1 //===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef SANITIZER_ALLOCATOR_H 15 #define SANITIZER_ALLOCATOR_H 16 17 #include "sanitizer_internal_defs.h" 18 #include "sanitizer_common.h" 19 #include "sanitizer_libc.h" 20 #include "sanitizer_list.h" 21 #include "sanitizer_mutex.h" 22 #include "sanitizer_lfstack.h" 23 24 namespace __sanitizer { 25 26 // Prints error message and kills the program. 27 void NORETURN ReportAllocatorCannotReturnNull(); 28 29 // SizeClassMap maps allocation sizes into size classes and back. 30 // Class 0 corresponds to size 0. 31 // Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16). 32 // Next 4 classes: 256 + i * 64 (i = 1 to 4). 33 // Next 4 classes: 512 + i * 128 (i = 1 to 4). 34 // ... 35 // Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4). 36 // Last class corresponds to kMaxSize = 1 << kMaxSizeLog. 37 // 38 // This structure of the size class map gives us: 39 // - Efficient table-free class-to-size and size-to-class functions. 40 // - Difference between two consequent size classes is betweed 14% and 25% 41 // 42 // This class also gives a hint to a thread-caching allocator about the amount 43 // of chunks that need to be cached per-thread: 44 // - kMaxNumCached is the maximal number of chunks per size class. 45 // - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class. 46 // 47 // Part of output of SizeClassMap::Print(): 48 // c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0 49 // c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1 50 // c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2 51 // c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3 52 // c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4 53 // c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5 54 // c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6 55 // c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7 56 // 57 // c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8 58 // c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9 59 // c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10 60 // c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11 61 // c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12 62 // c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13 63 // c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14 64 // c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15 65 // 66 // c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16 67 // c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17 68 // c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18 69 // c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19 70 // 71 // c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20 72 // c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21 73 // c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22 74 // c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23 75 // 76 // c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24 77 // c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25 78 // c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26 79 // c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27 80 // 81 // ... 82 // 83 // c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48 84 // c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49 85 // c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50 86 // c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51 87 // 88 // c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52 89 90 template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog> 91 class SizeClassMap { 92 static const uptr kMinSizeLog = 4; 93 static const uptr kMidSizeLog = kMinSizeLog + 4; 94 static const uptr kMinSize = 1 << kMinSizeLog; 95 static const uptr kMidSize = 1 << kMidSizeLog; 96 static const uptr kMidClass = kMidSize / kMinSize; 97 static const uptr S = 2; 98 static const uptr M = (1 << S) - 1; 99 100 public: 101 static const uptr kMaxNumCached = kMaxNumCachedT; 102 // We transfer chunks between central and thread-local free lists in batches. 103 // For small size classes we allocate batches separately. 104 // For large size classes we use one of the chunks to store the batch. 105 struct TransferBatch { 106 TransferBatch *next; 107 uptr count; 108 void *batch[kMaxNumCached]; 109 }; 110 111 static const uptr kMaxSize = 1UL << kMaxSizeLog; 112 static const uptr kNumClasses = 113 kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1; 114 COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256); 115 static const uptr kNumClassesRounded = 116 kNumClasses == 32 ? 32 : 117 kNumClasses <= 64 ? 64 : 118 kNumClasses <= 128 ? 128 : 256; 119 Size(uptr class_id)120 static uptr Size(uptr class_id) { 121 if (class_id <= kMidClass) 122 return kMinSize * class_id; 123 class_id -= kMidClass; 124 uptr t = kMidSize << (class_id >> S); 125 return t + (t >> S) * (class_id & M); 126 } 127 ClassID(uptr size)128 static uptr ClassID(uptr size) { 129 if (size <= kMidSize) 130 return (size + kMinSize - 1) >> kMinSizeLog; 131 if (size > kMaxSize) return 0; 132 uptr l = MostSignificantSetBitIndex(size); 133 uptr hbits = (size >> (l - S)) & M; 134 uptr lbits = size & ((1 << (l - S)) - 1); 135 uptr l1 = l - kMidSizeLog; 136 return kMidClass + (l1 << S) + hbits + (lbits > 0); 137 } 138 MaxCached(uptr class_id)139 static uptr MaxCached(uptr class_id) { 140 if (class_id == 0) return 0; 141 uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id); 142 return Max<uptr>(1, Min(kMaxNumCached, n)); 143 } 144 Print()145 static void Print() { 146 uptr prev_s = 0; 147 uptr total_cached = 0; 148 for (uptr i = 0; i < kNumClasses; i++) { 149 uptr s = Size(i); 150 if (s >= kMidSize / 2 && (s & (s - 1)) == 0) 151 Printf("\n"); 152 uptr d = s - prev_s; 153 uptr p = prev_s ? (d * 100 / prev_s) : 0; 154 uptr l = s ? MostSignificantSetBitIndex(s) : 0; 155 uptr cached = MaxCached(i) * s; 156 Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd " 157 "cached: %zd %zd; id %zd\n", 158 i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s)); 159 total_cached += cached; 160 prev_s = s; 161 } 162 Printf("Total cached: %zd\n", total_cached); 163 } 164 SizeClassRequiresSeparateTransferBatch(uptr class_id)165 static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) { 166 return Size(class_id) < sizeof(TransferBatch) - 167 sizeof(uptr) * (kMaxNumCached - MaxCached(class_id)); 168 } 