1 /*-------------------------------------------------------------------------
2  * drawElements Quality Program Tester Core
3  * ----------------------------------------
4  *
5  * Copyright 2016 The Android Open Source Project
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief ASTC Utilities.
22  *//*--------------------------------------------------------------------*/
23 
24 #include "tcuAstcUtil.hpp"
25 #include "deFloat16.h"
26 #include "deRandom.hpp"
27 #include "deMeta.hpp"
28 
29 #include <algorithm>
30 
31 namespace tcu
32 {
33 namespace astc
34 {
35 
36 using std::vector;
37 
38 namespace
39 {
40 
41 // Common utilities
42 
43 enum
44 {
45 	MAX_BLOCK_WIDTH		= 12,
46 	MAX_BLOCK_HEIGHT	= 12
47 };
48 
getBit(deUint32 src,int ndx)49 inline deUint32 getBit (deUint32 src, int ndx)
50 {
51 	DE_ASSERT(de::inBounds(ndx, 0, 32));
52 	return (src >> ndx) & 1;
53 }
54 
getBits(deUint32 src,int low,int high)55 inline deUint32 getBits (deUint32 src, int low, int high)
56 {
57 	const int numBits = (high-low) + 1;
58 
59 	DE_ASSERT(de::inRange(numBits, 1, 32));
60 
61 	if (numBits < 32)
62 		return (deUint32)((src >> low) & ((1u<<numBits)-1));
63 	else
64 		return (deUint32)((src >> low) & 0xFFFFFFFFu);
65 }
66 
isBitSet(deUint32 src,int ndx)67 inline bool isBitSet (deUint32 src, int ndx)
68 {
69 	return getBit(src, ndx) != 0;
70 }
71 
reverseBits(deUint32 src,int numBits)72 inline deUint32 reverseBits (deUint32 src, int numBits)
73 {
74 	DE_ASSERT(de::inRange(numBits, 0, 32));
75 	deUint32 result = 0;
76 	for (int i = 0; i < numBits; i++)
77 		result |= ((src >> i) & 1) << (numBits-1-i);
78 	return result;
79 }
80 
bitReplicationScale(deUint32 src,int numSrcBits,int numDstBits)81 inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
82 {
83 	DE_ASSERT(numSrcBits <= numDstBits);
84 	DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
85 	deUint32 dst = 0;
86 	for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
87 		dst |= shift >= 0 ? src << shift : src >> -shift;
88 	return dst;
89 }
90 
signExtend(deInt32 src,int numSrcBits)91 inline deInt32 signExtend (deInt32 src, int numSrcBits)
92 {
93 	DE_ASSERT(de::inRange(numSrcBits, 2, 31));
94 	const bool negative = (src & (1 << (numSrcBits-1))) != 0;
95 	return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
96 }
97 
isFloat16InfOrNan(deFloat16 v)98 inline bool isFloat16InfOrNan (deFloat16 v)
99 {
100 	return getBits(v, 10, 14) == 31;
101 }
102 
103 enum ISEMode
104 {
105 	ISEMODE_TRIT = 0,
106 	ISEMODE_QUINT,
107 	ISEMODE_PLAIN_BIT,
108 
109 	ISEMODE_LAST
110 };
111 
112 struct ISEParams
113 {
114 	ISEMode		mode;
115 	int			numBits;
116 
ISEParamstcu::astc::__anon1989e5c50111::ISEParams117 	ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
118 };
119 
computeNumRequiredBits(const ISEParams & iseParams,int numValues)120 inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
121 {
122 	switch (iseParams.mode)
123 	{
124 		case ISEMODE_TRIT:			return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
125 		case ISEMODE_QUINT:			return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
126 		case ISEMODE_PLAIN_BIT:		return numValues*iseParams.numBits;
127 		default:
128 			DE_ASSERT(false);
129 			return -1;
130 	}
131 }
132 
computeMaximumRangeISEParams(int numAvailableBits,int numValuesInSequence)133 ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
134 {
135 	int curBitsForTritMode		= 6;
136 	int curBitsForQuintMode		= 5;
137 	int curBitsForPlainBitMode	= 8;
138 
139 	while (true)
140 	{
141 		DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
142 
143 		const int tritRange			= curBitsForTritMode > 0		? (3 << curBitsForTritMode) - 1			: -1;
144 		const int quintRange		= curBitsForQuintMode > 0		? (5 << curBitsForQuintMode) - 1		: -1;
145 		const int plainBitRange		= curBitsForPlainBitMode > 0	? (1 << curBitsForPlainBitMode) - 1		: -1;
146 		const int maxRange			= de::max(de::max(tritRange, quintRange), plainBitRange);
147 
148 		if (maxRange == tritRange)
149 		{
150 			const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
151 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
152 				return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
153 			curBitsForTritMode--;
154 		}
155 		else if (maxRange == quintRange)
156 		{
157 			const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
158 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
159 				return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
160 			curBitsForQuintMode--;
161 		}
162 		else
163 		{
164 			const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
165 			DE_ASSERT(maxRange == plainBitRange);
166 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
167 				return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
168 			curBitsForPlainBitMode--;
169 		}
170 	}
171 }
172 
computeNumColorEndpointValues(deUint32 endpointMode)173 inline int computeNumColorEndpointValues (deUint32 endpointMode)
174 {
175 	DE_ASSERT(endpointMode < 16);
176 	return (endpointMode/4 + 1) * 2;
177 }
178 
179 // Decompression utilities
180 
181 enum DecompressResult
182 {
183 	DECOMPRESS_RESULT_VALID_BLOCK	= 0,	//!< Decompressed valid block
184 	DECOMPRESS_RESULT_ERROR,				//!< Encountered error while decompressing, error color written
185 
186 	DECOMPRESS_RESULT_LAST
187 };
188 
189 // A helper for getting bits from a 128-bit block.
190 class Block128
191 {
192 private:
193 	typedef deUint64 Word;
194 
195 	enum
196 	{
197 		WORD_BYTES	= sizeof(Word),
198 		WORD_BITS	= 8*WORD_BYTES,
199 		NUM_WORDS	= 128 / WORD_BITS
200 	};
201 
202 	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
203 
204 public:
Block128(const deUint8 * src)205 	Block128 (const deUint8* src)
206 	{
207 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
208 		{
209 			m_words[wordNdx] = 0;
210 			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
211 				m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
212 		}
213 	}
214 
getBit(int ndx) const215 	deUint32 getBit (int ndx) const
216 	{
217 		DE_ASSERT(de::inBounds(ndx, 0, 128));
218 		return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
219 	}
220 
getBits(int low,int high) const221 	deUint32 getBits (int low, int high) const
222 	{
223 		DE_ASSERT(de::inBounds(low, 0, 128));
224 		DE_ASSERT(de::inBounds(high, 0, 128));
225 		DE_ASSERT(de::inRange(high-low+1, 0, 32));
226 
227 		if (high-low+1 == 0)
228 			return 0;
229 
230 		const int word0Ndx = low / WORD_BITS;
231 		const int word1Ndx = high / WORD_BITS;
232 
233 		// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
234 
235 		if (word0Ndx == word1Ndx)
236 			return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
237 		else
238 		{
239 			DE_ASSERT(word1Ndx == word0Ndx + 1);
240 
241 			return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
242 				   (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
243 		}
244 	}
245 
isBitSet(int ndx) const246 	bool isBitSet (int ndx) const
247 	{
248 		DE_ASSERT(de::inBounds(ndx, 0, 128));
249 		return getBit(ndx) != 0;
250 	}
251 
252 private:
253 	Word m_words[NUM_WORDS];
254 };
255 
256 // A helper for sequential access into a Block128.
257 class BitAccessStream
258 {
259 public:
BitAccessStream(const Block128 & src,int startNdxInSrc,int length,bool forward)260 	BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
261 		: m_src				(src)
262 		, m_startNdxInSrc	(startNdxInSrc)
263 		, m_length			(length)
264 		, m_forward			(forward)
265 		, m_ndx				(0)
266 	{
267 	}
268 
269 	// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
getNext(int num)270 	deUint32 getNext (int num)
271 	{
272 		if (num == 0 || m_ndx >= m_length)
273 			return 0;
274 
275 		const int end				= m_ndx + num;
276 		const int numBitsFromSrc	= de::max(0, de::min(m_length, end) - m_ndx);
277 		const int low				= m_ndx;
278 		const int high				= m_ndx + numBitsFromSrc - 1;
279 
280 		m_ndx += num;
281 
282 		return m_forward ?			   m_src.getBits(m_startNdxInSrc + low,  m_startNdxInSrc + high)
283 						 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
284 	}
285 
286 private:
287 	const Block128&		m_src;
288 	const int			m_startNdxInSrc;
289 	const int			m_length;
290 	const bool			m_forward;
291 
292 	int					m_ndx;
293 };
294 
295 struct ISEDecodedResult
296 {
297 	deUint32 m;
298 	deUint32 tq; //!< Trit or quint value, depending on ISE mode.
299 	deUint32 v;
300 };
301 
302 // Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
303 struct ASTCBlockMode
304 {
305 	bool		isError;
306 	// \note Following fields only relevant if !isError.
307 	bool		isVoidExtent;
308 	// \note Following fields only relevant if !isVoidExtent.
309 	bool		isDualPlane;
310 	int			weightGridWidth;
311 	int			weightGridHeight;
312 	ISEParams	weightISEParams;
313 
ASTCBlockModetcu::astc::__anon1989e5c50111::ASTCBlockMode314 	ASTCBlockMode (void)
315 		: isError			(true)
316 		, isVoidExtent		(true)
317 		, isDualPlane		(true)
318 		, weightGridWidth	(-1)
319 		, weightGridHeight	(-1)
320 		, weightISEParams	(ISEMODE_LAST, -1)
321 	{
322 	}
323 };
324 
computeNumWeights(const ASTCBlockMode & mode)325 inline int computeNumWeights (const ASTCBlockMode& mode)
326 {
327 	return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
328 }
329 
330 struct ColorEndpointPair
331 {
332 	UVec4 e0;
333 	UVec4 e1;
334 };
335 
336 struct TexelWeightPair
337 {
338 	deUint32 w[2];
339 };
340 
getASTCBlockMode(deUint32 blockModeData)341 ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
342 {
343 	ASTCBlockMode blockMode;
344 	blockMode.isError = true; // \note Set to false later, if not error.
345 
346 	blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
347 
348 	if (!blockMode.isVoidExtent)
349 	{
350 		if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
351 			return blockMode; // Invalid ("reserved").
352 
353 		deUint32 r = (deUint32)-1; // \note Set in the following branches.
