1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL ES 3.0 Module
3 * -------------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Texture unit usage tests.
22 *
23 * \todo [2012-07-12 nuutti] Come up with a good way to make these tests faster.
24 *//*--------------------------------------------------------------------*/
25
26 #include "es3fTextureUnitTests.hpp"
27 #include "glsTextureTestUtil.hpp"
28 #include "gluTextureUtil.hpp"
29 #include "gluContextInfo.hpp"
30 #include "gluTextureUtil.hpp"
31 #include "tcuTextureUtil.hpp"
32 #include "tcuImageCompare.hpp"
33 #include "tcuMatrix.hpp"
34 #include "tcuRenderTarget.hpp"
35 #include "sglrContextUtil.hpp"
36 #include "sglrReferenceContext.hpp"
37 #include "sglrGLContext.hpp"
38 #include "deRandom.hpp"
39 #include "deStringUtil.hpp"
40
41 #include "glwEnums.hpp"
42 #include "glwFunctions.hpp"
43
44 using tcu::Vec2;
45 using tcu::Vec3;
46 using tcu::Vec4;
47 using tcu::IVec2;
48 using tcu::IVec3;
49 using tcu::Mat3;
50 using tcu::Mat4;
51 using std::vector;
52 using std::string;
53 using namespace glw; // GL types
54
55 namespace deqp
56 {
57
58 using namespace gls::TextureTestUtil;
59
60 namespace gles3
61 {
62 namespace Functional
63 {
64
65 static const int VIEWPORT_WIDTH = 128;
66 static const int VIEWPORT_HEIGHT = 128;
67
68 static const int TEXTURE_WIDTH_2D = 128;
69 static const int TEXTURE_HEIGHT_2D = 128;
70
71 // \note Cube map texture size is larger in order to make minifications possible - otherwise would need to display different faces at same time.
72 static const int TEXTURE_WIDTH_CUBE = 256;
73 static const int TEXTURE_HEIGHT_CUBE = 256;
74
75 static const int TEXTURE_WIDTH_2D_ARRAY = 64;
76 static const int TEXTURE_HEIGHT_2D_ARRAY = 64;
77 static const int TEXTURE_LAYERS_2D_ARRAY = 4;
78
79 static const int TEXTURE_WIDTH_3D = 32;
80 static const int TEXTURE_HEIGHT_3D = 32;
81 static const int TEXTURE_DEPTH_3D = 32;
82
83 static const int GRID_CELL_SIZE = 8;
84
85 static const GLenum s_testSizedInternalFormats[] =
86 {
87 GL_RGBA32F,
88 GL_RGBA32I,
89 GL_RGBA32UI,
90 GL_RGBA16F,
91 GL_RGBA16I,
92 GL_RGBA16UI,
93 GL_RGBA8,
94 GL_RGBA8I,
95 GL_RGBA8UI,
96 GL_SRGB8_ALPHA8,
97 GL_RGB10_A2,
98 GL_RGB10_A2UI,
99 GL_RGBA4,
100 GL_RGB5_A1,
101 GL_RGBA8_SNORM,
102 GL_RGB8,
103 GL_RGB565,
104 GL_R11F_G11F_B10F,
105 GL_RGB32F,
106 GL_RGB32I,
107 GL_RGB32UI,
108 GL_RGB16F,
109 GL_RGB16I,
110 GL_RGB16UI,
111 GL_RGB8_SNORM,
112 GL_RGB8I,
113 GL_RGB8UI,
114 GL_SRGB8,
115 GL_RGB9_E5,
116 GL_RG32F,
117 GL_RG32I,
118 GL_RG32UI,
119 GL_RG16F,
120 GL_RG16I,
121 GL_RG16UI,
122 GL_RG8,
123 GL_RG8I,
124 GL_RG8UI,
125 GL_RG8_SNORM,
126 GL_R32F,
127 GL_R32I,
128 GL_R32UI,
129 GL_R16F,
130 GL_R16I,
131 GL_R16UI,
132 GL_R8,
133 GL_R8I,
134 GL_R8UI,
135 GL_R8_SNORM
136 };
137
138 static const GLenum s_testWrapModes[] =
139 {
140 GL_CLAMP_TO_EDGE,
141 GL_REPEAT,
142 GL_MIRRORED_REPEAT,
143 };
144
145 static const GLenum s_testMinFilters[] =
146 {
147 GL_NEAREST,
148 GL_LINEAR,
149 GL_NEAREST_MIPMAP_NEAREST,
150 GL_LINEAR_MIPMAP_NEAREST,
151 GL_NEAREST_MIPMAP_LINEAR,
152 GL_LINEAR_MIPMAP_LINEAR
153 };
154
155 static const GLenum s_testNonMipmapMinFilters[] =
156 {
157 GL_NEAREST,
158 GL_LINEAR
159 };
160
161 static const GLenum s_testNearestMinFilters[] =
162 {
163 GL_NEAREST,
164 GL_NEAREST_MIPMAP_NEAREST
165 };
166
167 static const GLenum s_testMagFilters[] =
168 {
169 GL_NEAREST,
170 GL_LINEAR
171 };
172
173 static const GLenum s_cubeFaceTargets[] =
174 {
175 GL_TEXTURE_CUBE_MAP_POSITIVE_X,
176 GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
177 GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
178 GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
179 GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
180 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
181 };
182
183 // Extend a 3x3 transformation matrix to an equivalent 4x4 transformation matrix (i.e. 1.0 in right-down cell, 0.0's in other new cells).
matExtend3To4(const Mat3 & mat)184 static Mat4 matExtend3To4 (const Mat3& mat)
185 {
186 Mat4 res;
187 for (int rowNdx = 0; rowNdx < 3; rowNdx++)
188 {
189 Vec3 row = mat.getRow(rowNdx);
190 res.setRow(rowNdx, Vec4(row.x(), row.y(), row.z(), 0.0f));
191 }
192 res.setRow(3, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
193
194 return res;
195 }
196
generateMultiTexFragmentShader(int numUnits,const vector<GLenum> & unitTypes,const vector<glu::DataType> & samplerTypes)197 static string generateMultiTexFragmentShader (int numUnits, const vector<GLenum>& unitTypes, const vector<glu::DataType>& samplerTypes)
198 {
199 // The fragment shader calculates the average of a set of textures.