169 Validate()170 static void Validate() { 171 for (uptr c = 1; c < kNumClasses; c++) { 172 // Printf("Validate: c%zd\n", c); 173 uptr s = Size(c); 174 CHECK_NE(s, 0U); 175 CHECK_EQ(ClassID(s), c); 176 if (c != kNumClasses - 1) 177 CHECK_EQ(ClassID(s + 1), c + 1); 178 CHECK_EQ(ClassID(s - 1), c); 179 if (c) 180 CHECK_GT(Size(c), Size(c-1)); 181 } 182 CHECK_EQ(ClassID(kMaxSize + 1), 0); 183 184 for (uptr s = 1; s <= kMaxSize; s++) { 185 uptr c = ClassID(s); 186 // Printf("s%zd => c%zd\n", s, c); 187 CHECK_LT(c, kNumClasses); 188 CHECK_GE(Size(c), s); 189 if (c > 0) 190 CHECK_LT(Size(c-1), s); 191 } 192 } 193 }; 194 195 typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap; 196 typedef SizeClassMap<17, 64, 14> CompactSizeClassMap; 197 template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache; 198 199 // Memory allocator statistics 200 enum AllocatorStat { 201 AllocatorStatAllocated, 202 AllocatorStatMapped, 203 AllocatorStatCount 204 }; 205 206 typedef uptr AllocatorStatCounters[AllocatorStatCount]; 207 208 // Per-thread stats, live in per-thread cache. 209 class AllocatorStats { 210 public: Init()211 void Init() { 212 internal_memset(this, 0, sizeof(*this)); 213 } InitLinkerInitialized()214 void InitLinkerInitialized() {} 215 Add(AllocatorStat i,uptr v)216 void Add(AllocatorStat i, uptr v) { 217 v += atomic_load(&stats_[i], memory_order_relaxed); 218 atomic_store(&stats_[i], v, memory_order_relaxed); 219 } 220 Sub(AllocatorStat i,uptr v)221 void Sub(AllocatorStat i, uptr v) { 222 v = atomic_load(&stats_[i], memory_order_relaxed) - v; 223 atomic_store(&stats_[i], v, memory_order_relaxed); 224 } 225 Set(AllocatorStat i,uptr v)226 void Set(AllocatorStat i, uptr v) { 227 atomic_store(&stats_[i], v, memory_order_relaxed); 228 } 229 Get(AllocatorStat i)230 uptr Get(AllocatorStat i) const { 231 return atomic_load(&stats_[i], memory_order_relaxed); 232 } 233 234 private: 235 friend class AllocatorGlobalStats; 236 AllocatorStats *next_; 237 AllocatorStats *prev_; 238 atomic_uintptr_t stats_[AllocatorStatCount]; 239 }; 240 241 // Global stats, used for aggregation and querying. 242 class AllocatorGlobalStats : public AllocatorStats { 243 public: InitLinkerInitialized()244 void InitLinkerInitialized() { 245 next_ = this; 246 prev_ = this; 247 } Init()248 void Init() { 249 internal_memset(this, 0, sizeof(*this)); 250 InitLinkerInitialized(); 251 } 252 Register(AllocatorStats * s)253 void Register(AllocatorStats *s) { 254 SpinMutexLock l(&mu_); 255 s->next_ = next_; 256 s->prev_ = this; 257 next_->prev_ = s; 258 next_ = s; 259 } 260 Unregister(AllocatorStats * s)261 void Unregister(AllocatorStats *s) { 262 SpinMutexLock l(&mu_); 263 s->prev_->next_ = s->next_; 264 s->next_->prev_ = s->prev_; 265 for (int i = 0; i < AllocatorStatCount; i++) 266 Add(AllocatorStat(i), s->Get(AllocatorStat(i))); 267 } 268 Get(AllocatorStatCounters s)269 void Get(AllocatorStatCounters s) const { 270 internal_memset(s, 0, AllocatorStatCount * sizeof(uptr)); 271 SpinMutexLock l(&mu_); 272 const AllocatorStats *stats = this; 273 for (;;) { 274 for (int i = 0; i < AllocatorStatCount; i++) 275 s[i] += stats->Get(AllocatorStat(i)); 276 stats = stats->next_; 277 if (stats == this) 278 break; 279 } 280 // All stats must be non-negative. 281 for (int i = 0; i < AllocatorStatCount; i++) 282 s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0; 283 } 284 285 private: 286 mutable SpinMutex mu_; 287 }; 288 289 // Allocators call these callbacks on mmap/munmap. 290 struct NoOpMapUnmapCallback { OnMapNoOpMapUnmapCallback291 void OnMap(uptr p, uptr size) const { } OnUnmapNoOpMapUnmapCallback292 void OnUnmap(uptr p, uptr size) const { } 293 }; 294 295 // Callback type for iterating over chunks. 296 typedef void (*ForEachChunkCallback)(uptr chunk, void *arg); 297 298 // SizeClassAllocator64 -- allocator for 64-bit address space. 299 // 300 // Space: a portion of address space of kSpaceSize bytes starting at 301 // a fixed address (kSpaceBeg). Both constants are powers of two and 302 // kSpaceBeg is kSpaceSize-aligned. 303 // At the beginning the entire space is mprotect-ed, then small parts of it 304 // are mapped on demand. 305 // 306 // Region: a part of Space dedicated to a single size class. 307 // There are kNumClasses Regions of equal size. 308 // 309 // UserChunk: a piece of memory returned to user. 310 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk. 311 // 312 // A Region looks like this: 313 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 314 template <const uptr kSpaceBeg, const uptr kSpaceSize, 315 const uptr kMetadataSize, class SizeClassMap, 316 class MapUnmapCallback = NoOpMapUnmapCallback> 317 class SizeClassAllocator64 { 318 public: 319 typedef typename SizeClassMap::TransferBatch Batch; 320 typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize, 321 SizeClassMap, MapUnmapCallback> ThisT; 322 typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache; 323 Init()324 void Init() { 325 CHECK_EQ(kSpaceBeg, 326 reinterpret_cast<uptr>(MmapNoAccess(kSpaceBeg, kSpaceSize))); 327 MapWithCallback(kSpaceEnd, AdditionalSize()); 328 } 329 MapWithCallback(uptr beg,uptr size)330 void MapWithCallback(uptr beg, uptr size) { 331 CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size))); 332 MapUnmapCallback().OnMap(beg, size); 333 } 334 UnmapWithCallback(uptr beg,uptr size)335 void UnmapWithCallback(uptr beg, uptr size) { 336 MapUnmapCallback().OnUnmap(beg, size); 337 UnmapOrDie(reinterpret_cast<void *>(beg), size); 338 } 339 CanAllocate(uptr size,uptr alignment)340 static bool CanAllocate(uptr size, uptr alignment) { 341 return size <= SizeClassMap::kMaxSize && 342 alignment <= SizeClassMap::kMaxSize; 343 } 344 AllocateBatch(AllocatorStats * stat,AllocatorCache * c,uptr class_id)345 NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c, 346 uptr class_id) { 347 CHECK_LT(class_id, kNumClasses); 348 RegionInfo *region = GetRegionInfo(class_id); 349 Batch *b = region->free_list.Pop(); 350 if (!b) 351 b = PopulateFreeList(stat, c, class_id, region); 352 region->n_allocated += b->count; 353 return b; 354 } 355 DeallocateBatch(AllocatorStats * stat,uptr class_id,Batch * b)356 NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) { 357 RegionInfo *region = GetRegionInfo(class_id); 358 CHECK_GT(b->count, 0); 359 region->free_list.Push(b); 360 region->n_freed += b->count; 361 } 362 PointerIsMine(const void * p)363 