354 
355 		if (getBits(blockModeData, 0, 1) == 0)
356 		{
357 			const deUint32 r0	= getBit(blockModeData, 4);
358 			const deUint32 r1	= getBit(blockModeData, 2);
359 			const deUint32 r2	= getBit(blockModeData, 3);
360 			const deUint32 i78	= getBits(blockModeData, 7, 8);
361 
362 			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
363 
364 			if (i78 == 3)
365 			{
366 				const bool i5 = isBitSet(blockModeData, 5);
367 				blockMode.weightGridWidth	= i5 ? 10 : 6;
368 				blockMode.weightGridHeight	= i5 ? 6  : 10;
369 			}
370 			else
371 			{
372 				const deUint32 a = getBits(blockModeData, 5, 6);
373 				switch (i78)
374 				{
375 					case 0:		blockMode.weightGridWidth = 12;		blockMode.weightGridHeight = a + 2;									break;
376 					case 1:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = 12;									break;
377 					case 2:		blockMode.weightGridWidth = a + 6;	blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6;		break;
378 					default: DE_ASSERT(false);
379 				}
380 			}
381 		}
382 		else
383 		{
384 			const deUint32 r0	= getBit(blockModeData, 4);
385 			const deUint32 r1	= getBit(blockModeData, 0);
386 			const deUint32 r2	= getBit(blockModeData, 1);
387 			const deUint32 i23	= getBits(blockModeData, 2, 3);
388 			const deUint32 a	= getBits(blockModeData, 5, 6);
389 
390 			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
391 
392 			if (i23 == 3)
393 			{
394 				const deUint32	b	= getBit(blockModeData, 7);
395 				const bool		i8	= isBitSet(blockModeData, 8);
396 				blockMode.weightGridWidth	= i8 ? b+2 : a+2;
397 				blockMode.weightGridHeight	= i8 ? a+2 : b+6;
398 			}
399 			else
400 			{
401 				const deUint32 b = getBits(blockModeData, 7, 8);
402 
403 				switch (i23)
404 				{
405 					case 0:		blockMode.weightGridWidth = b + 4;	blockMode.weightGridHeight = a + 2;	break;
406 					case 1:		blockMode.weightGridWidth = b + 8;	blockMode.weightGridHeight = a + 2;	break;
407 					case 2:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = b + 8;	break;
408 					default: DE_ASSERT(false);
409 				}
410 			}
411 		}
412 
413 		const bool	zeroDH		= getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
414 		const bool	h			= zeroDH ? 0 : isBitSet(blockModeData, 9);
415 		blockMode.isDualPlane	= zeroDH ? 0 : isBitSet(blockModeData, 10);
416 
417 		{
418 			ISEMode&	m	= blockMode.weightISEParams.mode;
419 			int&		b	= blockMode.weightISEParams.numBits;
420 			m = ISEMODE_PLAIN_BIT;
421 			b = 0;
422 
423 			if (h)
424 			{
425 				switch (r)
426 				{
427 					case 2:							m = ISEMODE_QUINT;	b = 1;	break;
428 					case 3:		m = ISEMODE_TRIT;						b = 2;	break;
429 					case 4:												b = 4;	break;
430 					case 5:							m = ISEMODE_QUINT;	b = 2;	break;
431 					case 6:		m = ISEMODE_TRIT;						b = 3;	break;
432 					case 7:												b = 5;	break;
433 					default:	DE_ASSERT(false);
434 				}
435 			}
436 			else
437 			{
438 				switch (r)
439 				{
440 					case 2:												b = 1;	break;
441 					case 3:		m = ISEMODE_TRIT;								break;
442 					case 4:												b = 2;	break;
443 					case 5:							m = ISEMODE_QUINT;			break;
444 					case 6:		m = ISEMODE_TRIT;						b = 1;	break;
445 					case 7:												b = 3;	break;
446 					default:	DE_ASSERT(false);
447 				}
448 			}
449 		}
450 	}
451 
452 	blockMode.isError = false;
453 	return blockMode;
454 }
455 
setASTCErrorColorBlock(void * dst,int blockWidth,int blockHeight,bool isSRGB)456 inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
457 {
458 	if (isSRGB)
459 	{
460 		deUint8* const dstU = (deUint8*)dst;
461 
462 		for (int i = 0; i < blockWidth*blockHeight; i++)
463 		{
464 			dstU[4*i + 0] = 0xff;
465 			dstU[4*i + 1] = 0;
466 			dstU[4*i + 2] = 0xff;
467 			dstU[4*i + 3] = 0xff;
468 		}
469 	}
470 	else
471 	{
472 		float* const dstF = (float*)dst;
473 
474 		for (int i = 0; i < blockWidth*blockHeight; i++)
475 		{
476 			dstF[4*i + 0] = 1.0f;
477 			dstF[4*i + 1] = 0.0f;
478 			dstF[4*i + 2] = 1.0f;
479 			dstF[4*i + 3] = 1.0f;
480 		}
481 	}
482 }
483 
decodeVoidExtentBlock(void * dst,const Block128 & blockData,int blockWidth,int blockHeight,bool isSRGB,bool isLDRMode)484 DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
485 {
486 	const deUint32	minSExtent			= blockData.getBits(12, 24);
487 	const deUint32	maxSExtent			= blockData.getBits(25, 37);
488 	const deUint32	minTExtent			= blockData.getBits(38, 50);
489 	const deUint32	maxTExtent			= blockData.getBits(51, 63);
490 	const bool		allExtentsAllOnes	= minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff;
491 	const bool		isHDRBlock			= blockData.isBitSet(9);
492 
493 	if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
494 	{
495 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
496 		return DECOMPRESS_RESULT_ERROR;
497 	}
498 
499 	const deUint32 rgba[4] =
500 	{
501 		blockData.getBits(64,  79),
502 		blockData.getBits(80,  95),
503 		blockData.getBits(96,  111),
504 		blockData.getBits(112, 127)
505 	};
506 
507 	if (isSRGB)
508 	{
509 		deUint8* const dstU = (deUint8*)dst;
510 		for (int i = 0; i < blockWidth*blockHeight; i++)
511 		for (int c = 0; c < 4; c++)
512 			dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
513 	}
514 	else
515 	{
516 		float* const dstF = (float*)dst;
517 
518 		if (isHDRBlock)
519 		{
520 			for (int c = 0; c < 4; c++)
521 			{
522 				if (isFloat16InfOrNan((deFloat16)rgba[c]))
523 					throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
524 			}
525 
526 			for (int i = 0; i < blockWidth*blockHeight; i++)
527 			for (int c = 0; c < 4; c++)
528 				dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]);
529 		}
530 		else
531 		{
532 			for (int i = 0; i < blockWidth*blockHeight; i++)
533 			for (int c = 0; c < 4; c++)
534 				dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f;
535 		}
536 	}
537 
538 	return DECOMPRESS_RESULT_VALID_BLOCK;
539 }
540 
decodeColorEndpointModes(deUint32 * endpointModesDst,const Block128 & blockData,int numPartitions,int extraCemBitsStart)541 void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
542 {
543 	if (numPartitions == 1)
544 		endpointModesDst[0] = blockData.getBits(13, 16);
545 	else
546 	{
547 		const deUint32 highLevelSelector = blockData.getBits(23, 24);
548 
549 		if (highLevelSelector == 0)
550 		{
551 			const deUint32 mode = blockData.getBits(25, 28);
552 			for (int i = 0; i < numPartitions; i++)
553 				endpointModesDst[i] = mode;
554 		}
555 		else
556 		{
557 			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
558 			{
559 				const deUint32 cemClass		= highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
560 				const deUint32 lowBit0Ndx	= numPartitions + 2*partNdx;
561 				const deUint32 lowBit1Ndx	= numPartitions + 2*partNdx + 1;
562 				const deUint32 lowBit0		= blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
563 				const deUint32 lowBit1		= blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
564 
565 				endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
566 			}
567 		}
568 	}
569 }
570 
computeNumColorEndpointValues(const deUint32 * endpointModes,int numPartitions)571 int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
572 {
573 	int result = 0;
574 	for (int i = 0; i < numPartitions; i++)
575 		result += computeNumColorEndpointValues(endpointModes[i]);
576 	return result;
577 }
578 
decodeISETritBlock(ISEDecodedResult * dst,int numValues,BitAccessStream & data,int numBits)579 void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
580 {
581 	DE_ASSERT(de::inRange(numValues, 1, 5));
582 
583 	deUint32 m[5];
584 
585 	m[0]			= data.getNext(numBits);
586 	deUint32 T01	= data.getNext(2);
587 	m[1]			= data.getNext(numBits);
588 	deUint32 T23	= data.getNext(2);
589 	m[2]			= data.getNext(numBits);
590 	deUint32 T4		= data.getNext(1);
591 	m[3]			= data.getNext(numBits);
592 	deUint32 T56	= data.getNext(2);
593 	m[4]			= data.getNext(numBits);
594 	deUint32 T7		= data.getNext(1);
595 
596 	switch (numValues)
597 	{
598 		// \note Fall-throughs.
599 		case 1: T23		= 0;
600 		case 2: T4		= 0;
601 		case 3: T56		= 0;
602 		case 4: T7		= 0;
603 		case 5: break;
604 		default:
605 			DE_ASSERT(false);
606 	}
607 
608 	const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
609 
610 	static const deUint32 tritsFromT[256][5] =
611 	{
612 		{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
613 		{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
614 		{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
615 		{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
616 		{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
617 		{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
618 		{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
619 		{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
620 		{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
621 		{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
622 		{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
623 		{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
624 		{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
625 		{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
626 		{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
627 		{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
628 	};
629 
630 	const deUint32 (& trits)[5] = tritsFromT[T];
631 
632 	for (int i = 0; i < numValues; i++)
633 	{
634 		dst[i].m	= m[i];
635 		dst[i].tq	= trits[i];
636 		dst[i].v	= (trits[i] << numBits) + m[i];
637 	}
638 }
639 
decodeISEQuintBlock(ISEDecodedResult * dst,int numValues,BitAccessStream & data,int numBits)640 void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
641 {
642 	DE_ASSERT(de::inRange(numValues, 1, 3));
643 
644 	deUint32 m[3];
645 
646 	m[0]			= data.getNext(numBits);
647 	deUint32 Q012	= data.getNext(3);
648 	m[1]			= data.getNext(numBits);
649 	deUint32 Q34	= data.getNext(2);
650 	m[2]			= data.getNext(numBits);
651 	deUint32 Q56	= data.getNext(2);
652 
653 	switch (numValues)
654 	{
655 		// \note Fall-throughs.
656 		case 1: Q34		= 0;
657 		case 2: Q56		= 0;
658 		case 3: break;
659 		default:
660 			DE_ASSERT(false);
661 	}
662 
663 	const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
664 
665 	static const deUint32 quintsFromQ[256][3] =
666 	{
667 		{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
668 		{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
669 		{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
670 		{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
671 		{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
672 		{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
673 		{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
674 		{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
675 	};
676 
677 	const deUint32 (& quints)[3] = quintsFromQ[Q];
678 
679 	for (int i = 0; i < numValues; i++)
680 	{
681 		dst[i].m	= m[i];
682 		dst[i].tq	= quints[i];
683 		dst[i].v	= (quints[i] << numBits) + m[i];
684 	}
685 }
686 
decodeISEBitBlock(ISEDecodedResult * dst,BitAccessStream & data,int numBits)687 inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
688 {
689 	dst[0].m = data.getNext(numBits);
690 	dst[0].v = dst[0].m;
691 }
692 
decodeISE(ISEDecodedResult * dst,int numValues,BitAccessStream & data,const ISEParams & params)693 void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
694 {
695 	if (params.mode == ISEMODE_TRIT)
696 	{
697 		const int numBlocks = deDivRoundUp32(numValues, 5);
698 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
699 		{
700 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
701 			decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
702 		}
703 	}
704 	else if (params.mode == ISEMODE_QUINT)
705 	{
706 		const int numBlocks = deDivRoundUp32(numValues, 3);
707 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
708 		{
709 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
710 			decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
711 		}
712 	}
713 	else
714 	{
715 		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
716 		for (int i = 0; i < numValues; i++)
717 			decodeISEBitBlock(&dst[i], data, params.numBits);
718 	}
719 }
720 
unquantizeColorEndpoints(deUint32 * dst,const ISEDecodedResult * iseResults,int numEndpoints,const ISEParams & iseParams)721 void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
722 {
723 	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
724 	{
725 		const int rangeCase				= iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
726 		DE_ASSERT(de::inRange(rangeCase, 0, 10));
727 		static const deUint32	Ca[11]	= { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
728 		const deUint32			C		= Ca[rangeCase];
729 
730 		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
731 		{
732 			const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
733 			const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
734 			const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
735 			const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
736 			const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
737 			const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
738 
739 			const deUint32 A = a == 0 ? 0 : (1<<9)-1;
740 			const deUint32 B = rangeCase == 0	? 0
741 							 : rangeCase == 1	? 0
742 							 : rangeCase == 2	? (b << 8) |									(b << 4) |				(b << 2) |	(b << 1)
743 							 : rangeCase == 3	? (b << 8) |												(b << 3) |	(b << 2)
744 							 : rangeCase == 4	? (c << 8) | (b << 7) |										(c << 3) |	(b << 2) |	(c << 1) |	(b << 0)
745 							 : rangeCase == 5	? (c << 8) | (b << 7) |													(c << 2) |	(b << 1) |	(c << 0)
746 							 : rangeCase == 6	? (d << 8) | (c << 7) | (b << 6) |										(d << 2) |	(c << 1) |	(b << 0)
747 							 : rangeCase == 7	? (d << 8) | (c << 7) | (b << 6) |													(d << 1) |	(c << 0)
748 							 : rangeCase == 8	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |										(e << 1) |	(d << 0)
749 							 : rangeCase == 9	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |													(e << 0)
750 							 : rangeCase == 10	? (f << 8) | (e << 7) | (d << 6) | (c << 5) |	(b << 4) |										(f << 0)
