UNORDERED =  1
49 };
50 
__letf2(fp_t a,fp_t b)51 COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
52 
53     const srep_t aInt = toRep(a);
54     const srep_t bInt = toRep(b);
55     const rep_t aAbs = aInt & absMask;
56     const rep_t bAbs = bInt & absMask;
57 
58     // If either a or b is NaN, they are unordered.
59     if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
60 
61     // If a and b are both zeros, they are equal.
62     if ((aAbs | bAbs) == 0) return LE_EQUAL;
63 
64     // If at least one of a and b is positive, we get the same result comparing
65     // a and b as signed integers as we would with a floating-point compare.
66     if ((aInt & bInt) >= 0) {
67         if (aInt < bInt) return LE_LESS;
68         else if (aInt == bInt) return LE_EQUAL;
69         else return LE_GREATER;
70     }
71     else {
72         // Otherwise, both are negative, so we need to flip the sense of the
73         // comparison to get the correct result.  (This assumes a twos- or ones-
74         // complement integer representation; if integers are represented in a
75         // sign-magnitude representation, then this flip is incorrect).
76         if (aInt > bInt) return LE_LESS;
77         else if (aInt == bInt) return LE_EQUAL;
78         else return LE_GREATER;
79     }
80 }
81 
82 #if defined(__ELF__)
83 // Alias for libgcc compatibility
84 FNALIAS(__cmptf2, __letf2);
85 #endif
86 
87 enum GE_RESULT {
88     GE_LESS      = -1,
89     GE_EQUAL     =  0,
90     GE_GREATER   =  1,
91     GE_UNORDERED = -1   // Note: different from LE_UNORDERED
92 };
93 
__getf2(fp_t a,fp_t b)94 COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
95 
96     const srep_t aInt = toRep(a);
97     const srep_t bInt = toRep(b);
98     const rep_t aAbs = aInt & absMask;
99     const rep_t bAbs = bInt & absMask;
100 
101     if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
102     if ((aAbs | bAbs) == 0) return GE_EQUAL;
103     if ((aInt & bInt) >= 0) {
104         if (aInt < bInt) return GE_LESS;
105         else if (aInt == bInt) return GE_EQUAL;
106         else return GE_GREATER;
107     } else {
108         if (aInt > bInt) return GE_LESS;
109         else if (aInt == bInt) return GE_EQUAL;
110         else return GE_GREATER;
111     }
112 }
113 
__unordtf2(fp_t a,fp_t b)114 COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
115     const rep_t aAbs = toRep(a) & absMask;
116     const rep_t bAbs = toRep(b) & absMask;
117     return aAbs > infRep || bAbs > infRep;
118 }
119 
120 // The following are alternative names for the preceding routines.
121 
__eqtf2(fp_t a,fp_t b)122 COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
123     return __letf2(a, b);
124 }
125 
__lttf2(fp_t a,fp_t b)126 COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
127     return __letf2(a, b);
128 }
129 
__netf2(fp_t a,fp_t b)130 COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
131     return __letf2(a, b);
132 }
133 
__gttf2(fp_t a,fp_t b)134 COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
135     return __getf2(a, b);
136 }
137 
138 #endif
139