static bool PointerIsMine(const void *p) { 364 return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize; 365 } 366 GetSizeClass(const void * p)367 static uptr GetSizeClass(const void *p) { 368 return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded; 369 } 370 GetBlockBegin(const void * p)371 void *GetBlockBegin(const void *p) { 372 uptr class_id = GetSizeClass(p); 373 uptr size = SizeClassMap::Size(class_id); 374 if (!size) return nullptr; 375 uptr chunk_idx = GetChunkIdx((uptr)p, size); 376 uptr reg_beg = (uptr)p & ~(kRegionSize - 1); 377 uptr beg = chunk_idx * size; 378 uptr next_beg = beg + size; 379 if (class_id >= kNumClasses) return nullptr; 380 RegionInfo *region = GetRegionInfo(class_id); 381 if (region->mapped_user >= next_beg) 382 return reinterpret_cast<void*>(reg_beg + beg); 383 return nullptr; 384 } 385 GetActuallyAllocatedSize(void * p)386 static uptr GetActuallyAllocatedSize(void *p) { 387 CHECK(PointerIsMine(p)); 388 return SizeClassMap::Size(GetSizeClass(p)); 389 } 390 ClassID(uptr size)391 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } 392 GetMetaData(const void * p)393 void *GetMetaData(const void *p) { 394 uptr class_id = GetSizeClass(p); 395 uptr size = SizeClassMap::Size(class_id); 396 uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size); 397 return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) - 398 (1 + chunk_idx) * kMetadataSize); 399 } 400 TotalMemoryUsed()401 uptr TotalMemoryUsed() { 402 uptr res = 0; 403 for (uptr i = 0; i < kNumClasses; i++) 404 res += GetRegionInfo(i)->allocated_user; 405 return res; 406 } 407 408 // Test-only. TestOnlyUnmap()409 void TestOnlyUnmap() { 410 UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize()); 411 } 412 PrintStats()413 void PrintStats() { 414 uptr total_mapped = 0; 415 uptr n_allocated = 0; 416 uptr n_freed = 0; 417 for (uptr class_id = 1; class_id < kNumClasses; class_id++) { 418 RegionInfo *region = GetRegionInfo(class_id); 419 total_mapped += region->mapped_user; 420 n_allocated += region->n_allocated; 421 n_freed += region->n_freed; 422 } 423 Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; " 424 "remains %zd\n", 425 total_mapped >> 20, n_allocated, n_allocated - n_freed); 426 for (uptr class_id = 1; class_id < kNumClasses; class_id++) { 427 RegionInfo *region = GetRegionInfo(class_id); 428 if (region->mapped_user == 0) continue; 429 Printf(" %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n", 430 class_id, 431 SizeClassMap::Size(class_id), 432 region->mapped_user >> 10, 433 region->n_allocated, 434 region->n_allocated - region->n_freed); 435 } 436 } 437 438 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone 439 // introspection API. ForceLock()440 void ForceLock() { 441 for (uptr i = 0; i < kNumClasses; i++) { 442 GetRegionInfo(i)->mutex.Lock(); 443 } 444 } 445 ForceUnlock()446 void ForceUnlock() { 447 for (int i = (int)kNumClasses - 1; i >= 0; i--) { 448 GetRegionInfo(i)->mutex.Unlock(); 449 } 450 } 451 452 // Iterate over all existing chunks. 453 // The allocator must be locked when calling this function. ForEachChunk(ForEachChunkCallback callback,void * arg)454 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 455 for (uptr class_id = 1; class_id < kNumClasses; class_id++) { 456 RegionInfo *region = GetRegionInfo(class_id); 457 uptr chunk_size = SizeClassMap::Size(class_id); 458 uptr region_beg = kSpaceBeg + class_id * kRegionSize; 459 for (uptr chunk = region_beg; 460 chunk < region_beg + region->allocated_user; 461 chunk += chunk_size) { 462 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk)); 463 callback(chunk, arg); 464 } 465 } 466 } 467 AdditionalSize()468 static uptr AdditionalSize() { 469 return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded, 470 GetPageSizeCached()); 471 } 472 473 typedef SizeClassMap SizeClassMapT; 474 static const uptr kNumClasses = SizeClassMap::kNumClasses; 475 static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded; 476 477 private: 478 static const uptr kRegionSize = kSpaceSize / kNumClassesRounded; 479 static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize; 480 COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0); 481 // kRegionSize must be >= 2^32. 482 COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2))); 483 // Populate the free list with at most this number of bytes at once 484 // or with one element if its size is greater. 485 static const uptr kPopulateSize = 1 << 14; 486 // Call mmap for user memory with at least this size. 487 static const uptr kUserMapSize = 1 << 16; 488 // Call mmap for metadata memory with at least this size. 489 static const uptr kMetaMapSize = 1 << 16; 490 491 struct RegionInfo { 492 BlockingMutex mutex; 493 LFStack<Batch> free_list; 494 uptr allocated_user; // Bytes allocated for user memory. 495 uptr allocated_meta; // Bytes allocated for metadata. 496 uptr mapped_user; // Bytes mapped for user memory. 497 uptr mapped_meta; // Bytes mapped for metadata. 498 uptr n_allocated, n_freed; // Just stats. 499 }; 500 COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize); 501 GetRegionInfo(uptr class_id)502 RegionInfo *GetRegionInfo(uptr class_id) { 503 CHECK_LT(class_id, kNumClasses); 504 RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize); 505 return ®ions[class_id]; 506 } 507 GetChunkIdx(uptr chunk,uptr size)508 static uptr GetChunkIdx(uptr chunk, uptr size) { 509 uptr offset = chunk % kRegionSize; 510 // Here we divide by a non-constant. This is costly. 511 // size always fits into 32-bits. If the offset fits too, use 32-bit div. 512 if (offset >> (SANITIZER_WORDSIZE / 2)) 513 return offset / size; 514 return (u32)offset / (u32)size; 515 } 516 PopulateFreeList(AllocatorStats * stat,AllocatorCache * c,uptr class_id,RegionInfo * region)517 NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c, 518 uptr class_id, RegionInfo *region) { 519 BlockingMutexLock l(®ion->mutex); 520 Batch *b = region->free_list.Pop(); 521 if (b) 522 return b; 523 uptr size = SizeClassMap::Size(class_id); 524 uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1; 525 uptr beg_idx = region->allocated_user; 526 uptr end_idx = beg_idx + count * size; 527 uptr region_beg = kSpaceBeg + kRegionSize * class_id; 528 if (end_idx + size > region->mapped_user) { 529 // Do the mmap for the user memory. 