751 							 : (deUint32)-1;
752 			DE_ASSERT(B != (deUint32)-1);
753 
754 			dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
755 		}
756 	}
757 	else
758 	{
759 		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
760 
761 		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
762 			dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
763 	}
764 }
765 
bitTransferSigned(deInt32 & a,deInt32 & b)766 inline void bitTransferSigned (deInt32& a, deInt32& b)
767 {
768 	b >>= 1;
769 	b |= a & 0x80;
770 	a >>= 1;
771 	a &= 0x3f;
772 	if (isBitSet(a, 5))
773 		a -= 0x40;
774 }
775 
clampedRGBA(const IVec4 & rgba)776 inline UVec4 clampedRGBA (const IVec4& rgba)
777 {
778 	return UVec4(de::clamp(rgba.x(), 0, 0xff),
779 				 de::clamp(rgba.y(), 0, 0xff),
780 				 de::clamp(rgba.z(), 0, 0xff),
781 				 de::clamp(rgba.w(), 0, 0xff));
782 }
783 
blueContract(int r,int g,int b,int a)784 inline IVec4 blueContract (int r, int g, int b, int a)
785 {
786 	return IVec4((r+b)>>1, (g+b)>>1, b, a);
787 }
788 
isColorEndpointModeHDR(deUint32 mode)789 inline bool isColorEndpointModeHDR (deUint32 mode)
790 {
791 	return mode == 2	||
792 		   mode == 3	||
793 		   mode == 7	||
794 		   mode == 11	||
795 		   mode == 14	||
796 		   mode == 15;
797 }
798 
decodeHDREndpointMode7(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3)799 void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
800 {
801 	const deUint32 m10		= getBit(v1, 7) | (getBit(v2, 7) << 1);
802 	const deUint32 m23		= getBits(v0, 6, 7);
803 	const deUint32 majComp	= m10 != 3	? m10
804 							: m23 != 3	? m23
805 							:			  0;
806 	const deUint32 mode		= m10 != 3	? m23
807 							: m23 != 3	? 4
808 							:			  5;
809 
810 	deInt32			red		= (deInt32)getBits(v0, 0, 5);
811 	deInt32			green	= (deInt32)getBits(v1, 0, 4);
812 	deInt32			blue	= (deInt32)getBits(v2, 0, 4);
813 	deInt32			scale	= (deInt32)getBits(v3, 0, 4);
814 
815 	{
816 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
817 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
818 
819 		const deUint32	x0	= getBit(v1, 6);
820 		const deUint32	x1	= getBit(v1, 5);
821 		const deUint32	x2	= getBit(v2, 6);
822 		const deUint32	x3	= getBit(v2, 5);
823 		const deUint32	x4	= getBit(v3, 7);
824 		const deUint32	x5	= getBit(v3, 6);
825 		const deUint32	x6	= getBit(v3, 5);
826 
827 		deInt32&		R	= red;
828 		deInt32&		G	= green;
829 		deInt32&		B	= blue;
830 		deInt32&		S	= scale;
831 
832 		switch (mode)
833 		{
834 			case 0: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,10,  R,6,  S,6,   S,5); break;
835 			case 1: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  R,10,  R,9); break;
836 			case 2: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,6,   S,7,  S,6,   S,5); break;
837 			case 3: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  S,6,   S,5); break;
838 			case 4: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  R,7,   S,5); break;
839 			case 5: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  S,6,   S,5); break;
840 			default:
841 				DE_ASSERT(false);
842 		}
843 
844 #undef ASSIGN_X_BITS
845 #undef SHOR
846 	}
847 
848 	static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
849 	DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
850 
851 	red		<<= shiftAmounts[mode];
852 	green	<<= shiftAmounts[mode];
853 	blue	<<= shiftAmounts[mode];
854 	scale	<<= shiftAmounts[mode];
855 
856 	if (mode != 5)
857 	{
858 		green	= red - green;
859 		blue	= red - blue;
860 	}
861 
862 	if (majComp == 1)
863 		std::swap(red, green);
864 	else if (majComp == 2)
865 		std::swap(red, blue);
866 
867 	e0 = UVec4(de::clamp(red	- scale,	0, 0xfff),
868 			   de::clamp(green	- scale,	0, 0xfff),
869 			   de::clamp(blue	- scale,	0, 0xfff),
870 			   0x780);
871 
872 	e1 = UVec4(de::clamp(red,				0, 0xfff),
873 			   de::clamp(green,				0, 0xfff),
874 			   de::clamp(blue,				0, 0xfff),
875 			   0x780);
876 }
877 
decodeHDREndpointMode11(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3,deUint32 v4,deUint32 v5)878 void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
879 {
880 	const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
881 
882 	if (major == 3)
883 	{
884 		e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
885 		e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
886 	}
887 	else
888 	{
889 		const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
890 
891 		deInt32 a	= (deInt32)((getBit(v1, 6) << 8) | v0);
892 		deInt32 c	= (deInt32)(getBits(v1, 0, 5));
893 		deInt32 b0	= (deInt32)(getBits(v2, 0, 5));
894 		deInt32 b1	= (deInt32)(getBits(v3, 0, 5));
895 		deInt32 d0	= (deInt32)(getBits(v4, 0, 4));
896 		deInt32 d1	= (deInt32)(getBits(v5, 0, 4));
897 
898 		{
899 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
900 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
901 
902 			const deUint32 x0 = getBit(v2, 6);
903 			const deUint32 x1 = getBit(v3, 6);
904 			const deUint32 x2 = getBit(v4, 6);
905 			const deUint32 x3 = getBit(v5, 6);
906 			const deUint32 x4 = getBit(v4, 5);
907 			const deUint32 x5 = getBit(v5, 5);
908 
909 			switch (mode)
910 			{
911 				case 0: ASSIGN_X_BITS(b0,6,  b1,6,   d0,6,  d1,6,  d0,5,  d1,5); break;
912 				case 1: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  d0,5,  d1,5); break;
913 				case 2: ASSIGN_X_BITS(a,9,   c,6,    d0,6,  d1,6,  d0,5,  d1,5); break;
914 				case 3: ASSIGN_X_BITS(b0,6,  b1,6,   a,9,   c,6,   d0,5,  d1,5); break;
915 				case 4: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  a,9,   a,10); break;
916 				case 5: ASSIGN_X_BITS(a,9,   a,10,   c,7,   c,6,   d0,5,  d1,5); break;
917 				case 6: ASSIGN_X_BITS(b0,6,  b1,6,   a,11,  c,6,   a,9,   a,10); break;
918 				case 7: ASSIGN_X_BITS(a,9,   a,10,   a,11,  c,6,   d0,5,  d1,5); break;
919 				default:
920 					DE_ASSERT(false);
921 			}
922 
923 #undef ASSIGN_X_BITS
924 #undef SHOR
925 		}
926 
927 		static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
928 		DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
929 
930 		d0 = signExtend(d0, numDBits[mode]);
931 		d1 = signExtend(d1, numDBits[mode]);
932 
933 		const int shiftAmount = (mode >> 1) ^ 3;
934 		a	<<= shiftAmount;
935 		c	<<= shiftAmount;
936 		b0	<<= shiftAmount;
937 		b1	<<= shiftAmount;
938 		d0	<<= shiftAmount;
939 		d1	<<= shiftAmount;
940 
941 		e0 = UVec4(de::clamp(a-c,			0, 0xfff),
942 				   de::clamp(a-b0-c-d0,		0, 0xfff),
943 				   de::clamp(a-b1-c-d1,		0, 0xfff),
944 				   0x780);
945 
946 		e1 = UVec4(de::clamp(a,				0, 0xfff),
947 				   de::clamp(a-b0,			0, 0xfff),
948 				   de::clamp(a-b1,			0, 0xfff),
949 				   0x780);
950 
951 		if (major == 1)
952 		{
953 			std::swap(e0.x(), e0.y());
954 			std::swap(e1.x(), e1.y());
955 		}
956 		else if (major == 2)
957 		{
958 			std::swap(e0.x(), e0.z());
959 			std::swap(e1.x(), e1.z());
960 		}
961 	}
962 }
963 
decodeHDREndpointMode15(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3,deUint32 v4,deUint32 v5,deUint32 v6In,deUint32 v7In)964 void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
965 {
966 	decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
967 
968 	const deUint32	mode	= (getBit(v7In, 7) << 1) | getBit(v6In, 7);
969 	deInt32			v6		= (deInt32)getBits(v6In, 0, 6);
970 	deInt32			v7		= (deInt32)getBits(v7In, 0, 6);
971 
972 	if (mode == 3)
973 	{
974 		e0.w() = v6 << 5;
975 		e1.w() = v7 << 5;
976 	}
977 	else
978 	{
979 		v6 |= (v7 << (mode+1)) & 0x780;
980 		v7 &= (0x3f >> mode);
981 		v7 ^= 0x20 >> mode;
982 		v7 -= 0x20 >> mode;
983 		v6 <<= 4-mode;
984 		v7 <<= 4-mode;
985 
986 		v7 += v6;
987 		v7 = de::clamp(v7, 0, 0xfff);
988 		e0.w() = v6;
989 		e1.w() = v7;
990 	}
991 }
992 
decodeColorEndpoints(ColorEndpointPair * dst,const deUint32 * unquantizedEndpoints,const deUint32 * endpointModes,int numPartitions)993 void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
994 {
995 	int unquantizedNdx = 0;
996 
997 	for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
998 	{
999 		const deUint32		endpointMode	= endpointModes[partitionNdx];
1000 		const deUint32*		v				= &unquantizedEndpoints[unquantizedNdx];
1001 		UVec4&				e0				= dst[partitionNdx].e0;
1002 		UVec4&				e1				= dst[partitionNdx].e1;
1003 
1004 		unquantizedNdx += computeNumColorEndpointValues(endpointMode);
1005 
1006 		switch (endpointMode)
1007 		{
1008 			case 0:
1009 				e0 = UVec4(v[0], v[0], v[0], 0xff);
1010 				e1 = UVec4(v[1], v[1], v[1], 0xff);
1011 				break;
1012 
1013 			case 1:
1014 			{
1015 				const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
1016 				const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5));
1017 				e0 = UVec4(L0, L0, L0, 0xff);
1018 				e1 = UVec4(L1, L1, L1, 0xff);
1019 				break;
1020 			}
1021 
1022 			case 2:
1023 			{
1024 				const deUint32 v1Gr		= v[1] >= v[0];
1025 				const deUint32 y0		= v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
1026 				const deUint32 y1		= v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
1027 
1028 				e0 = UVec4(y0, y0, y0, 0x780);
1029 				e1 = UVec4(y1, y1, y1, 0x780);
1030 				break;
1031 			}
1032 
1033 			case 3:
1034 			{
1035 				const bool		m	= isBitSet(v[0], 7);
1036 				const deUint32	y0	= m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
1037 										: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
1038 				const deUint32	d	= m ? getBits(v[1], 0, 4) << 2
1039 										: getBits(v[1], 0, 3) << 1;
1040 				const deUint32	y1	= de::min(0xfffu, y0+d);
1041 
1042 				e0 = UVec4(y0, y0, y0, 0x780);
1043 				e1 = UVec4(y1, y1, y1, 0x780);
1044 				break;
1045 			}
1046 
1047 			case 4:
1048 				e0 = UVec4(v[0], v[0], v[0], v[2]);
1049 				e1 = UVec4(v[1], v[1], v[1], v[3]);
1050 				break;
1051 
1052 			case 5:
1053 			{
1054 				deInt32 v0 = (deInt32)v[0];
1055 				deInt32 v1 = (deInt32)v[1];
1056 				deInt32 v2 = (deInt32)v[2];
1057 				deInt32 v3 = (deInt32)v[3];
1058 				bitTransferSigned(v1, v0);
1059 				bitTransferSigned(v3, v2);
1060 
1061 				e0 = clampedRGBA(IVec4(v0,		v0,		v0,		v2));
1062 				e1 = clampedRGBA(IVec4(v0+v1,	v0+v1,	v0+v1,	v2+v3));
1063 				break;
1064 			}
1065 
1066 			case 6:
1067 				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	0xff);
1068 				e1 = UVec4(v[0],				v[1],				v[2],				0xff);
1069 				break;
1070 
1071 			case 7:
1072 				decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
1073 				break;
1074 
1075 			case 8:
1076 				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1077 				{
1078 					e0 = UVec4(v[0], v[2], v[4], 0xff);
1079 					e1 = UVec4(v[1], v[3], v[5], 0xff);
1080 				}
1081 				else
1082 				{
1083 					e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
1084 					e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
1085 				}
1086 				break;
1087 
1088 			case 9:
1089 			{
1090 				deInt32 v0 = (deInt32)v[0];
1091 				deInt32 v1 = (deInt32)v[1];
1092 				deInt32 v2 = (deInt32)v[2];
1093 				deInt32 v3 = (deInt32)v[3];
1094 				deInt32 v4 = (deInt32)v[4];
1095 				deInt32 v5 = (deInt32)v[5];
1096 				bitTransferSigned(v1, v0);
1097 				bitTransferSigned(v3, v2);
1098 				bitTransferSigned(v5, v4);
1099 
1100 				if (v1+v3+v5 >= 0)
1101 				{
1102 					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		0xff));
1103 					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	0xff));
1104 				}
1105 				else
1106 				{
1107 					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	0xff));
1108 					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		0xff));
1109 				}
1110 				break;
1111 			}
1112 
1113 			case 10:
1114 				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	v[4]);
1115 				e1 = UVec4(v[0],				v[1],				v[2],				v[5]);
1116 				break;
1117 
1118 			case 11:
1119 				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1120 				break;
1121 
1122 			case 12:
1123 				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1124 				{
1125 					e0 = UVec4(v[0], v[2], v[4], v[6]);
1126 					e1 = UVec4(v[1], v[3], v[5], v[7]);
1127 				}
1128 				else
1129 				{
1130 					e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
1131 					e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
1132 				}
1133 				break;
1134 
1135 			case 13:
1136 			{
1137 				deInt32 v0 = (deInt32)v[0];
1138 				deInt32 v1 = (deInt32)v[1];
1139 				deInt32 v2 = (deInt32)v[2];
1140 				deInt32 v3 = (deInt32)v[3];
1141 				deInt32 v4 = (deInt32)v[4];
1142 				deInt32 v5 = (deInt32)v[5];
1143 				deInt32 v6 = (deInt32)v[6];
1144 				deInt32 v7 = (deInt32)v[7];
1145 				bitTransferSigned(v1, v0);
1146 				bitTransferSigned(v3, v2);
1147 				bitTransferSigned(v5, v4);
1148 				bitTransferSigned(v7, v6);
1149 
1150 				if (v1+v3+v5 >= 0)
1151 				{
1152 					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		v6));
1153 					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1154 				}
1155 				else
1156 				{
1157 					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1158 					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		v6));
1159 				}
1160 
1161 				break;
1162 			}
1163 
1164 			case 14:
1165 				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1166 				e0.w() = v[6];
1167 				e1.w() = v[7];
1168 				break;
1169 
1170 			case 15:
1171 				decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
1172 				break;
1173 
1174 			default:
1175 				DE_ASSERT(false);
1176 		}
1177 	}
1178 }
1179 
computeColorEndpoints(ColorEndpointPair * dst,const Block128 & blockData,const deUint32 * endpointModes,int numPartitions,int numColorEndpointValues,const ISEParams & iseParams,int numBitsAvailable)1180 void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
1181 {
1182 	const int			colorEndpointDataStart = numPartitions == 1 ? 17 : 29;
1183 	ISEDecodedResult	colorEndpointData[18];
1184 
1185 	{
1186 		BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
1187 		decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
1188 	}
1189 
1190 	{
1191 		deUint32 unquantizedEndpoints[18];
1192 		unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
1193 		decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
1194 	}
1195 }
1196 