530 uptr map_size = kUserMapSize; 531 while (end_idx + size > region->mapped_user + map_size) 532 map_size += kUserMapSize; 533 CHECK_GE(region->mapped_user + map_size, end_idx); 534 MapWithCallback(region_beg + region->mapped_user, map_size); 535 stat->Add(AllocatorStatMapped, map_size); 536 region->mapped_user += map_size; 537 } 538 uptr total_count = (region->mapped_user - beg_idx - size) 539 / size / count * count; 540 region->allocated_meta += total_count * kMetadataSize; 541 if (region->allocated_meta > region->mapped_meta) { 542 uptr map_size = kMetaMapSize; 543 while (region->allocated_meta > region->mapped_meta + map_size) 544 map_size += kMetaMapSize; 545 // Do the mmap for the metadata. 546 CHECK_GE(region->mapped_meta + map_size, region->allocated_meta); 547 MapWithCallback(region_beg + kRegionSize - 548 region->mapped_meta - map_size, map_size); 549 region->mapped_meta += map_size; 550 } 551 CHECK_LE(region->allocated_meta, region->mapped_meta); 552 if (region->mapped_user + region->mapped_meta > kRegionSize) { 553 Printf("%s: Out of memory. Dying. ", SanitizerToolName); 554 Printf("The process has exhausted %zuMB for size class %zu.\n", 555 kRegionSize / 1024 / 1024, size); 556 Die(); 557 } 558 for (;;) { 559 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) 560 b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch))); 561 else 562 b = (Batch*)(region_beg + beg_idx); 563 b->count = count; 564 for (uptr i = 0; i < count; i++) 565 b->batch[i] = (void*)(region_beg + beg_idx + i * size); 566 region->allocated_user += count * size; 567 CHECK_LE(region->allocated_user, region->mapped_user); 568 beg_idx += count * size; 569 if (beg_idx + count * size + size > region->mapped_user) 570 break; 571 CHECK_GT(b->count, 0); 572 region->free_list.Push(b); 573 } 574 return b; 575 } 576 }; 577 578 // Maps integers in rage [0, kSize) to u8 values. 579 template<u64 kSize> 580 class FlatByteMap { 581 public: TestOnlyInit()582 void TestOnlyInit() { 583 internal_memset(map_, 0, sizeof(map_)); 584 } 585 set(uptr idx,u8 val)586 void set(uptr idx, u8 val) { 587 CHECK_LT(idx, kSize); 588 CHECK_EQ(0U, map_[idx]); 589 map_[idx] = val; 590 } 591 u8 operator[] (uptr idx) { 592 CHECK_LT(idx, kSize); 593 // FIXME: CHECK may be too expensive here. 594 return map_[idx]; 595 } 596 private: 597 u8 map_[kSize]; 598 }; 599 600 // TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values. 601 // It is implemented as a two-dimensional array: array of kSize1 pointers 602 // to kSize2-byte arrays. The secondary arrays are mmaped on demand. 603 // Each value is initially zero and can be set to something else only once. 604 // Setting and getting values from multiple threads is safe w/o extra locking. 605 template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback> 606 class TwoLevelByteMap { 607 public: TestOnlyInit()608 void TestOnlyInit() { 609 internal_memset(map1_, 0, sizeof(map1_)); 610 mu_.Init(); 611 } 612 TestOnlyUnmap()613 void TestOnlyUnmap() { 614 for (uptr i = 0; i < kSize1; i++) { 615 u8 *p = Get(i); 616 if (!p) continue; 617 MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2); 618 UnmapOrDie(p, kSize2); 619 } 620 } 621 size()622 uptr size() const { return kSize1 * kSize2; } size1()623 uptr size1() const { return kSize1; } size2()624 uptr size2() const { return kSize2; } 625 set(uptr idx,u8 val)626 void set(uptr idx, u8 val) { 627 CHECK_LT(idx, kSize1 * kSize2); 628 u8 *map2 = GetOrCreate(idx / kSize2); 629 CHECK_EQ(0U, map2[idx % kSize2]); 630 map2[idx % kSize2] = val; 631 } 632 633 u8 operator[] (uptr idx) const { 634 CHECK_LT(idx, kSize1 * kSize2); 635 u8 *map2 = Get(idx / kSize2); 636 if (!map2) return 0; 637 return map2[idx % kSize2]; 638 } 639 640 private: Get(uptr idx)641 u8 *Get(uptr idx) const { 642 CHECK_LT(idx, kSize1); 643 return reinterpret_cast<u8 *>( 644 atomic_load(&map1_[idx], memory_order_acquire)); 645 } 646 GetOrCreate(uptr idx)647 u8 *GetOrCreate(uptr idx) { 648 u8 *res = Get(idx); 649 if (!res) { 650 SpinMutexLock l(&mu_); 651 if (!(res = Get(idx))) { 652 res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap"); 653 MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2); 654 atomic_store(&map1_[idx], reinterpret_cast<uptr>(res), 655 memory_order_release); 656 } 657 } 658 return res; 659 } 660 661 atomic_uintptr_t map1_[kSize1]; 662 StaticSpinMutex mu_; 663 }; 664 665 // SizeClassAllocator32 -- allocator for 32-bit address space. 666 // This allocator can theoretically be used on 64-bit arch, but there it is less 667 // efficient than SizeClassAllocator64. 668 // 669 // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can 670 // be returned by MmapOrDie(). 671 // 672 // Region: 673 // a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize). 674 // Since the regions are aligned by kRegionSize, there are exactly 675 // kNumPossibleRegions possible regions in the address space and so we keep 676 // a ByteMap possible_regions to store the size classes of each Region. 677 // 0 size class means the region is not used by the allocator. 678 // 679 // One Region is used to allocate chunks of a single size class. 680 // A Region looks like this: 681 // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1 682 // 683 // In order to avoid false sharing the objects of this class should be 684 // chache-line aligned. 685 template <const uptr kSpaceBeg, const u64 kSpaceSize, 686 const uptr kMetadataSize, class SizeClassMap, 687 const uptr kRegionSizeLog, 688 class ByteMap, 689 class MapUnmapCallback = NoOpMapUnmapCallback> 690 class SizeClassAllocator32 { 691 public: 692 typedef typename SizeClassMap::TransferBatch Batch; 693 typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize, 694 SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT; 695 typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache; 696 Init()697 void Init() { 698 possible_regions.TestOnlyInit(); 699 internal_memset(size_class_info_array, 0, sizeof(size_class_info_array)); 700 } 701 MapWithCallback(uptr size)702 void *MapWithCallback(uptr size) { 703 size = RoundUpTo(size, GetPageSizeCached()); 704 void *res = MmapOrDie(size, "SizeClassAllocator32"); 705 MapUnmapCallback().OnMap((uptr)res, size); 706 return res; 707 } 708 UnmapWithCallback(uptr beg,uptr size)709 void UnmapWithCallback(uptr beg, uptr size) { 710 MapUnmapCallback().OnUnmap(beg, size); 711 UnmapOrDie(reinterpret_cast<void *>(beg), size); 712 } 713 CanAllocate(uptr size,uptr alignment)714 static bool CanAllocate(uptr