unquantizeWeights(deUint32 dst[64],const ISEDecodedResult * weightGrid,const ASTCBlockMode & blockMode)1197 void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
1198 {
1199 	const int			numWeights	= computeNumWeights(blockMode);
1200 	const ISEParams&	iseParams	= blockMode.weightISEParams;
1201 
1202 	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
1203 	{
1204 		const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
1205 
1206 		if (rangeCase == 0 || rangeCase == 1)
1207 		{
1208 			static const deUint32 map0[3]	= { 0, 32, 63 };
1209 			static const deUint32 map1[5]	= { 0, 16, 32, 47, 63 };
1210 			const deUint32* const map		= rangeCase == 0 ? &map0[0] : &map1[0];
1211 			for (int i = 0; i < numWeights; i++)
1212 			{
1213 				DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
1214 				dst[i] = map[weightGrid[i].v];
1215 			}
1216 		}
1217 		else
1218 		{
1219 			DE_ASSERT(rangeCase <= 6);
1220 			static const deUint32	Ca[5]	= { 50, 28, 23, 13, 11 };
1221 			const deUint32			C		= Ca[rangeCase-2];
1222 
1223 			for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1224 			{
1225 				const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
1226 				const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
1227 				const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
1228 
1229 				const deUint32 A = a == 0 ? 0 : (1<<7)-1;
1230 				const deUint32 B = rangeCase == 2 ? 0
1231 								 : rangeCase == 3 ? 0
1232 								 : rangeCase == 4 ? (b << 6) |					(b << 2) |				(b << 0)
1233 								 : rangeCase == 5 ? (b << 6) |								(b << 1)
1234 								 : rangeCase == 6 ? (c << 6) | (b << 5) |					(c << 1) |	(b << 0)
1235 								 : (deUint32)-1;
1236 
1237 				dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
1238 			}
1239 		}
1240 	}
1241 	else
1242 	{
1243 		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1244 
1245 		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1246 			dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
1247 	}
1248 
1249 	for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1250 		dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
1251 
1252 	// Initialize nonexistent weights to poison values
1253 	for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
1254 		dst[weightNdx] = ~0u;
1255 
1256 }
1257 
interpolateWeights(TexelWeightPair * dst,const deUint32 * unquantizedWeights,int blockWidth,int blockHeight,const ASTCBlockMode & blockMode)1258 void interpolateWeights (TexelWeightPair* dst, const deUint32* unquantizedWeights, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1259 {
1260 	const int		numWeightsPerTexel	= blockMode.isDualPlane ? 2 : 1;
1261 	const deUint32	scaleX				= (1024 + blockWidth/2) / (blockWidth-1);
1262 	const deUint32	scaleY				= (1024 + blockHeight/2) / (blockHeight-1);
1263 
1264 	for (int texelY = 0; texelY < blockHeight; texelY++)
1265 	{
1266 		for (int texelX = 0; texelX < blockWidth; texelX++)
1267 		{
1268 			const deUint32 gX	= (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
1269 			const deUint32 gY	= (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
1270 			const deUint32 jX	= gX >> 4;
1271 			const deUint32 jY	= gY >> 4;
1272 			const deUint32 fX	= gX & 0xf;
1273 			const deUint32 fY	= gY & 0xf;
1274 			const deUint32 w11	= (fX*fY + 8) >> 4;
1275 			const deUint32 w10	= fY - w11;
1276 			const deUint32 w01	= fX - w11;
1277 			const deUint32 w00	= 16 - fX - fY + w11;
1278 			const deUint32 v0	= jY*blockMode.weightGridWidth + jX;
1279 
1280 			for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
1281 			{
1282 				const deUint32 p00	= unquantizedWeights[(v0)									* numWeightsPerTexel + texelWeightNdx];
1283 				const deUint32 p01	= unquantizedWeights[(v0 + 1)								* numWeightsPerTexel + texelWeightNdx];
1284 				const deUint32 p10	= unquantizedWeights[(v0 + blockMode.weightGridWidth)		* numWeightsPerTexel + texelWeightNdx];
1285 				const deUint32 p11	= unquantizedWeights[(v0 + blockMode.weightGridWidth + 1)	* numWeightsPerTexel + texelWeightNdx];
1286 
1287 				dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1288 			}
1289 		}
1290 	}
1291 }
1292 
computeTexelWeights(TexelWeightPair * dst,const Block128 & blockData,int blockWidth,int blockHeight,const ASTCBlockMode & blockMode)1293 void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1294 {
1295 	ISEDecodedResult weightGrid[64];
1296 
1297 	{
1298 		BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
1299 		decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
1300 	}
1301 
1302 	{
1303 		deUint32 unquantizedWeights[64];
1304 		unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
1305 		interpolateWeights(dst, &unquantizedWeights[0], blockWidth, blockHeight, blockMode);
1306 	}
1307 }
1308 
hash52(deUint32 v)1309 inline deUint32 hash52 (deUint32 v)
1310 {
1311 	deUint32 p = v;
1312 	p ^= p >> 15;	p -= p << 17;	p += p << 7;	p += p << 4;
1313 	p ^= p >>  5;	p += p << 16;	p ^= p >> 7;	p ^= p >> 3;
1314 	p ^= p <<  6;	p ^= p >> 17;
1315 	return p;
1316 }
1317 
computeTexelPartition(deUint32 seedIn,deUint32 xIn,deUint32 yIn,deUint32 zIn,int numPartitions,bool smallBlock)1318 int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
1319 {
1320 	DE_ASSERT(zIn == 0);
1321 	const deUint32	x		= smallBlock ? xIn << 1 : xIn;
1322 	const deUint32	y		= smallBlock ? yIn << 1 : yIn;
1323 	const deUint32	z		= smallBlock ? zIn << 1 : zIn;
1324 	const deUint32	seed	= seedIn + 1024*(numPartitions-1);
1325 	const deUint32	rnum	= hash52(seed);
1326 	deUint8			seed1	= (deUint8)( rnum							& 0xf);
1327 	deUint8			seed2	= (deUint8)((rnum >>  4)					& 0xf);
1328 	deUint8			seed3	= (deUint8)((rnum >>  8)					& 0xf);
1329 	deUint8			seed4	= (deUint8)((rnum >> 12)					& 0xf);
1330 	deUint8			seed5	= (deUint8)((rnum >> 16)					& 0xf);
1331 	deUint8			seed6	= (deUint8)((rnum >> 20)					& 0xf);
1332 	deUint8			seed7	= (deUint8)((rnum >> 24)					& 0xf);
1333 	deUint8			seed8	= (deUint8)((rnum >> 28)					& 0xf);
1334 	deUint8			seed9	= (deUint8)((rnum >> 18)					& 0xf);
1335 	deUint8			seed10	= (deUint8)((rnum >> 22)					& 0xf);
1336 	deUint8			seed11	= (deUint8)((rnum >> 26)					& 0xf);
1337 	deUint8			seed12	= (deUint8)(((rnum >> 30) | (rnum << 2))	& 0xf);
1338 
1339 	seed1  = (deUint8)(seed1  * seed1 );
1340 	seed2  = (deUint8)(seed2  * seed2 );
1341 	seed3  = (deUint8)(seed3  * seed3 );
1342 	seed4  = (deUint8)(seed4  * seed4 );
1343 	seed5  = (deUint8)(seed5  * seed5 );
1344 	seed6  = (deUint8)(seed6  * seed6 );
1345 	seed7  = (deUint8)(seed7  * seed7 );
1346 	seed8  = (deUint8)(seed8  * seed8 );
1347 	seed9  = (deUint8)(seed9  * seed9 );
1348 	seed10 = (deUint8)(seed10 * seed10);
1349 	seed11 = (deUint8)(seed11 * seed11);
1350 	seed12 = (deUint8)(seed12 * seed12);
1351 
1352 	const int shA = (seed & 2) != 0		? 4		: 5;
1353 	const int shB = numPartitions == 3	? 6		: 5;
1354 	const int sh1 = (seed & 1) != 0		? shA	: shB;
1355 	const int sh2 = (seed & 1) != 0		? shB	: shA;
1356 	const int sh3 = (seed & 0x10) != 0	? sh1	: sh2;
1357 
1358 	seed1  = (deUint8)(seed1  >> sh1);
1359 	seed2  = (deUint8)(seed2  >> sh2);
1360 	seed3  = (deUint8)(seed3  >> sh1);
1361 	seed4  = (deUint8)(seed4  >> sh2);
1362 	seed5  = (deUint8)(seed5  >> sh1);
1363 	seed6  = (deUint8)(seed6  >> sh2);
1364 	seed7  = (deUint8)(seed7  >> sh1);
1365 	seed8  = (deUint8)(seed8  >> sh2);
1366 	seed9  = (deUint8)(seed9  >> sh3);
1367 	seed10 = (deUint8)(seed10 >> sh3);
1368 	seed11 = (deUint8)(seed11 >> sh3);
1369 	seed12 = (deUint8)(seed12 >> sh3);
1370 
1371 	const int a =						0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
1372 	const int b =						0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
1373 	const int c = numPartitions >= 3 ?	0x3f & (seed5*x + seed6*y + seed9*z  + (rnum >>  6))	: 0;
1374 	const int d = numPartitions >= 4 ?	0x3f & (seed7*x + seed8*y + seed10*z + (rnum >>  2))	: 0;
1375 
1376 	return a >= b && a >= c && a >= d	? 0
1377 		 : b >= c && b >= d				? 1
1378 		 : c >= d						? 2
1379 		 :								  3;
1380 }
1381 
setTexelColors(void * dst,ColorEndpointPair * colorEndpoints,TexelWeightPair * texelWeights,int ccs,deUint32 partitionIndexSeed,int numPartitions,int blockWidth,int blockHeight,bool isSRGB,bool isLDRMode,const deUint32 * colorEndpointModes)1382 DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
1383 								 int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
1384 {
1385 	const bool			smallBlock	= blockWidth*blockHeight < 31;
1386 	DecompressResult	result		= DECOMPRESS_RESULT_VALID_BLOCK;
1387 	bool				isHDREndpoint[4];
1388 
1389 	for (int i = 0; i < numPartitions; i++)
1390 		isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
1391 
1392 	for (int texelY = 0; texelY < blockHeight; texelY++)
1393 	for (int texelX = 0; texelX < blockWidth; texelX++)
1394 	{
1395 		const int				texelNdx			= texelY*blockWidth + texelX;
1396 		const int				colorEndpointNdx	= numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
1397 		DE_ASSERT(colorEndpointNdx < numPartitions);
1398 		const UVec4&			e0					= colorEndpoints[colorEndpointNdx].e0;
1399 		const UVec4&			e1					= colorEndpoints[colorEndpointNdx].e1;
1400 		const TexelWeightPair&	weight				= texelWeights[texelNdx];
1401 
1402 		if (isLDRMode && isHDREndpoint[colorEndpointNdx])
1403 		{
1404 			if (isSRGB)
1405 			{
1406 				((deUint8*)dst)[texelNdx*4 + 0] = 0xff;
1407 				((deUint8*)dst)[texelNdx*4 + 1] = 0;
1408 				((deUint8*)dst)[texelNdx*4 + 2] = 0xff;
1409 				((deUint8*)dst)[texelNdx*4 + 3] = 0xff;
1410 			}
1411 			else
1412 			{
1413 				((float*)dst)[texelNdx*4 + 0] = 1.0f;
1414 				((float*)dst)[texelNdx*4 + 1] = 0;
1415 				((float*)dst)[texelNdx*4 + 2] = 1.0f;
1416 				((float*)dst)[texelNdx*4 + 3] = 1.0f;
1417 			}
1418 
1419 			result = DECOMPRESS_RESULT_ERROR;
1420 		}
1421 		else
1422 		{
1423 			for (int channelNdx = 0; channelNdx < 4; channelNdx++)
1424 			{
1425 				if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
1426 				{
1427 					const deUint32 c0	= (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
1428 					const deUint32 c1	= (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
1429 					const deUint32 w	= weight.w[ccs == channelNdx ? 1 : 0];
1430 					const deUint32 c	= (c0*(64-w) + c1*w + 32) / 64;
1431 
1432 					if (isSRGB)
1433 						((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
1434 					else
1435 						((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f;
1436 				}
1437 				else
1438 				{
1439 					DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1440 					const deUint32		c0	= e0[channelNdx] << 4;
1441 					const deUint32		c1	= e1[channelNdx] << 4;
1442 					const deUint32		w	= weight.w[ccs == channelNdx ? 1 : 0];
1443 					const deUint32		c	= (c0*(64-w) + c1*w + 32) / 64;
1444 					const deUint32		e	= getBits(c, 11, 15);
1445 					const deUint32		m	= getBits(c, 0, 10);
1446 					const deUint32		mt	= m < 512		? 3*m
1447 											: m >= 1536		? 5*m - 2048
1448 											:				  4*m - 512;
1449 					const deFloat16		cf	= (deFloat16)((e << 10) + (mt >> 3));
1450 
1451 					((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
1452 				}
1453 			}
1454 		}
1455 	}
1456 
1457 	return result;
1458 }
1459 
decompressBlock(void * dst,const Block128 & blockData,int blockWidth,int blockHeight,bool isSRGB,bool isLDR)1460 DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
1461 {
1462 	DE_ASSERT(isLDR || !isSRGB);
1463 
1464 	// Decode block mode.
1465 
1466 	const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
1467 
1468 	// Check for block mode errors.
1469 
1470 	if (blockMode.isError)
1471 	{
1472 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1473 		return DECOMPRESS_RESULT_ERROR;
1474 	}
1475 
1476 	// Separate path for void-extent.
1477 
1478 	if (blockMode.isVoidExtent)
1479 		return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
1480 
1481 	// Compute weight grid values.
1482 
1483 	const int numWeights			= computeNumWeights(blockMode);
1484 	const int numWeightDataBits		= computeNumRequiredBits(blockMode.weightISEParams, numWeights);
1485 	const int numPartitions			= (int)blockData.getBits(11, 12) + 1;
1486 
1487 	// Check for errors in weight grid, partition and dual-plane parameters.
1488 
1489 	if (numWeights > 64								||
1490 		numWeightDataBits > 96						||
1491 		numWeightDataBits < 24						||
1492 		blockMode.weightGridWidth > blockWidth		||
1493 		blockMode.weightGridHeight > blockHeight	||
1494 		(numPartitions == 4 && blockMode.isDualPlane))
1495 	{
1496 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1497 		return DECOMPRESS_RESULT_ERROR;
1498 	}
1499 
1500 	// Compute number of bits available for color endpoint data.
1501 
1502 	const bool	isSingleUniqueCem			= numPartitions == 1 || blockData.getBits(23, 24) == 0;
1503 	const int	numConfigDataBits			= (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
1504 											  (blockMode.isDualPlane ? 2 : 0);
1505 	const int	numBitsForColorEndpoints	= 128 - numWeightDataBits - numConfigDataBits;
1506 	const int	extraCemBitsStart			= 127 - numWeightDataBits - (isSingleUniqueCem		? -1
1507 																		: numPartitions == 4	? 7
1508 																		: numPartitions == 3	? 4
1509 																		: numPartitions == 2	? 1
1510 																		: 0);
1511 	// Decode color endpoint modes.
1512 
1513 	deUint32 colorEndpointModes[4];
1514 	decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
1515 
1516 	const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
1517 
1518 	// Check for errors in color endpoint value count.
1519 
1520 	if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13*numColorEndpointValues, 5))
1521 	{
1522 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1523 		return DECOMPRESS_RESULT_ERROR;
1524 	}
1525 
1526 	// Compute color endpoints.
1527 
1528 	ColorEndpointPair colorEndpoints[4];
1529 	computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
1530 						  computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
1531 
1532 	// Compute texel weights.
1533 
1534 	TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
1535 	computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
1536 
1537 	// Set texel colors.
1538 
1539 	const int		ccs						= blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
1540 	const deUint32	partitionIndexSeed		= numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1;
1541 
1542 	return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
1543 }
1544 
decompress(const PixelBufferAccess & dst,const deUint8 * data,bool isSRGB,bool isLDR)1545 void decompress (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR)
1546 {
1547 	DE_ASSERT(isLDR || !isSRGB);
1548 
1549 	const int blockWidth = dst.getWidth();
1550 	const int blockHeight = dst.getHeight();
1551 
1552 	union
1553 	{
1554 		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1555 		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1556 	} decompressedBuffer;
1557 
1558 	const Block128 blockData(data);
1559 	decompressBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0],
1560 					blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR);
1561 
1562 	if (isSRGB)
1563 	{
1564 		for (int i = 0; i < blockHeight; i++)
1565 		for (int j = 0; j < blockWidth; j++)
1566 		{
1567 			dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0],
1568 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1],
1569 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2],
1570 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i);
1571 		}
1572 	}
1573 	else
1574 	{
1575 		for (int i = 0; i < blockHeight; i++)
1576 		for (int j = 0; j < blockWidth; j++)
1577 		{
1578 			dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0],
1579 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1],
1580 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2],
1581 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i);
1582 		}
1583 	}
1584 }
1585 
1586 // Helper class for setting bits in a 128-bit block.
1587 class AssignBlock128
1588 {
1589 private:
1590 	typedef deUint64 Word;
1591 
1592 	enum
1593 	{
1594 		WORD_BYTES	= sizeof(Word),
1595 		WORD_BITS	= 8*WORD_BYTES,
1596 		NUM_WORDS	= 128 / WORD_BITS
1597 	};
1598 
1599 	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
1600 
1601 public:
AssignBlock128(void)1602 	AssignBlock128 (void)
1603 	{
1604 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1605 			m_words[wordNdx] = 0;
1606 	}
1607 
setBit(int ndx,deUint32 val)1608 	void setBit (int ndx, deUint32 val)
1609 	{
1610 		DE_ASSERT(de::inBounds(ndx, 0, 128));
1611 		DE_ASSERT((val & 1) == val);
1612 		const int wordNdx	= ndx / WORD_BITS;
1613 		const int bitNdx	= ndx % WORD_BITS;
1614 		m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx);
1615 	}
1616 
setBits(int low,int high,deUint32 bits)1617 	void setBits (int low, int high, deUint32 bits)
1618 	{
1619 		DE_ASSERT(de::inBounds(low, 0, 128));
1620 		DE_ASSERT(de::inBounds(high, 0, 128));
1621 		DE_ASSERT(de::inRange(high-low+1, 0, 32));
1622 		DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits);
1623 
1624 		if (high-low+1 == 0)
1625 			return;
1626 
1627 		const int word0Ndx		= low / WORD_BITS;
1628 		const int word1Ndx		= high / WORD_BITS;
1629 		const int lowNdxInW0	= low % WORD_BITS;
1630 
1631 		if (word0Ndx == word1Ndx)
1632 			m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0);
1633 		else
1634 		{
1635 			DE_ASSERT(word1Ndx == word0Ndx + 1);
1636 
1637 			const int	highNdxInW1			= high % WORD_BITS;
1638 			const int	numBitsToSetInW0	= WORD_BITS - lowNdxInW0;
1639 			const Word	bitsLowMask			= ((Word)1 << numBitsToSetInW0) - 1;
1640 
1641 			m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1))			| (((Word)bits & bitsLowMask) << lowNdxInW0);
1642 			m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1))	| (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0);
1643 		}
1644 	}
1645 
assignToMemory(deUint8 * dst) const1646 	void assignToMemory (deUint8* dst) const
1647 	{
1648 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1649 		{
1650 			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
1651 				dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff);
1652 		}
1653 	}
1654 
pushBytesToVector(vector<deUint8> & dst) const1655 	void pushBytesToVector (vector<deUint8>& dst) const
1656 	{
1657 		const int assignStartIndex = (int)dst.size();
1658 		dst.resize(dst.size() + BLOCK_SIZE_BYTES);
1659 		assignToMemory(&dst[assignStartIndex]);
1660 	}
1661 
1662 private:
1663 	Word m_words[NUM_WORDS];
1664 };
1665 
1666 // A helper for sequential access into a AssignBlock128.
1667 class BitAssignAccessStream
1668 {
1669 public:
BitAssignAccessStream(AssignBlock128 & dst,int startNdxInSrc,int length,bool forward)1670 	BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward)
1671 		: m_dst				(dst)
1672 		, m_startNdxInSrc	(startNdxInSrc)
1673 		, m_length			(length)
1674 		, m_forward			(forward)
1675 		, m_ndx				(0)
1676 	{
1677 	}
1678 
1679 	// Set the next num bits. Bits at positions greater than or equal to m_length are not touched.
setNext(int num,deUint32 bits)1680 	void setNext (int num, deUint32 bits)
1681 	{
1682 		DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits);
1683 
1684 		if (num == 0 || m_ndx >= m_length)
1685 			return;
1686 
1687 		const int		end				= m_ndx + num;
1688 		const int		numBitsToDst	= de::max(0, de::min(m_length, end) - m_ndx);
1689 		const int		low				= m_ndx;
1690 		const int		high			= m_ndx + numBitsToDst - 1;
1691 		const deUint32	actualBits		= getBits(bits, 0, numBitsToDst-1);
1692 
1693 		m_ndx += num;
1694 
1695 		return m_forward ? m_dst.setBits(m_startNdxInSrc + low,  m_startNdxInSrc + high, actualBits)
1696 						 : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst));
1697 	}
1698 
1699 private:
1700 	AssignBlock128&		m_dst;
1701 	const int			m_startNdxInSrc;
1702 	const int			m_length;
1703 	const bool			m_forward;
1704 
1705 	int					m_ndx;
1706 };
1707 
1708 struct VoidExtentParams
1709 {
1710 	DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1711 	bool		isHDR;
1712 	deUint16	r;
1713 	deUint16	g;
1714 	deUint16	b;
1715 	deUint16	a;
1716 	// \note Currently extent coordinates are all set to all-ones.
1717 
VoidExtentParamstcu::astc::__anon1989e5c50111::VoidExtentParams1718 	VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {}
1719 };
1720 
generateVoidExtentBlock(const VoidExtentParams & params)1721 static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params)
1722 {
1723 	AssignBlock128 block;
1724 
1725 	block.setBits(0, 8, 0x1fc); // \note Marks void-extent block.
1726 	block.setBit(9, params.isHDR);
1727 	block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose.
1728 
1729 	// Extent coordinates - currently all-ones.
1730 	block.setBits(12, 24, 0x1fff);
1731 	block.setBits(25, 37, 0x1fff);
1732 	block.setBits(38, 50, 0x1fff);
1733 	block.setBits(51, 63, 0x1fff);
1734 
1735 	DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) &&
1736 								!isFloat16InfOrNan(params.g) &&
1737 								!isFloat16InfOrNan(params.b) &&
1738 								!isFloat16InfOrNan(params.a)));
1739 
1740 	block.setBits(64,  79,  params.r);
1741 	block.setBits(80,  95,  params.g);
1742 	block.setBits(96,  111, params.b);
1743 	block.setBits(112, 127, params.a);
1744 
1745 	return block;
1746 }
1747 
1748 // An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the
1749 // range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed
1750 // so we can test all possible values of T and Q in a block, since multiple T or Q values may map
1751 // to the same set of decoded values.
1752 struct ISEInput
1753 {
1754 	struct Block
1755 	{
1756 		deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block.
1757 		deUint32 bitValues[5];
1758 	};
1759 
1760 	bool isGivenInBlockForm;
1761 	union
1762 	{
1763 		//!< \note 64 comes from the maximum number of weight values in an ASTC block.
1764 		deUint32	plain[64];
1765 		Block		block[64];
1766 	} value;
1767 
ISEInputtcu::astc::__anon1989e5c50111::ISEInput1768 	ISEInput (void)
1769 		: isGivenInBlockForm (false)
1770 	{
1771 	}
1772 };
1773 
computeISERangeMax(const ISEParams & iseParams)1774 static inline deUint32 computeISERangeMax (const ISEParams& iseParams)
1775 {
1776 	switch (iseParams.mode)
1777 	{
1778 		case ISEMODE_TRIT:			return (1u << iseParams.numBits) * 3 - 1;
1779 		case ISEMODE_QUINT:			return (1u << iseParams.numBits) * 5 - 1;
1780 		case ISEMODE_PLAIN_BIT:		return (1u << iseParams.numBits)     - 1;
1781 		default:
1782 			DE_ASSERT(false);
1783 			return -1;
1784 	}
1785 }
1786 
1787 struct NormalBlockParams
1788 {
1789 	int					weightGridWidth;
1790 	int					weightGridHeight;
1791 	ISEParams			weightISEParams;
1792 	bool				isDualPlane;
1793 	deUint32			ccs; //! \note Irrelevant if !isDualPlane.
1794 	int					numPartitions;
1795 	deUint32			colorEndpointModes[4];
1796 	// \note Below members are irrelevant if numPartitions == 1.
1797 	bool				isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0].
1798 	deUint32			partitionSeed;
1799 
NormalBlockParamstcu::astc::__anon1989e5c50111::NormalBlockParams1800 	NormalBlockParams (void)
1801 		: weightGridWidth			(-1)
1802 		, weightGridHeight			(-1)
1803 		, weightISEParams			(ISEMODE_LAST, -1)
1804 		, isDualPlane				(true)
1805 		, ccs						((deUint32)-1)
1806 		, numPartitions				(-1)
1807 		, isMultiPartSingleCemMode	(false)
1808 		, partitionSeed				((deUint32)-1)
1809 	{
1810 		colorEndpointModes[0] = 0;
1811 		colorEndpointModes[1] = 0;
1812 		colorEndpointModes[2] = 0;
1813 		colorEndpointModes[3] = 0;
1814 	}
1815 };
1816 
1817 struct NormalBlockISEInputs
1818 {
1819 	ISEInput weight;
1820 	ISEInput endpoint;
1821 
NormalBlockISEInputstcu::astc::__anon1989e5c50111::NormalBlockISEInputs1822 	NormalBlockISEInputs (void)
1823 		: weight	()
1824 		, endpoint	()
1825 	{
1826 	}
1827 };
1828 
computeNumWeights(const NormalBlockParams & params)1829 static inline int computeNumWeights (const NormalBlockParams& params)
1830 {
1831 	return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1);
1832 }
1833 
computeNumBitsForColorEndpoints(const NormalBlockParams & params)1834 static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params)
1835 {
1836 	const int numWeightBits			= computeNumRequiredBits(params.weightISEParams, computeNumWeights(params));
1837 	const int numConfigDataBits		= (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) +
1838 									  (params.isDualPlane ? 2 : 0);
1839 
1840 	return 128 - numWeightBits - numConfigDataBits;
1841 }
1842 
computeNumColorEndpointValues(const deUint32 * endpointModes,int numPartitions,bool isMultiPartSingleCemMode)1843 static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode)
1844 {
1845 	if (isMultiPartSingleCemMode)
1846 		return numPartitions * computeNumColorEndpointValues(endpointModes[0]);
1847 	else
1848 	{
1849 		int result = 0;
1850 		for (int i = 0; i < numPartitions; i++)
1851 			result += computeNumColorEndpointValues(endpointModes[i]);
1852 		return result;
1853 	}
1854 }
1855 
isValidBlockParams(const NormalBlockParams & params,int blockWidth,int blockHeight)1856 static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight)
1857 {
1858 	const int numWeights				= computeNumWeights(params);
1859 	const int numWeightBits				= computeNumRequiredBits(params.weightISEParams, numWeights);
1860 	const int numColorEndpointValues	= computeNumColorEndpointValues(&params.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode);
1861 	const int numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(params);
1862 
1863 	return numWeights <= 64										&&
1864 		   de::inRange(numWeightBits, 24, 96)					&&
1865 		   params.weightGridWidth <= blockWidth					&&
1866 		   params.weightGridHeight <= blockHeight				&&
1867 		   !(params.numPartitions == 4 && params.isDualPlane)	&&
1868 		   numColorEndpointValues <= 18							&&
1869 		   numBitsForColorEndpoints >= deDivRoundUp32(13*numColorEndpointValues, 5);
1870 }
1871 
1872 // Write bits 0 to 10 of an ASTC block.
writeBlockMode(AssignBlock128 & dst,const NormalBlockParams & blockParams)1873 static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams)
1874 {
1875 	const deUint32	d = blockParams.isDualPlane != 0;
1876 	// r and h initialized in switch below.
1877 	deUint32		r;
1878 	deUint32		h;
1879 	// a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below.
1880 	deUint32		a = (deUint32)-1;
1881 	deUint32		b = (deUint32)-1;
1882 	int				blockModeLayoutNdx;
1883 
1884 	// Find the values of r and h (ISE range).
1885 	switch (computeISERangeMax(blockParams.weightISEParams))
1886 	{
1887 		case 1:		r = 2; h = 0;	break;
1888 		case 2:		r = 3; h = 0;	break;
1889 		case 3:		r = 4; h = 0;	break;
1890 		case 4:		r = 5; h = 0;	break;
1891 		case 5:		r = 6; h = 0;	break;
1892 		case 7:		r = 7; h = 0;	break;
1893 
1894 		case 9:		r = 2; h = 1;	break;
1895 		case 11:	r = 3; h = 1;	break;
1896 		case 15:	r = 4; h = 1;	break;
1897 		case 19:	r = 5; h = 1;	break;
1898 		case 23:	r = 6; h = 1;	break;
1899 		case 31:	r = 7; h = 1;	break;
1900 
1901 		default:
1902 			DE_ASSERT(false);
1903 			r = (deUint32)-1;
1904 			h = (deUint32)-1;
1905 	}
1906 
1907 	// Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec.