size, uptr alignment) { 715 return size <= SizeClassMap::kMaxSize && 716 alignment <= SizeClassMap::kMaxSize; 717 } 718 GetMetaData(const void * p)719 void *GetMetaData(const void *p) { 720 CHECK(PointerIsMine(p)); 721 uptr mem = reinterpret_cast<uptr>(p); 722 uptr beg = ComputeRegionBeg(mem); 723 uptr size = SizeClassMap::Size(GetSizeClass(p)); 724 u32 offset = mem - beg; 725 uptr n = offset / (u32)size; // 32-bit division 726 uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize; 727 return reinterpret_cast<void*>(meta); 728 } 729 AllocateBatch(AllocatorStats * stat,AllocatorCache * c,uptr class_id)730 NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c, 731 uptr class_id) { 732 CHECK_LT(class_id, kNumClasses); 733 SizeClassInfo *sci = GetSizeClassInfo(class_id); 734 SpinMutexLock l(&sci->mutex); 735 if (sci->free_list.empty()) 736 PopulateFreeList(stat, c, sci, class_id); 737 CHECK(!sci->free_list.empty()); 738 Batch *b = sci->free_list.front(); 739 sci->free_list.pop_front(); 740 return b; 741 } 742 DeallocateBatch(AllocatorStats * stat,uptr class_id,Batch * b)743 NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) { 744 CHECK_LT(class_id, kNumClasses); 745 SizeClassInfo *sci = GetSizeClassInfo(class_id); 746 SpinMutexLock l(&sci->mutex); 747 CHECK_GT(b->count, 0); 748 sci->free_list.push_front(b); 749 } 750 PointerIsMine(const void * p)751 bool PointerIsMine(const void *p) { 752 return GetSizeClass(p) != 0; 753 } 754 GetSizeClass(const void * p)755 uptr GetSizeClass(const void *p) { 756 return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))]; 757 } 758 GetBlockBegin(const void * p)759 void *GetBlockBegin(const void *p) { 760 CHECK(PointerIsMine(p)); 761 uptr mem = reinterpret_cast<uptr>(p); 762 uptr beg = ComputeRegionBeg(mem); 763 uptr size = SizeClassMap::Size(GetSizeClass(p)); 764 u32 offset = mem - beg; 765 u32 n = offset / (u32)size; // 32-bit division 766 uptr res = beg + (n * (u32)size); 767 return reinterpret_cast<void*>(res); 768 } 769 GetActuallyAllocatedSize(void * p)770 uptr GetActuallyAllocatedSize(void *p) { 771 CHECK(PointerIsMine(p)); 772 return SizeClassMap::Size(GetSizeClass(p)); 773 } 774 ClassID(uptr size)775 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } 776 TotalMemoryUsed()777 uptr TotalMemoryUsed() { 778 // No need to lock here. 779 uptr res = 0; 780 for (uptr i = 0; i < kNumPossibleRegions; i++) 781 if (possible_regions[i]) 782 res += kRegionSize; 783 return res; 784 } 785 TestOnlyUnmap()786 void TestOnlyUnmap() { 787 for (uptr i = 0; i < kNumPossibleRegions; i++) 788 if (possible_regions[i]) 789 UnmapWithCallback((i * kRegionSize), kRegionSize); 790 } 791 792 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone 793 // introspection API. ForceLock()794 void ForceLock() { 795 for (uptr i = 0; i < kNumClasses; i++) { 796 GetSizeClassInfo(i)->mutex.Lock(); 797 } 798 } 799 ForceUnlock()800 void ForceUnlock() { 801 for (int i = kNumClasses - 1; i >= 0; i--) { 802 GetSizeClassInfo(i)->mutex.Unlock(); 803 } 804 } 805 806 // Iterate over all existing chunks. 807 // The allocator must be locked when calling this function. ForEachChunk(ForEachChunkCallback callback,void * arg)808 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 809 for (uptr region = 0; region < kNumPossibleRegions; region++) 810 if (possible_regions[region]) { 811 uptr chunk_size = SizeClassMap::Size(possible_regions[region]); 812 uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize); 813 uptr region_beg = region * kRegionSize; 814 for (uptr chunk = region_beg; 815 chunk < region_beg + max_chunks_in_region * chunk_size; 816 chunk += chunk_size) { 817 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk)); 818 callback(chunk, arg); 819 } 820 } 821 } 822 PrintStats()823 void PrintStats() { 824 } 825 AdditionalSize()826 static uptr AdditionalSize() { 827 return 0; 828 } 829 830 typedef SizeClassMap SizeClassMapT; 831 static const uptr kNumClasses = SizeClassMap::kNumClasses; 832 833 private: 834 static const uptr kRegionSize = 1 << kRegionSizeLog; 835 static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize; 836 837 struct SizeClassInfo { 838 SpinMutex mutex; 839 IntrusiveList<Batch> free_list; 840 char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)]; 841 }; 842 COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize); 843 ComputeRegionId(uptr mem)844 uptr ComputeRegionId(uptr mem) { 845 uptr res = mem >> kRegionSizeLog; 846 CHECK_LT(res, kNumPossibleRegions); 847 return res; 848 } 849 ComputeRegionBeg(uptr mem)850 uptr ComputeRegionBeg(uptr mem) { 851 return mem & ~(kRegionSize - 1); 852 } 853 AllocateRegion(AllocatorStats * stat,uptr class_id)854 uptr AllocateRegion(AllocatorStats *stat, uptr class_id) { 855 CHECK_LT(class_id, kNumClasses); 856 uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize, 857 "SizeClassAllocator32")); 858 MapUnmapCallback().OnMap(res, kRegionSize); 859 stat->Add(AllocatorStatMapped, kRegionSize); 860 CHECK_EQ(0U, (res & (kRegionSize - 1))); 861 possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id)); 862 return res; 863 } 864 GetSizeClassInfo(uptr class_id)865 SizeClassInfo *GetSizeClassInfo(uptr class_id) { 866 CHECK_LT(class_id, kNumClasses); 867 return &size_class_info_array[class_id]; 868 } 869 PopulateFreeList(AllocatorStats * stat,AllocatorCache * c,SizeClassInfo * sci,uptr class_id)870 void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c, 871 SizeClassInfo *sci, uptr class_id) { 872 uptr size = SizeClassMap::Size(class_id); 873 uptr reg = AllocateRegion(stat, class_id); 874 uptr n_chunks = kRegionSize / (size + kMetadataSize); 875 uptr max_count = SizeClassMap::MaxCached(class_id); 876 Batch *b = nullptr; 877 for (uptr i = reg; i < reg + n_chunks * size; i += size) { 878 if (!b) { 879 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) 880 b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch))); 881 else 882 b = (Batch*)i; 883 b->count = 0; 884 } 885 b->batch[b->count++] = (void*)i; 886 if (b->count == max_count) { 887 CHECK_GT(b->count, 0); 888 sci->free_list.push_back(b); 889 b = nullptr; 890 } 891 } 892 if (b) { 893 CHECK_GT(b->count, 0); 894 sci->free_list.push_back(b); 895 } 896 } 897 898 ByteMap possible_regions; 899 SizeClassInfo size_class_info_array[kNumClasses]; 900 }; 901 902 // Objects of this type should be used as local caches for SizeClassAllocator64 903 // or SizeClassAllocator32. Since the typical use of this class is to have one 904 // object per thread in TLS, is has to be POD. 905 template<class SizeClassAllocator> 906 struct SizeClassAllocatorLocalCache { 907 typedef SizeClassAllocator Allocator; 908 static const uptr kNumClasses = SizeClassAllocator::kNumClasses; 909 InitSizeClassAllocatorLocalCache910 void Init(AllocatorGlobalStats *s) { 911 stats_.Init(); 912 if (s) 913 s->Register(&stats_); 914 } 915 DestroySizeClassAllocatorLocalCache916 void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) { 917 Drain(allocator); 918 if (s) 919 s->Unregister(&stats_); 920 } 921 AllocateSizeClassAllocatorLocalCache922 void *Allocate(SizeClassAllocator *allocator, uptr class_id) { 923 CHECK_NE(class_id, 0UL); 924 CHECK_LT(class_id, kNumClasses); 925 stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id)); 926 PerClass *c = &per_class_[class_id]; 927 if (UNLIKELY(c->count == 0)) 928 Refill(allocator, class_id); 929 void *res = c->batch[--c->count]; 930 PREFETCH(c->batch[c->count - 1]); 931 return res; 932 } 933 DeallocateSizeClassAllocatorLocalCache934 void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) { 935 CHECK_NE(class_id, 0UL); 936 CHECK_LT(class_id, kNumClasses); 937 // If the first allocator call on a new thread is a deallocation, then 938 // max_count will be zero, leading to check failure. 939 InitCache(); 940 stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id)); 941 PerClass *c = &per_class_[class_id]; 942 CHECK_NE(c->max_count, 0UL); 943 if (UNLIKELY(c->count == c->max_count)) 944 Drain(allocator, class_id); 945 c->batch[c->count++] = p; 946 } 947 DrainSizeClassAllocatorLocalCache948 void Drain(SizeClassAllocator *allocator) { 949 for (uptr class_id = 0; class_id < kNumClasses; class_id++) { 950 PerClass *c = &per_class_[class_id]; 951 while (c->count > 0) 952 Drain(allocator, class_id); 953 } 954 } 955 956 // private: 957 typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap; 958 typedef typename SizeClassMap::TransferBatch Batch; 959 struct PerClass { 960 uptr count; 961 uptr max_count; 962 void *batch[2 * SizeClassMap::kMaxNumCached]; 963 }; 964 PerClass per_class_[kNumClasses]; 965 AllocatorStats stats_; 966 InitCacheSizeClassAllocatorLocalCache967 void InitCache() { 968 if (per_class_[1].max_count) 969 return; 970 for (uptr i = 0; i < kNumClasses; i++) { 971 PerClass *c = &per_class_[i]; 972 c->max_count = 2 * SizeClassMap::MaxCached(i); 973 } 974 } 975 RefillSizeClassAllocatorLocalCache976 NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) { 977 InitCache(); 978 PerClass *c = &per_class_[class_id]; 979 Batch *b = allocator->AllocateBatch(&stats_, this, class_id); 980 CHECK_GT(b->count, 0); 981 for (uptr i = 0; i < b->count; i++) 982 c->batch[i] = b->batch[i]; 983 c->count = b->count; 984 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) 985 Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b); 986 } 987 DrainSizeClassAllocatorLocalCache988 NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) { 989 InitCache(); 990 PerClass *c = &per_class_[class_id]; 991 Batch *b; 992 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) 993 b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch))); 994 else 995 b = (Batch*)c->batch[0]; 996 uptr cnt = Min(c->max_count / 2, c->count); 997 for (uptr i = 0; i < cnt; i++) { 998 b->batch[i] = c->batch[i]; 999 c->batch[i] = c->batch[i + c->max_count / 2]; 1000 } 1001 b->count = cnt; 1002 c->count -= cnt; 1003 CHECK_GT(b->count, 0); 1004 allocator->DeallocateBatch(&stats_, class_id, b); 1005 } 1006 }; 1007 1008 // This class can (de)allocate only large chunks of memory using mmap/unmap. 1009 // The main purpose of this allocator is to cover large and rare allocation 1010 // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64). 1011 template <class MapUnmapCallback = NoOpMapUnmapCallback> 1012 class LargeMmapAllocator { 1013 public: InitLinkerInitialized(bool may_return_null)1014 void InitLinkerInitialized(bool may_return_null) { 1015 page_size_ = GetPageSizeCached(); 1016 atomic_store(&may_return_null_, may_return_null, memory_order_relaxed); 1017 } 1018 Init(bool may_return_null)1019 void Init(bool may_return_null) { 1020 internal_memset(this, 0, sizeof(*this)); 1021 InitLinkerInitialized(may_return_null); 1022 } 1023 Allocate(AllocatorStats * stat,uptr size,uptr alignment)1024 void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) { 1025 CHECK(IsPowerOfTwo(alignment)); 1026 uptr map_size = RoundUpMapSize(size); 1027 if (alignment > page_size_) 1028 map_size += alignment; 1029 // Overflow. 1030 if (map_size < size) 1031 return ReturnNullOrDie(); 1032 uptr map_beg = reinterpret_cast<uptr>( 1033 MmapOrDie(map_size, "LargeMmapAllocator")); 1034 CHECK(IsAligned(map_beg, page_size_)); 1035 MapUnmapCallback().OnMap(map_beg, map_size); 1036 uptr map_end = map_beg + map_size; 1037 uptr res = map_beg + page_size_; 1038 if (res & (alignment - 1)) // Align. 1039 res += alignment - (res & (alignment - 1)); 1040 CHECK(IsAligned(res, alignment)); 1041 CHECK(IsAligned(res, page_size_)); 1042 CHECK_GE(res + size, map_beg); 1043 CHECK_LE(res + size, map_end); 1044 Header *h = GetHeader(res); 1045 h->size = size; 1046 h->map_beg = map_beg; 1047 h->map_size = map_size; 1048 uptr size_log = MostSignificantSetBitIndex(map_size); 1049 CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log)); 1050 { 1051 SpinMutexLock l(&mutex_); 1052 uptr idx = n_chunks_++; 1053 chunks_sorted_ = false; 1054 CHECK_LT(idx, kMaxNumChunks); 1055 h->chunk_idx = idx; 1056 chunks_[idx] = h; 1057 stats.n_allocs++; 1058 stats.currently_allocated += map_size; 1059 stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated); 1060 stats.by_size_log[size_log]++; 1061 stat->Add(AllocatorStatAllocated, map_size); 1062 stat->Add(AllocatorStatMapped, map_size); 1063 } 1064 return reinterpret_cast<void*>(res); 1065 } 1066 ReturnNullOrDie()1067 void *ReturnNullOrDie() { 1068 if (atomic_load(&may_return_null_, memory_order_acquire)) 1069 return nullptr; 1070 ReportAllocatorCannotReturnNull(); 1071 } 1072 SetMayReturnNull(bool may_return_null)1073 void SetMayReturnNull(bool may_return_null) { 1074 atomic_store(&may_return_null_, may_return_null, memory_order_release); 1075 } 1076 Deallocate(AllocatorStats * stat,void * p)1077 void Deallocate(AllocatorStats *stat, void *p) { 1078 Header *h = GetHeader(p); 1079 { 1080 SpinMutexLock