1908 
1909 	{
1910 		enum BlockModeLayoutABVariable { Z=0, A=1, B=2 };
1911 
1912 		static const struct BlockModeLayout
1913 		{
1914 			int							aNumBits;
1915 			int							bNumBits;
1916 			BlockModeLayoutABVariable	gridWidthVariableTerm;
1917 			int							gridWidthConstantTerm;
1918 			BlockModeLayoutABVariable	gridHeightVariableTerm;
1919 			int							gridHeightConstantTerm;
1920 		} blockModeLayouts[] =
1921 		{
1922 			{ 2, 2,   B,  4,   A,  2},
1923 			{ 2, 2,   B,  8,   A,  2},
1924 			{ 2, 2,   A,  2,   B,  8},
1925 			{ 2, 1,   A,  2,   B,  6},
1926 			{ 2, 1,   B,  2,   A,  2},
1927 			{ 2, 0,   Z, 12,   A,  2},
1928 			{ 2, 0,   A,  2,   Z, 12},
1929 			{ 0, 0,   Z,  6,   Z, 10},
1930 			{ 0, 0,   Z, 10,   Z,  6},
1931 			{ 2, 2,   A,  6,   B,  6}
1932 		};
1933 
1934 		for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++)
1935 		{
1936 			const BlockModeLayout&	layout					= blockModeLayouts[blockModeLayoutNdx];
1937 			const int				aMax					= (1 << layout.aNumBits) - 1;
1938 			const int				bMax					= (1 << layout.bNumBits) - 1;
1939 			const int				variableOffsetsMax[3]	= { 0, aMax, bMax };
1940 			const int				widthMin				= layout.gridWidthConstantTerm;
1941 			const int				heightMin				= layout.gridHeightConstantTerm;
1942 			const int				widthMax				= widthMin  + variableOffsetsMax[layout.gridWidthVariableTerm];
1943 			const int				heightMax				= heightMin + variableOffsetsMax[layout.gridHeightVariableTerm];
1944 
1945 			DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z);
1946 
1947 			if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) &&
1948 				de::inRange(blockParams.weightGridHeight, heightMin, heightMax))
1949 			{
1950 				deUint32	dummy			= 0;
1951 				deUint32&	widthVariable	= layout.gridWidthVariableTerm == A  ? a : layout.gridWidthVariableTerm == B  ? b : dummy;
1952 				deUint32&	heightVariable	= layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : dummy;
1953 
1954 				widthVariable	= blockParams.weightGridWidth  - layout.gridWidthConstantTerm;
1955 				heightVariable	= blockParams.weightGridHeight - layout.gridHeightConstantTerm;
1956 
1957 				break;
1958 			}
1959 		}
1960 	}
1961 
1962 	// Set block mode bits.
1963 
1964 	const deUint32 a0 = getBit(a, 0);
1965 	const deUint32 a1 = getBit(a, 1);
1966 	const deUint32 b0 = getBit(b, 0);
1967 	const deUint32 b1 = getBit(b, 1);
1968 	const deUint32 r0 = getBit(r, 0);
1969 	const deUint32 r1 = getBit(r, 1);
1970 	const deUint32 r2 = getBit(r, 2);
1971 
1972 #define SB(NDX, VAL) dst.setBit((NDX), (VAL))
1973 #define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false)
1974 
1975 	switch (blockModeLayoutNdx)
1976 	{
1977 		case 0: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  0,  r2, r1);									break;
1978 		case 1: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  1,  r2, r1);									break;
1979 		case 2: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 1,  0,  r2, r1);									break;
1980 		case 3: ASSIGN_BITS(d,  h,   0,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
1981 		case 4: ASSIGN_BITS(d,  h,   1,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
1982 		case 5: ASSIGN_BITS(d,  h,   0,  0, a1, a0, r0, r2, r1,  0,  0);									break;
1983 		case 6: ASSIGN_BITS(d,  h,   0,  1, a1, a0, r0, r2, r1,  0,  0);									break;
1984 		case 7: ASSIGN_BITS(d,  h,   1,  1,  0,  0, r0, r2, r1,  0,  0);									break;
1985 		case 8: ASSIGN_BITS(d,  h,   1,  1,  0,  1, r0, r2, r1,  0,  0);									break;
1986 		case 9: ASSIGN_BITS(b1, b0,  1,  0, a1, a0, r0, r2, r1,  0,  0); DE_ASSERT(d == 0 && h == 0);		break;
1987 		default:
1988 			DE_ASSERT(false);
1989 	}
1990 
1991 #undef ASSIGN_BITS
1992 #undef SB
1993 }
1994 
1995 // Write color endpoint mode data of an ASTC block.
writeColorEndpointModes(AssignBlock128 & dst,const deUint32 * colorEndpointModes,bool isMultiPartSingleCemMode,int numPartitions,int extraCemBitsStart)1996 static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart)
1997 {
1998 	if (numPartitions == 1)
1999 		dst.setBits(13, 16, colorEndpointModes[0]);
2000 	else
2001 	{
2002 		if (isMultiPartSingleCemMode)
2003 		{
2004 			dst.setBits(23, 24, 0);
2005 			dst.setBits(25, 28, colorEndpointModes[0]);
2006 		}
2007 		else
2008 		{
2009 			DE_ASSERT(numPartitions > 0);
2010 			const deUint32 minCem				= *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2011 			const deUint32 maxCem				= *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2012 			const deUint32 minCemClass			= minCem/4;
2013 			const deUint32 maxCemClass			= maxCem/4;
2014 			DE_ASSERT(maxCemClass - minCemClass <= 1);
2015 			DE_UNREF(minCemClass); // \note For non-debug builds.
2016 			const deUint32 highLevelSelector	= de::max(1u, maxCemClass);
2017 
2018 			dst.setBits(23, 24, highLevelSelector);
2019 
2020 			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
2021 			{
2022 				const deUint32 c			= colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0;
2023 				const deUint32 m			= colorEndpointModes[partNdx] % 4;
2024 				const deUint32 lowMBit0Ndx	= numPartitions + 2*partNdx;
2025 				const deUint32 lowMBit1Ndx	= numPartitions + 2*partNdx + 1;
2026 				dst.setBit(25 + partNdx, c);
2027 				dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0));
2028 				dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1));
2029 			}
2030 		}
2031 	}
2032 }
2033 
encodeISETritBlock(BitAssignAccessStream & dst,int numBits,bool fromExplicitInputBlock,const ISEInput::Block & blockInput,const deUint32 * nonBlockInput,int numValues)2034 static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2035 {
2036 	// tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded.
2037 	static const deUint32 tritBlockTValue[3][3][3][3][3] =
2038 	{
2039 		{
2040 			{{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}},
2041 			{{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}},
2042 			{{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}
2043 		},
2044 		{
2045 			{{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}},
2046 			{{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}},
2047 			{{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}
2048 		},
2049 		{
2050 			{{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}},
2051 			{{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}},
2052 			{{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}
2053 		}
2054 	};
2055 
2056 	DE_ASSERT(de::inRange(numValues, 1, 5));
2057 
2058 	deUint32 tritParts[5];
2059 	deUint32 bitParts[5];
2060 
2061 	for (int i = 0; i < 5; i++)
2062 	{
2063 		if (i < numValues)
2064 		{
2065 			if (fromExplicitInputBlock)
2066 			{
2067 				bitParts[i]		= blockInput.bitValues[i];
2068 				tritParts[i]	= -1; // \note Won't be used, but silences warning.
2069 			}
2070 			else
2071 			{
2072 				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2073 				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2074 				tritParts[i]	= nonBlockInput[i] >> numBits;
2075 			}
2076 		}
2077 		else
2078 		{
2079 			bitParts[i]		= 0;
2080 			tritParts[i]	= 0;
2081 		}
2082 	}
2083 
2084 	const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]]
2085 																					  [tritParts[1]]
2086 																					  [tritParts[2]]
2087 																					  [tritParts[3]]
2088 																					  [tritParts[4]];
2089 
2090 	dst.setNext(numBits,	bitParts[0]);
2091 	dst.setNext(2,			getBits(T, 0, 1));
2092 	dst.setNext(numBits,	bitParts[1]);
2093 	dst.setNext(2,			getBits(T, 2, 3));
2094 	dst.setNext(numBits,	bitParts[2]);
2095 	dst.setNext(1,			getBit(T, 4));
2096 	dst.setNext(numBits,	bitParts[3]);
2097 	dst.setNext(2,			getBits(T, 5, 6));
2098 	dst.setNext(numBits,	bitParts[4]);
2099 	dst.setNext(1,			getBit(T, 7));
2100 }
2101 
encodeISEQuintBlock(BitAssignAccessStream & dst,int numBits,bool fromExplicitInputBlock,const ISEInput::Block & blockInput,const deUint32 * nonBlockInput,int numValues)2102 static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2103 {
2104 	// quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded.
2105 	static const deUint32 quintBlockQValue[5][5][5] =
2106 	{
2107 		{{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}},
2108 		{{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}},
2109 		{{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}},
2110 		{{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}},
2111 		{{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}
2112 	};
2113 
2114 	DE_ASSERT(de::inRange(numValues, 1, 3));
2115 
2116 	deUint32 quintParts[3];
2117 	deUint32 bitParts[3];
2118 
2119 	for (int i = 0; i < 3; i++)
2120 	{
2121 		if (i < numValues)
2122 		{
2123 			if (fromExplicitInputBlock)
2124 			{
2125 				bitParts[i]		= blockInput.bitValues[i];
2126 				quintParts[i]	= -1; // \note Won't be used, but silences warning.
2127 			}
2128 			else
2129 			{
2130 				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2131 				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2132 				quintParts[i]	= nonBlockInput[i] >> numBits;
2133 			}
2134 		}
2135 		else
2136 		{
2137 			bitParts[i]		= 0;
2138 			quintParts[i]	= 0;
2139 		}
2140 	}
2141 
2142 	const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]]
2143 																					   [quintParts[1]]
2144 																					   [quintParts[2]];
2145 
2146 	dst.setNext(numBits,	bitParts[0]);
2147 	dst.setNext(3,			getBits(Q, 0, 2));
2148 	dst.setNext(numBits,	bitParts[1]);
2149 	dst.setNext(2,			getBits(Q, 3, 4));
2150 	dst.setNext(numBits,	bitParts[2]);
2151 	dst.setNext(2,			getBits(Q, 5, 6));
2152 }
2153 
encodeISEBitBlock(BitAssignAccessStream & dst,int numBits,deUint32 value)2154 static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value)
2155 {
2156 	DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1));
2157 	dst.setNext(numBits, value);
2158 }
2159 
encodeISE(BitAssignAccessStream & dst,const ISEParams & params,const ISEInput & input,int numValues)2160 static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues)
2161 {
2162 	if (params.mode == ISEMODE_TRIT)
2163 	{
2164 		const int numBlocks = deDivRoundUp32(numValues, 5);
2165 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2166 		{
2167 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
2168 			encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm,
2169 							   input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2170 							   input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[5*blockNdx],
2171 							   numValuesInBlock);
2172 		}
2173 	}
2174 	else if (params.mode == ISEMODE_QUINT)
2175 	{
2176 		const int numBlocks = deDivRoundUp32(numValues, 3);
2177 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2178 		{
2179 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
2180 			encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm,
2181 								input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2182 								input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[3*blockNdx],
2183 								numValuesInBlock);
2184 		}
2185 	}
2186 	else
2187 	{
2188 		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
2189 		for (int i = 0; i < numValues; i++)
2190 			encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]);
2191 	}
2192 }
2193 
writeWeightData(AssignBlock128 & dst,const ISEParams & iseParams,const ISEInput & input,int numWeights)2194 static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights)
2195 {
2196 	const int				numWeightBits	= computeNumRequiredBits(iseParams, numWeights);
2197 	BitAssignAccessStream	access			(dst, 127, numWeightBits, false);
2198 	encodeISE(access, iseParams, input, numWeights);
2199 }
2200 
writeColorEndpointData(AssignBlock128 & dst,const ISEParams & iseParams,const ISEInput & input,int numEndpoints,int numBitsForColorEndpoints,int colorEndpointDataStartNdx)2201 static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx)
2202 {
2203 	BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true);
2204 	encodeISE(access, iseParams, input, numEndpoints);
2205 }
2206 
generateNormalBlock(const NormalBlockParams & blockParams,int blockWidth,int blockHeight,const NormalBlockISEInputs & iseInputs)2207 static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs)
2208 {
2209 	DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight));
2210 	DE_UNREF(blockWidth);	// \note For non-debug builds.
2211 	DE_UNREF(blockHeight);	// \note For non-debug builds.
2212 
2213 	AssignBlock128	block;
2214 	const int		numWeights		= computeNumWeights(blockParams);
2215 	const int		numWeightBits	= computeNumRequiredBits(blockParams.weightISEParams, numWeights);
2216 
2217 	writeBlockMode(block, blockParams);
2218 
2219 	block.setBits(11, 12, blockParams.numPartitions - 1);
2220 	if (blockParams.numPartitions > 1)
2221 		block.setBits(13, 22, blockParams.partitionSeed);
2222 
2223 	{
2224 		const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode		? -1
2225 															: blockParams.numPartitions == 4											? 7
2226 															: blockParams.numPartitions == 3											? 4
2227 															: blockParams.numPartitions == 2											? 1
2228 															: 0);
2229 
2230 		writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart);
2231 
2232 		if (blockParams.isDualPlane)
2233 			block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs);
2234 	}
2235 
2236 	writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights);
2237 
2238 	{
2239 		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2240 		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2241 		const int			colorEndpointDataStartNdx	= blockParams.numPartitions == 1 ? 17 : 29;
2242 		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2243 
2244 		writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx);
2245 	}
2246 
2247 	return block;
2248 }
2249 
2250 // Generate default ISE inputs for weight and endpoint data - gradient-ish values.
generateDefaultISEInputs(const NormalBlockParams & blockParams)2251 static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams)
2252 {
2253 	NormalBlockISEInputs result;
2254 
2255 	{
2256 		result.weight.isGivenInBlockForm = false;
2257 
2258 		const int numWeights		= computeNumWeights(blockParams);
2259 		const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2260 
2261 		if (blockParams.isDualPlane)
2262 		{
2263 			for (int i = 0; i < numWeights; i += 2)
2264 				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2265 
2266 			for (int i = 1; i < numWeights; i += 2)
2267 				result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2268 		}
2269 		else
2270 		{
2271 			for (int i = 0; i < numWeights; i++)
2272 				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2273 		}
2274 	}
2275 
2276 	{
2277 		result.endpoint.isGivenInBlockForm = false;
2278 
2279 		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2280 		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2281 		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2282 		const int			colorEndpointRangeMax		= computeISERangeMax(colorEndpointISEParams);
2283 
2284 		for (int i = 0; i < numColorEndpointValues; i++)
2285 			result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1);
2286 	}
2287 
2288 	return result;
2289 }
2290 
2291 static const ISEParams s_weightISEParamsCandidates[] =
2292 {
2293 	ISEParams(ISEMODE_PLAIN_BIT,	1),
2294 	ISEParams(ISEMODE_TRIT,			0),
2295 	ISEParams(ISEMODE_PLAIN_BIT,	2),
2296 	ISEParams(ISEMODE_QUINT,		0),
2297 	ISEParams(ISEMODE_TRIT,			1),
2298 	ISEParams(ISEMODE_PLAIN_BIT,	3),
2299 	ISEParams(ISEMODE_QUINT,		1),
2300 	ISEParams(ISEMODE_TRIT,			2),
2301 	ISEParams(ISEMODE_PLAIN_BIT,	4),
2302 	ISEParams(ISEMODE_QUINT,		2),
2303 	ISEParams(ISEMODE_TRIT,			3),
2304 	ISEParams(ISEMODE_PLAIN_BIT,	5)
2305 };
2306 
generateRandomBlock(deUint8 * dst,const IVec3 & blockSize,de::Random & rnd)2307 void generateRandomBlock (deUint8* dst, const IVec3& blockSize, de::Random& rnd)
2308 {
2309 	DE_ASSERT(blockSize.z() == 1);
2310 
2311 	if (rnd.getFloat() < 0.1f)
2312 	{
2313 		// Void extent block.