l(&mutex_); 1081 uptr idx = h->chunk_idx; 1082 CHECK_EQ(chunks_[idx], h); 1083 CHECK_LT(idx, n_chunks_); 1084 chunks_[idx] = chunks_[n_chunks_ - 1]; 1085 chunks_[idx]->chunk_idx = idx; 1086 n_chunks_--; 1087 chunks_sorted_ = false; 1088 stats.n_frees++; 1089 stats.currently_allocated -= h->map_size; 1090 stat->Sub(AllocatorStatAllocated, h->map_size); 1091 stat->Sub(AllocatorStatMapped, h->map_size); 1092 } 1093 MapUnmapCallback().OnUnmap(h->map_beg, h->map_size); 1094 UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size); 1095 } 1096 TotalMemoryUsed()1097 uptr TotalMemoryUsed() { 1098 SpinMutexLock l(&mutex_); 1099 uptr res = 0; 1100 for (uptr i = 0; i < n_chunks_; i++) { 1101 Header *h = chunks_[i]; 1102 CHECK_EQ(h->chunk_idx, i); 1103 res += RoundUpMapSize(h->size); 1104 } 1105 return res; 1106 } 1107 PointerIsMine(const void * p)1108 bool PointerIsMine(const void *p) { 1109 return GetBlockBegin(p) != nullptr; 1110 } 1111 GetActuallyAllocatedSize(void * p)1112 uptr GetActuallyAllocatedSize(void *p) { 1113 return RoundUpTo(GetHeader(p)->size, page_size_); 1114 } 1115 1116 // At least page_size_/2 metadata bytes is available. GetMetaData(const void * p)1117 void *GetMetaData(const void *p) { 1118 // Too slow: CHECK_EQ(p, GetBlockBegin(p)); 1119 if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) { 1120 Printf("%s: bad pointer %p\n", SanitizerToolName, p); 1121 CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_)); 1122 } 1123 return GetHeader(p) + 1; 1124 } 1125 GetBlockBegin(const void * ptr)1126 void *GetBlockBegin(const void *ptr) { 1127 uptr p = reinterpret_cast<uptr>(ptr); 1128 SpinMutexLock l(&mutex_); 1129 uptr nearest_chunk = 0; 1130 // Cache-friendly linear search. 1131 for (uptr i = 0; i < n_chunks_; i++) { 1132 uptr ch = reinterpret_cast<uptr>(chunks_[i]); 1133 if (p < ch) continue; // p is at left to this chunk, skip it. 1134 if (p - ch < p - nearest_chunk) 1135 nearest_chunk = ch; 1136 } 1137 if (!nearest_chunk) 1138 return nullptr; 1139 Header *h = reinterpret_cast<Header *>(nearest_chunk); 1140 CHECK_GE(nearest_chunk, h->map_beg); 1141 CHECK_LT(nearest_chunk, h->map_beg + h->map_size); 1142 CHECK_LE(nearest_chunk, p); 1143 if (h->map_beg + h->map_size <= p) 1144 return nullptr; 1145 return GetUser(h); 1146 } 1147 1148 // This function does the same as GetBlockBegin, but is much faster. 1149 // Must be called with the allocator locked. GetBlockBeginFastLocked(void * ptr)1150 void *GetBlockBeginFastLocked(void *ptr) { 1151 mutex_.CheckLocked(); 1152 uptr p = reinterpret_cast<uptr>(ptr); 1153 uptr n = n_chunks_; 1154 if (!n) return nullptr; 1155 if (!chunks_sorted_) { 1156 // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate. 1157 SortArray(reinterpret_cast<uptr*>(chunks_), n); 1158 for (uptr i = 0; i < n; i++) 1159 chunks_[i]->chunk_idx = i; 1160 chunks_sorted_ = true; 1161 min_mmap_ = reinterpret_cast<uptr>(chunks_[0]); 1162 max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) + 1163 chunks_[n - 1]->map_size; 1164 } 1165 if (p < min_mmap_ || p >= max_mmap_) 1166 return nullptr; 1167 uptr beg = 0, end = n - 1; 1168 // This loop is a log(n) lower_bound. It does not check for the exact match 1169 // to avoid expensive cache-thrashing loads. 1170 while (end - beg >= 2) { 1171 uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1 1172 if (p < reinterpret_cast<uptr>(chunks_[mid])) 1173 end = mid - 1; // We are not interested in chunks_[mid]. 1174 else 1175 beg = mid; // chunks_[mid] may still be what we want. 1176 } 1177 1178 if (beg < end) { 1179 CHECK_EQ(beg + 1, end); 1180 // There are 2 chunks left, choose one. 1181 if (p >= reinterpret_cast<uptr>(chunks_[end])) 1182 beg = end; 1183 } 1184 1185 Header *h = chunks_[beg]; 1186 if (h->map_beg + h->map_size <= p || p < h->map_beg) 1187 return nullptr; 1188 return GetUser(h); 1189 } 1190 PrintStats()1191 void PrintStats() { 1192 Printf("Stats: LargeMmapAllocator: allocated %zd times, " 1193 "remains %zd (%zd K) max %zd M; by size logs: ", 1194 stats.n_allocs, stats.n_allocs - stats.n_frees, 1195 stats.currently_allocated >> 10, stats.max_allocated >> 20); 1196 for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) { 1197 uptr c = stats.by_size_log[i]; 1198 if (!c) continue; 1199 Printf("%zd:%zd; ", i, c); 1200 } 1201 Printf("\n"); 1202 } 1203 1204 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone 1205 // introspection API. ForceLock()1206 void ForceLock() { 1207 mutex_.Lock(); 1208 } 1209 ForceUnlock()1210 void ForceUnlock() { 1211 mutex_.Unlock(); 1212 } 1213 1214 // Iterate over all existing chunks. 1215 // The allocator must be locked when calling this function. ForEachChunk(ForEachChunkCallback callback,void * arg)1216 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 1217 for (uptr i = 0; i < n_chunks_; i++) 1218 callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg); 1219 } 1220 1221 private: 1222 static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18); 1223 struct Header { 1224 uptr map_beg; 1225 uptr map_size; 1226 uptr size; 1227 uptr chunk_idx; 1228 }; 1229 GetHeader(uptr p)1230 Header *GetHeader(uptr p) { 1231 CHECK(IsAligned(p, page_size_)); 1232 return reinterpret_cast<Header*>(p - page_size_); 1233 } GetHeader(const void * p)1234 Header *GetHeader(const void *p) { 1235 return GetHeader(reinterpret_cast<uptr>(p)); 1236 } 1237 GetUser(Header * h)1238 void *GetUser(Header *h) { 1239 CHECK(IsAligned((uptr)h, page_size_)); 1240 return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_); 1241 } 1242 RoundUpMapSize(uptr size)1243 uptr RoundUpMapSize(uptr size) { 1244 return RoundUpTo(size, page_size_) + page_size_; 1245 } 1246 1247 uptr page_size_; 1248 Header *chunks_[kMaxNumChunks]; 1249 uptr n_chunks_; 1250 uptr min_mmap_, max_mmap_; 1251 bool chunks_sorted_; 1252 struct Stats { 1253 uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64]; 1254 } stats; 1255 atomic_uint8_t may_return_null_; 1256 SpinMutex mutex_; 1257 }; 1258 1259 // This class implements a complete memory allocator by using two 1260 // internal allocators: 1261 // PrimaryAllocator is efficient, but may not allocate some sizes (alignments). 1262 // When allocating 2^x bytes it should return 2^x aligned chunk. 1263 // PrimaryAllocator is used via a local AllocatorCache. 1264 // SecondaryAllocator can allocate anything, but is not efficient. 