2314 		const bool		isVoidExtentHDR		= rnd.getBool();
2315 		const deUint16	r					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2316 		const deUint16	g					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2317 		const deUint16	b					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2318 		const deUint16	a					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2319 		generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst);
2320 	}
2321 	else
2322 	{
2323 		// Not void extent block.
2324 
2325 		// Generate block params.
2326 
2327 		NormalBlockParams blockParams;
2328 
2329 		do
2330 		{
2331 			blockParams.weightGridWidth				= rnd.getInt(2, blockSize.x());
2332 			blockParams.weightGridHeight			= rnd.getInt(2, blockSize.y());
2333 			blockParams.weightISEParams				= s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates)-1)];
2334 			blockParams.numPartitions				= rnd.getInt(1, 4);
2335 			blockParams.isMultiPartSingleCemMode	= rnd.getFloat() < 0.25f;
2336 			blockParams.isDualPlane					= blockParams.numPartitions != 4 && rnd.getBool();
2337 			blockParams.ccs							= rnd.getInt(0, 3);
2338 			blockParams.partitionSeed				= rnd.getInt(0, 1023);
2339 
2340 			blockParams.colorEndpointModes[0] = rnd.getInt(0, 15);
2341 
2342 			{
2343 				const int cemDiff = blockParams.isMultiPartSingleCemMode		? 0
2344 									: blockParams.colorEndpointModes[0] == 0	? 1
2345 									: blockParams.colorEndpointModes[0] == 15	? -1
2346 									: rnd.getBool()								? 1 : -1;
2347 
2348 				for (int i = 1; i < blockParams.numPartitions; i++)
2349 					blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0);
2350 			}
2351 		} while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()));
2352 
2353 		// Generate ISE inputs for both weight and endpoint data.
2354 
2355 		NormalBlockISEInputs iseInputs;
2356 
2357 		for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++)
2358 		{
2359 			const bool			setWeights	= weightOrEndpoints == 0;
2360 			const int			numValues	= setWeights ? computeNumWeights(blockParams) :
2361 												computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2362 			const ISEParams		iseParams	= setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues);
2363 			ISEInput&			iseInput	= setWeights ? iseInputs.weight : iseInputs.endpoint;
2364 
2365 			iseInput.isGivenInBlockForm = rnd.getBool();
2366 
2367 			if (iseInput.isGivenInBlockForm)
2368 			{
2369 				const int numValuesPerISEBlock	= iseParams.mode == ISEMODE_TRIT	? 5
2370 												: iseParams.mode == ISEMODE_QUINT	? 3
2371 												:									  1;
2372 				const int iseBitMax				= (1 << iseParams.numBits) - 1;
2373 				const int numISEBlocks			= deDivRoundUp32(numValues, numValuesPerISEBlock);
2374 
2375 				for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++)
2376 				{
2377 					iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255);
2378 					for (int i = 0; i < numValuesPerISEBlock; i++)
2379 						iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax);
2380 				}
2381 			}
2382 			else
2383 			{
2384 				const int rangeMax = computeISERangeMax(iseParams);
2385 
2386 				for (int valueNdx = 0; valueNdx < numValues; valueNdx++)
2387 					iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax);
2388 			}
2389 		}
2390 
2391 		generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst);
2392 	}
2393 }
2394 
2395 } // anonymous
2396 
2397 // Generate block data for a given BlockTestType and format.
generateBlockCaseTestData(vector<deUint8> & dst,CompressedTexFormat format,BlockTestType testType)2398 void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, BlockTestType testType)
2399 {
2400 	DE_ASSERT(isAstcFormat(format));
2401 	DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType)));
2402 
2403 	const IVec3 blockSize = getBlockPixelSize(format);
2404 	DE_ASSERT(blockSize.z() == 1);
2405 
2406 	switch (testType)
2407 	{
2408 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:
2409 		// Generate a gradient-like set of LDR void-extent blocks.
2410 		{
2411 			const int			numBlocks	= 1<<13;
2412 			const deUint32		numValues	= 1<<16;
2413 			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2414 
2415 			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2416 			{
2417 				const deUint32 baseValue	= blockNdx*(numValues-1) / (numBlocks-1);
2418 				const deUint16 r			= (deUint16)((baseValue + numValues*0/4) % numValues);
2419 				const deUint16 g			= (deUint16)((baseValue + numValues*1/4) % numValues);
2420 				const deUint16 b			= (deUint16)((baseValue + numValues*2/4) % numValues);
2421 				const deUint16 a			= (deUint16)((baseValue + numValues*3/4) % numValues);
2422 				AssignBlock128 block;
2423 
2424 				generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst);
2425 			}
2426 
2427 			break;
2428 		}
2429 
2430 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:
2431 		// Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16.
2432 		{
2433 			const float		minValue	= -65504.0f;
2434 			const float		maxValue	= +65504.0f;
2435 			const int		numBlocks	= 1<<13;
2436 			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2437 
2438 			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2439 			{
2440 				const int			rNdx	= (blockNdx + numBlocks*0/4) % numBlocks;
2441 				const int			gNdx	= (blockNdx + numBlocks*1/4) % numBlocks;
2442 				const int			bNdx	= (blockNdx + numBlocks*2/4) % numBlocks;
2443 				const int			aNdx	= (blockNdx + numBlocks*3/4) % numBlocks;
2444 				const deFloat16		r		= deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1));
2445 				const deFloat16		g		= deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1));
2446 				const deFloat16		b		= deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1));
2447 				const deFloat16		a		= deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1));
2448 
2449 				generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst);
2450 			}
2451 
2452 			break;
2453 		}
2454 
2455 		case BLOCK_TEST_TYPE_WEIGHT_GRID:
2456 		// Generate different combinations of plane count, weight ISE params, and grid size.
2457 		{
2458 			for (int isDualPlane = 0;		isDualPlane <= 1;												isDualPlane++)
2459 			for (int iseParamsNdx = 0;		iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2460 			for (int weightGridWidth = 2;	weightGridWidth <= 12;											weightGridWidth++)
2461 			for (int weightGridHeight = 2;	weightGridHeight <= 12;											weightGridHeight++)
2462 			{
2463 				NormalBlockParams		blockParams;
2464 				NormalBlockISEInputs	iseInputs;
2465 
2466 				blockParams.weightGridWidth			= weightGridWidth;
2467 				blockParams.weightGridHeight		= weightGridHeight;
2468 				blockParams.isDualPlane				= isDualPlane != 0;
2469 				blockParams.weightISEParams			= s_weightISEParamsCandidates[iseParamsNdx];
2470 				blockParams.ccs						= 0;
2471 				blockParams.numPartitions			= 1;
2472 				blockParams.colorEndpointModes[0]	= 0;
2473 
2474 				if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2475 					generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2476 			}
2477 
2478 			break;
2479 		}
2480 
2481 		case BLOCK_TEST_TYPE_WEIGHT_ISE:
2482 		// For each weight ISE param set, generate blocks that cover:
2483 		// - each single value of the ISE's range, at each position inside an ISE block
2484 		// - for trit and quint ISEs, each single T or Q value of an ISE block
2485 		{
2486 			for (int iseParamsNdx = 0;	iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2487 			{
2488 				const ISEParams&	iseParams = s_weightISEParamsCandidates[iseParamsNdx];
2489 				NormalBlockParams	blockParams;
2490 
2491 				blockParams.weightGridWidth			= 4;
2492 				blockParams.weightGridHeight		= 4;
2493 				blockParams.weightISEParams			= iseParams;
2494 				blockParams.numPartitions			= 1;
2495 				blockParams.isDualPlane				= blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false;
2496 				blockParams.ccs						= 0;
2497 				blockParams.colorEndpointModes[0]	= 0;
2498 
2499 				while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2500 				{
2501 					blockParams.weightGridWidth--;
2502 					blockParams.weightGridHeight--;
2503 				}
2504 
2505 				const int numValuesInISEBlock	= iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1;
2506 				const int numWeights			= computeNumWeights(blockParams);
2507 
2508 				{
2509 					const int				numWeightValues		= (int)computeISERangeMax(iseParams) + 1;
2510 					const int				numBlocks			= deDivRoundUp32(numWeightValues, numWeights);
2511 					NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2512 					iseInputs.weight.isGivenInBlockForm = false;
2513 
2514 					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2515 					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2516 					{
2517 						for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2518 							iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues;
2519 
2520 						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2521 					}
2522 				}
2523 
2524 				if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
2525 				{
2526 					NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2527 					iseInputs.weight.isGivenInBlockForm = true;
2528 
2529 					const int numTQValues			= 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7);
2530 					const int numISEBlocksPerBlock	= deDivRoundUp32(numWeights, numValuesInISEBlock);
2531 					const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2532 
2533 					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2534 					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2535 					{
2536 						for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2537 						{
2538 							for (int i = 0; i < numValuesInISEBlock; i++)
2539 								iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0;
2540 							iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2541 						}
2542 
2543 						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2544 					}
2545 				}
2546 			}
2547 
2548 			break;
2549 		}
2550 
2551 		case BLOCK_TEST_TYPE_CEMS:
2552 		// For each plane count & partition count combination, generate all color endpoint mode combinations.
2553 		{
2554 			for (int isDualPlane = 0;		isDualPlane <= 1;								isDualPlane++)
2555 			for (int numPartitions = 1;		numPartitions <= (isDualPlane != 0 ? 3 : 4);	numPartitions++)
2556 			{
2557 				// Multi-partition, single-CEM mode.
2558 				if (numPartitions > 1)
2559 				{
2560 					for (deUint32 singleCem = 0; singleCem < 16; singleCem++)
2561 					{
2562 						NormalBlockParams blockParams;
2563 						blockParams.weightGridWidth				= 4;
2564 						blockParams.weightGridHeight			= 4;
2565 						blockParams.isDualPlane					= isDualPlane != 0;
2566 						blockParams.ccs							= 0;
2567 						blockParams.numPartitions				= numPartitions;
2568 						blockParams.isMultiPartSingleCemMode	= true;
2569 						blockParams.colorEndpointModes[0]		= singleCem;
2570 						blockParams.partitionSeed				= 634;
2571 
2572 						for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2573 						{
2574 							blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2575 							if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2576 							{
2577 								generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2578 								break;
2579 							}
2580 						}
2581 					}
2582 				}
2583 
2584 				// Separate-CEM mode.
2585 				for (deUint32 cem0 = 0; cem0 < 16; cem0++)
2586 				for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++)
2587 				for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++)
2588 				for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++)
2589 				{
2590 					NormalBlockParams blockParams;
2591 					blockParams.weightGridWidth				= 4;
2592 					blockParams.weightGridHeight			= 4;
2593 					blockParams.isDualPlane					= isDualPlane != 0;
2594 					blockParams.ccs							= 0;
2595 					blockParams.numPartitions				= numPartitions;
2596 					blockParams.isMultiPartSingleCemMode	= false;
2597 					blockParams.colorEndpointModes[0]		= cem0;
2598 					blockParams.colorEndpointModes[1]		= cem1;
2599 					blockParams.colorEndpointModes[2]		= cem2;
2600 					blockParams.colorEndpointModes[3]		= cem3;
2601 					blockParams.partitionSeed				= 634;
2602 
2603 					{
2604 						const deUint32 minCem		= *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2605 						const deUint32 maxCem		= *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2606 						const deUint32 minCemClass	= minCem/4;
2607 						const deUint32 maxCemClass	= maxCem/4;
2608 
2609 						if (maxCemClass - minCemClass > 1)
2610 							continue;
2611 					}
2612 
2613 					for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2614 					{
2615 						blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2616 						if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2617 						{
2618 							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2619 							break;
2620 						}
2621 					}
2622 				}
2623 			}
2624 
2625 			break;
2626 		}
2627 
2628 		case BLOCK_TEST_TYPE_PARTITION_SEED:
2629 		// Test all partition seeds ("partition pattern indices").
2630 		{
2631 			for (int		numPartitions = 2;	numPartitions <= 4;		numPartitions++)
2632 			for (deUint32	partitionSeed = 0;	partitionSeed < 1<<10;	partitionSeed++)
2633 			{
2634 				NormalBlockParams blockParams;
2635 				blockParams.weightGridWidth				= 4;
2636 				blockParams.weightGridHeight			= 4;
2637 				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2638 				blockParams.isDualPlane					= false;
2639 				blockParams.numPartitions				= numPartitions;
2640 				blockParams.isMultiPartSingleCemMode	= true;
2641 				blockParams.colorEndpointModes[0]		= 0;
2642 				blockParams.partitionSeed				= partitionSeed;
2643 
2644 				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2645 			}
2646 
2647 			break;
2648 		}
2649 
2650 		// \note Fall-through.