1265 template <class PrimaryAllocator, class AllocatorCache, 1266 class SecondaryAllocator> // NOLINT 1267 class CombinedAllocator { 1268 public: InitCommon(bool may_return_null)1269 void InitCommon(bool may_return_null) { 1270 primary_.Init(); 1271 atomic_store(&may_return_null_, may_return_null, memory_order_relaxed); 1272 } 1273 InitLinkerInitialized(bool may_return_null)1274 void InitLinkerInitialized(bool may_return_null) { 1275 secondary_.InitLinkerInitialized(may_return_null); 1276 stats_.InitLinkerInitialized(); 1277 InitCommon(may_return_null); 1278 } 1279 Init(bool may_return_null)1280 void Init(bool may_return_null) { 1281 secondary_.Init(may_return_null); 1282 stats_.Init(); 1283 InitCommon(may_return_null); 1284 } 1285 1286 void *Allocate(AllocatorCache *cache, uptr size, uptr alignment, 1287 bool cleared = false, bool check_rss_limit = false) { 1288 // Returning 0 on malloc(0) may break a lot of code. 1289 if (size == 0) 1290 size = 1; 1291 if (size + alignment < size) 1292 return ReturnNullOrDie(); 1293 if (check_rss_limit && RssLimitIsExceeded()) 1294 return ReturnNullOrDie(); 1295 if (alignment > 8) 1296 size = RoundUpTo(size, alignment); 1297 void *res; 1298 bool from_primary = primary_.CanAllocate(size, alignment); 1299 if (from_primary) 1300 res = cache->Allocate(&primary_, primary_.ClassID(size)); 1301 else 1302 res = secondary_.Allocate(&stats_, size, alignment); 1303 if (alignment > 8) 1304 CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0); 1305 if (cleared && res && from_primary) 1306 internal_bzero_aligned16(res, RoundUpTo(size, 16)); 1307 return res; 1308 } 1309 MayReturnNull()1310 bool MayReturnNull() const { 1311 return atomic_load(&may_return_null_, memory_order_acquire); 1312 } 1313 ReturnNullOrDie()1314 void *ReturnNullOrDie() { 1315 if (MayReturnNull()) 1316 return nullptr; 1317 ReportAllocatorCannotReturnNull(); 1318 } 1319 SetMayReturnNull(bool may_return_null)1320 void SetMayReturnNull(bool may_return_null) { 1321 secondary_.SetMayReturnNull(may_return_null); 1322 atomic_store(&may_return_null_, may_return_null, memory_order_release); 1323 } 1324 RssLimitIsExceeded()1325 bool RssLimitIsExceeded() { 1326 return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire); 1327 } 1328 SetRssLimitIsExceeded(bool rss_limit_is_exceeded)1329 void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) { 1330 atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded, 1331 memory_order_release); 1332 } 1333 Deallocate(AllocatorCache * cache,void * p)1334 void Deallocate(AllocatorCache *cache, void *p) { 1335 if (!p) return; 1336 if (primary_.PointerIsMine(p)) 1337 cache->Deallocate(&primary_, primary_.GetSizeClass(p), p); 1338 else 1339 secondary_.Deallocate(&stats_, p); 1340 } 1341 Reallocate(AllocatorCache * cache,void * p,uptr new_size,uptr alignment)1342 void *Reallocate(AllocatorCache *cache, void *p, uptr new_size, 1343 uptr alignment) { 1344 if (!p) 1345 return Allocate(cache, new_size, alignment); 1346 if (!new_size) { 1347 Deallocate(cache, p); 1348 return nullptr; 1349 } 1350 CHECK(PointerIsMine(p)); 1351 uptr old_size = GetActuallyAllocatedSize(p); 1352 uptr memcpy_size = Min(new_size, old_size); 1353 void *new_p = Allocate(cache, new_size, alignment); 1354 if (new_p) 1355 internal_memcpy(new_p, p, memcpy_size); 1356 Deallocate(cache, p); 1357 return new_p; 1358 } 1359 PointerIsMine(void * p)1360 bool PointerIsMine(void *p) { 1361 if (primary_.PointerIsMine(p)) 1362 return true; 1363 return secondary_.PointerIsMine(p); 1364 } 1365 FromPrimary(void * p)1366 bool FromPrimary(void *p) { 1367 return primary_.PointerIsMine(p); 1368 } 1369 GetMetaData(const void * p)1370 void *GetMetaData(const void *p) { 1371 if (primary_.PointerIsMine(p)) 1372 return primary_.GetMetaData(p); 1373 return secondary_.GetMetaData(p); 1374 } 1375 GetBlockBegin(const void * p)1376 void *GetBlockBegin(const void *p) { 1377 if (primary_.PointerIsMine(p)) 1378 return primary_.GetBlockBegin(p); 1379 return secondary_.GetBlockBegin(p); 1380 } 1381 1382 // This function does the same as GetBlockBegin, but is much faster. 1383 // Must be called with the allocator locked. GetBlockBeginFastLocked(void * p)1384 void *GetBlockBeginFastLocked(void *p) { 1385 if (primary_.PointerIsMine(p)) 1386 return primary_.GetBlockBegin(p); 1387 return secondary_.GetBlockBeginFastLocked(p); 1388 } 1389 GetActuallyAllocatedSize(void * p)1390 uptr GetActuallyAllocatedSize(void *p) { 1391 if (primary_.PointerIsMine(p)) 1392 return primary_.GetActuallyAllocatedSize(p); 1393 return secondary_.GetActuallyAllocatedSize(p); 1394 } 1395 TotalMemoryUsed()1396 uptr TotalMemoryUsed() { 1397 return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed(); 1398 } 1399 TestOnlyUnmap()1400 void TestOnlyUnmap() { primary_.TestOnlyUnmap(); } 1401 InitCache(AllocatorCache * cache)1402 void InitCache(AllocatorCache *cache) { 1403 cache->Init(&stats_); 1404 } 1405 DestroyCache(AllocatorCache * cache)1406 void DestroyCache(AllocatorCache *cache) { 1407 cache->Destroy(&primary_, &stats_); 1408 } 1409 SwallowCache(AllocatorCache * cache)1410 void SwallowCache(AllocatorCache *cache) { 1411 cache->Drain(&primary_); 1412 } 1413 GetStats(AllocatorStatCounters s)1414 void GetStats(AllocatorStatCounters s) const { 1415 stats_.Get(s); 1416 } 1417 PrintStats()1418 void PrintStats() { 1419 primary_.PrintStats(); 1420 secondary_.PrintStats(); 1421 } 1422 1423 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone 1424 // introspection API. ForceLock()1425 void ForceLock() { 1426 primary_.ForceLock(); 1427 secondary_.ForceLock(); 1428 } 1429 ForceUnlock()1430 void ForceUnlock() { 1431 secondary_.ForceUnlock(); 1432 primary_.ForceUnlock(); 1433 } 1434 1435 // Iterate over all existing chunks. 1436 // The allocator must be locked when calling this function. ForEachChunk(ForEachChunkCallback callback,void * arg)1437 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 1438 primary_.ForEachChunk(callback, arg); 1439 secondary_.ForEachChunk(callback, arg); 1440 } 1441 1442 private: 1443 PrimaryAllocator primary_; 1444 SecondaryAllocator secondary_; 1445 AllocatorGlobalStats stats_; 1446 atomic_uint8_t may_return_null_; 1447 atomic_uint8_t rss_limit_is_exceeded_; 1448 }; 1449 1450 // Returns true if calloc(size, n) should return 0 due to overflow in size*n. 1451 bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n); 1452 1453 } // namespace __sanitizer 1454 1455 #endif // SANITIZER_ALLOCATOR_H 1456