2651 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:
2652 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:
2653 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:
2654 		// For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair.
2655 		// \note Separate modes for HDR and mode 15 due to different color scales and biases.
2656 		{
2657 			for (deUint32 cem = 0; cem < 16; cem++)
2658 			{
2659 				const bool isHDRCem = cem == 2		||
2660 									  cem == 3		||
2661 									  cem == 7		||
2662 									  cem == 11		||
2663 									  cem == 14		||
2664 									  cem == 15;
2665 
2666 				if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR			&& isHDRCem)					||
2667 					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15		&& (!isHDRCem || cem == 15))	||
2668 					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15		&& cem != 15))
2669 					continue;
2670 
2671 				NormalBlockParams blockParams;
2672 				blockParams.weightGridWidth			= 3;
2673 				blockParams.weightGridHeight		= 4;
2674 				blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 2);
2675 				blockParams.isDualPlane				= false;
2676 				blockParams.numPartitions			= 1;
2677 				blockParams.colorEndpointModes[0]	= cem;
2678 
2679 				{
2680 					const int			numBitsForEndpoints		= computeNumBitsForColorEndpoints(blockParams);
2681 					const int			numEndpointParts		= computeNumColorEndpointValues(cem);
2682 					const ISEParams		endpointISE				= computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts);
2683 					const int			endpointISERangeMax		= computeISERangeMax(endpointISE);
2684 
2685 					for (int endpointPartNdx0 = 0;						endpointPartNdx0 < numEndpointParts; endpointPartNdx0++)
2686 					for (int endpointPartNdx1 = endpointPartNdx0+1;		endpointPartNdx1 < numEndpointParts; endpointPartNdx1++)
2687 					{
2688 						NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2689 						const int				numEndpointValues	= de::min(10, endpointISERangeMax+1);
2690 
2691 						for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++)
2692 						for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++)
2693 						{
2694 							const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1);
2695 							const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1);
2696 
2697 							iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0;
2698 							iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1;
2699 
2700 							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2701 						}
2702 					}
2703 				}
2704 			}
2705 
2706 			break;
2707 		}
2708 
2709 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:
2710 		// Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above.
2711 		{
2712 			static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 };
2713 
2714 			for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++)
2715 			{
2716 				bool validCaseGenerated = false;
2717 
2718 				for (int numPartitions = 1;			!validCaseGenerated && numPartitions <= 4;														numPartitions++)
2719 				for (int isDual = 0;				!validCaseGenerated && isDual <= 1;																isDual++)
2720 				for (int weightISEParamsNdx = 0;	!validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	weightISEParamsNdx++)
2721 				for (int weightGridWidth = 2;		!validCaseGenerated && weightGridWidth <= 12;													weightGridWidth++)
2722 				for (int weightGridHeight = 2;		!validCaseGenerated && weightGridHeight <= 12;													weightGridHeight++)
2723 				{
2724 					NormalBlockParams blockParams;
2725 					blockParams.weightGridWidth				= weightGridWidth;
2726 					blockParams.weightGridHeight			= weightGridHeight;
2727 					blockParams.weightISEParams				= s_weightISEParamsCandidates[weightISEParamsNdx];
2728 					blockParams.isDualPlane					= isDual != 0;
2729 					blockParams.ccs							= 0;
2730 					blockParams.numPartitions				= numPartitions;
2731 					blockParams.isMultiPartSingleCemMode	= true;
2732 					blockParams.colorEndpointModes[0]		= 12;
2733 					blockParams.partitionSeed				= 634;
2734 
2735 					if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2736 					{
2737 						const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams),
2738 																						 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true));
2739 
2740 						if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx])
2741 						{
2742 							validCaseGenerated = true;
2743 
2744 							const int numColorEndpoints		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode);
2745 							const int numValuesInISEBlock	= endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1;
2746 
2747 							{
2748 								const int				numColorEndpointValues	= (int)computeISERangeMax(endpointISEParams) + 1;
2749 								const int				numBlocks				= deDivRoundUp32(numColorEndpointValues, numColorEndpoints);
2750 								NormalBlockISEInputs	iseInputs				= generateDefaultISEInputs(blockParams);
2751 								iseInputs.endpoint.isGivenInBlockForm = false;
2752 
2753 								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2754 								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2755 								{
2756 									for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++)
2757 										iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues;
2758 
2759 									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2760 								}
2761 							}
2762 
2763 							if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT)
2764 							{
2765 								NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2766 								iseInputs.endpoint.isGivenInBlockForm = true;
2767 
2768 								const int numTQValues			= 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7);
2769 								const int numISEBlocksPerBlock	= deDivRoundUp32(numColorEndpoints, numValuesInISEBlock);
2770 								const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2771 
2772 								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2773 								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2774 								{
2775 									for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2776 									{
2777 										for (int i = 0; i < numValuesInISEBlock; i++)
2778 											iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0;
2779 										iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2780 									}
2781 
2782 									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2783 								}
2784 							}
2785 						}
2786 					}
2787 				}
2788 
2789 				DE_ASSERT(validCaseGenerated);
2790 			}
2791 
2792 			break;
2793 		}
2794 
2795 		case BLOCK_TEST_TYPE_CCS:
2796 		// For all partition counts, test all values of the CCS (color component selector).
2797 		{
2798 			for (int		numPartitions = 1;		numPartitions <= 3;		numPartitions++)
2799 			for (deUint32	ccs = 0;				ccs < 4;				ccs++)
2800 			{
2801 				NormalBlockParams blockParams;
2802 				blockParams.weightGridWidth				= 3;
2803 				blockParams.weightGridHeight			= 3;
2804 				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2805 				blockParams.isDualPlane					= true;
2806 				blockParams.ccs							= ccs;
2807 				blockParams.numPartitions				= numPartitions;
2808 				blockParams.isMultiPartSingleCemMode	= true;
2809 				blockParams.colorEndpointModes[0]		= 8;
2810 				blockParams.partitionSeed				= 634;
2811 
2812 				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2813 			}
2814 
2815 			break;
2816 		}
2817 
2818 		case BLOCK_TEST_TYPE_RANDOM:
2819 		// Generate a number of random (including invalid) blocks.
2820 		{
2821 			const int		numBlocks	= 16384;
2822 			const deUint32	seed		= 1;
2823 
2824 			dst.resize(numBlocks*BLOCK_SIZE_BYTES);
2825 
2826 			generateRandomBlocks(&dst[0], numBlocks, format, seed);
2827 
2828 			break;
2829 		}
2830 
2831 		default:
2832 			DE_ASSERT(false);
2833 	}
2834 }
2835 
generateRandomBlocks(deUint8 * dst,size_t numBlocks,CompressedTexFormat format,deUint32 seed)2836 void generateRandomBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, deUint32 seed)
2837 {
2838 	const IVec3		blockSize			= getBlockPixelSize(format);
2839 	de::Random		rnd					(seed);
2840 	size_t			numBlocksGenerated	= 0;
2841 
2842 	DE_ASSERT(isAstcFormat(format));
2843 	DE_ASSERT(blockSize.z() == 1);
2844 
2845 	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2846 	{
2847 		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2848 
2849 		generateRandomBlock(curBlockPtr, blockSize, rnd);
2850 	}
2851 }
2852 
generateRandomValidBlocks(deUint8 * dst,size_t numBlocks,CompressedTexFormat format,TexDecompressionParams::AstcMode mode,deUint32 seed)2853 void generateRandomValidBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, deUint32 seed)
2854 {
2855 	const IVec3		blockSize			= getBlockPixelSize(format);
2856 	de::Random		rnd					(seed);
2857 	size_t			numBlocksGenerated	= 0;
2858 
2859 	DE_ASSERT(isAstcFormat(format));
2860 	DE_ASSERT(blockSize.z() == 1);
2861 
2862 	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2863 	{
2864 		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2865 
2866 		do
2867 		{
2868 			generateRandomBlock(curBlockPtr, blockSize, rnd);
2869 		} while (!isValidBlock(curBlockPtr, format, mode));
2870 	}
2871 }
2872 
2873 // Generate a number of trivial dummy blocks to fill unneeded space in a texture.
generateDummyVoidExtentBlocks(deUint8 * dst,size_t numBlocks)2874 void generateDummyVoidExtentBlocks (deUint8* dst, size_t numBlocks)
2875 {
2876 	AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0));
2877 	for (size_t ndx = 0; ndx < numBlocks; ndx++)
2878 		block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]);
2879 }
2880 
generateDummyNormalBlocks(deUint8 * dst,size_t numBlocks,int blockWidth,int blockHeight)2881 void generateDummyNormalBlocks (deUint8* dst, size_t numBlocks, int blockWidth, int blockHeight)
2882 {
2883 	NormalBlockParams blockParams;
2884 
2885 	blockParams.weightGridWidth			= 3;
2886 	blockParams.weightGridHeight		= 3;
2887 	blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 5);
2888 	blockParams.isDualPlane				= false;
2889 	blockParams.numPartitions			= 1;
2890 	blockParams.colorEndpointModes[0]	= 8;
2891 
2892 	NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2893 	iseInputs.weight.isGivenInBlockForm = false;
2894 
2895 	const int numWeights		= computeNumWeights(blockParams);
2896 	const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2897 
2898 	for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2899 	{
2900 		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2901 			iseInputs.weight.value.plain[weightNdx] = (deUint32)((blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1));
2902 
2903 		generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*BLOCK_SIZE_BYTES);
2904 	}
2905 }
2906 
isValidBlock(const deUint8 * data,CompressedTexFormat format,TexDecompressionParams::AstcMode mode)2907 bool isValidBlock (const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2908 {
2909 	const tcu::IVec3		blockPixelSize	= getBlockPixelSize(format);
2910 	const bool				isSRGB			= isAstcSRGBFormat(format);
2911 	const bool				isLDR			= isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR;
2912 	union
2913 	{
2914 		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2915 		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2916 	} tmpBuffer;
2917 	const Block128			blockData		(data);
2918 	const DecompressResult	result			= decompressBlock((isSRGB ? (void*)&tmpBuffer.sRGB[0] : (void*)&tmpBuffer.linear[0]),
2919 															  blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR);
2920 
2921 	return result == DECOMPRESS_RESULT_VALID_BLOCK;
2922 }
2923 
decompress(const PixelBufferAccess & dst,const deUint8 * data,CompressedTexFormat format,TexDecompressionParams::AstcMode mode)2924 void decompress (const PixelBufferAccess& dst, const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2925 {
2926 	const bool			isSRGBFormat	= isAstcSRGBFormat(format);
2927 
2928 #if defined(DE_DEBUG)
2929 	const tcu::IVec3	blockPixelSize	= getBlockPixelSize(format);
2930 
2931 	DE_ASSERT(dst.getWidth()	== blockPixelSize.x() &&
2932 			  dst.getHeight()	== blockPixelSize.y() &&
2933 			  dst.getDepth()	== blockPixelSize.z());
2934 	DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR);
2935 #endif
2936 
2937 	decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR);
2938 }
2939 
getBlockTestTypeName(BlockTestType testType)2940 const char* getBlockTestTypeName (BlockTestType testType)
2941 {
2942 	switch (testType)
2943 	{
2944 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "void_extent_ldr";
2945 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "void_extent_hdr";
2946 		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "weight_grid";
2947 		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "weight_ise";
2948 		case BLOCK_TEST_TYPE_CEMS:						return "color_endpoint_modes";
2949 		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "partition_pattern_index";
2950 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "endpoint_value_ldr";
2951 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "endpoint_value_hdr_cem_not_15";
2952 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "endpoint_value_hdr_cem_15";
2953 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "endpoint_ise";
2954 		case BLOCK_TEST_TYPE_CCS:						return "color_component_selector";
2955 		case BLOCK_TEST_TYPE_RANDOM:					return "random";
2956 		default:
2957 			DE_ASSERT(false);
2958 			return DE_NULL;
2959 	}
2960 }
2961 
getBlockTestTypeDescription(BlockTestType testType)2962 const char* getBlockTestTypeDescription (BlockTestType testType)
2963 {
2964 	switch (testType)
2965 	{
2966 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "Test void extent block, LDR mode";
2967 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "Test void extent block, HDR mode";
2968 		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size";
2969 		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "Test different integer sequence encoding block values for weight grid";
2970 		case BLOCK_TEST_TYPE_CEMS:						return "Test different color endpoint mode combinations, combined with different plane and partition counts";
2971 		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "Test different partition pattern indices";
2972 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode";
2973 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15";
2974 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15";
2975 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "Test different integer sequence encoding block values for color endpoints";
2976 		case BLOCK_TEST_TYPE_CCS:						return "Test color component selector, for different partition counts";
2977 		case BLOCK_TEST_TYPE_RANDOM:					return "Random block test";
2978 		default:
2979 			DE_ASSERT(false);
2980 			return DE_NULL;
2981 	}
2982 }
2983 
isBlockTestTypeHDROnly(BlockTestType testType)2984 bool isBlockTestTypeHDROnly (BlockTestType testType)
2985 {
2986 	return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR			||
2987 		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15	||
2988 		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15;
2989 }
2990 
getBlockTestTypeColorScale(BlockTestType testType)2991 Vec4 getBlockTestTypeColorScale (BlockTestType testType)
2992 {
2993 	switch (testType)
2994 	{
2995 		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return Vec4(0.5f/65504.0f);
2996 		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f);
2997 		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return Vec4(1.0f/65504.0f);
2998 		default:													return Vec4(1.0f);
2999 	}
3000 }
3001 
getBlockTestTypeColorBias(BlockTestType testType)3002 Vec4 getBlockTestTypeColorBias (BlockTestType testType)
3003 {
3004 	switch (testType)
3005 	{
3006 		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:	return Vec4(0.5f);
3007 		default:											return Vec4(0.0f);
3008 	}
3009 }
3010 
3011 } // astc
3012 } // tcu
3013