200
201 string samplersStr;
202 string matricesStr;
203 string scalesStr;
204 string biasesStr;
205 string lookupsStr;
206
207 string colorMultiplier = "(1.0/" + de::toString(numUnits) + ".0)";
208
209 for (int ndx = 0; ndx < numUnits; ndx++)
210 {
211 string ndxStr = de::toString(ndx);
212 string samplerName = "u_sampler" + ndxStr;
213 string transformationName = "u_trans" + ndxStr;
214 string scaleName = "u_texScale" + ndxStr;
215 string biasName = "u_texBias" + ndxStr;
216
217 samplersStr += string("") + "uniform highp " + glu::getDataTypeName(samplerTypes[ndx]) + " " + samplerName + ";\n";
218 matricesStr += "uniform highp mat4 " + transformationName + ";\n";
219 scalesStr += "uniform highp vec4 " + scaleName + ";\n";
220 biasesStr += "uniform highp vec4 " + biasName + ";\n";
221
222 string lookupCoord = transformationName + "*vec4(v_coord, 1.0, 1.0)";
223
224 if (unitTypes[ndx] == GL_TEXTURE_2D)
225 lookupCoord = "vec2(" + lookupCoord + ")";
226 else
227 lookupCoord = "vec3(" + lookupCoord + ")";
228
229 lookupsStr += "\tcolor += " + colorMultiplier + "*(vec4(texture(" + samplerName + ", " + lookupCoord + "))*" + scaleName + " + " + biasName + ");\n";
230 }
231
232 return "#version 300 es\n"
233 "layout(location = 0) out mediump vec4 o_color;\n" +
234 samplersStr +
235 matricesStr +
236 scalesStr +
237 biasesStr +
238 "in highp vec2 v_coord;\n"
239 "\n"
240 "void main (void)\n"
241 "{\n"
242 " mediump vec4 color = vec4(0.0);\n" +
243 lookupsStr +
244 " o_color = color;\n"
245 "}\n";
246 }
247
generateShaderProgramDeclaration(int numUnits,const vector<GLenum> & unitTypes,const vector<glu::DataType> & samplerTypes)248 static sglr::pdec::ShaderProgramDeclaration generateShaderProgramDeclaration (int numUnits, const vector<GLenum>& unitTypes, const vector<glu::DataType>& samplerTypes)
249 {
250 sglr::pdec::ShaderProgramDeclaration decl;
251
252 decl << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT);
253 decl << sglr::pdec::VertexAttribute("a_coord", rr::GENERICVECTYPE_FLOAT);
254 decl << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT);
255 decl << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT);
256
257 for (int ndx = 0; ndx < numUnits; ++ndx)
258 {
259 string samplerName = "u_sampler" + de::toString(ndx);
260 string transformationName = "u_trans" + de::toString(ndx);
261 string scaleName = "u_texScale" + de::toString(ndx);
262 string biasName = "u_texBias" + de::toString(ndx);
263
264 decl << sglr::pdec::Uniform(samplerName, samplerTypes[ndx]);
265 decl << sglr::pdec::Uniform(transformationName, glu::TYPE_FLOAT_MAT4);
266 decl << sglr::pdec::Uniform(scaleName, glu::TYPE_FLOAT_VEC4);
267 decl << sglr::pdec::Uniform(biasName, glu::TYPE_FLOAT_VEC4);
268 }
269
270 decl << sglr::pdec::VertexSource("#version 300 es\n"
271 "in highp vec4 a_position;\n"
272 "in highp vec2 a_coord;\n"
273 "out highp vec2 v_coord;\n"
274 "\n"
275 "void main (void)\n"
276 "{\n"
277 " gl_Position = a_position;\n"
278 " v_coord = a_coord;\n"
279 "}\n");
280 decl << sglr::pdec::FragmentSource(generateMultiTexFragmentShader(numUnits, unitTypes, samplerTypes));
281
282 return decl;
283 }
284
285 // Calculates values that will be used in calculateLod().
calculateLodDerivateParts(const Mat4 & transformation)286 static tcu::Vector<tcu::Vec2, 3> calculateLodDerivateParts (const Mat4& transformation)
287 {
288 // Calculate transformed coordinates of three screen corners.
289 Vec3 trans00 = (transformation * Vec4(0.0f, 0.0f, 1.0f, 1.0f)).xyz();
290 Vec3 trans01 = (transformation * Vec4(0.0f, 1.0f, 1.0f, 1.0f)).xyz();
291 Vec3 trans10 = (transformation * Vec4(1.0f, 0.0f, 1.0f, 1.0f)).xyz();
292
293 return tcu::Vector<tcu::Vec2, 3>(Vec2(trans10.x() - trans00.x(), trans01.x() - trans00.x()),
294 Vec2(trans10.y() - trans00.y(), trans01.y() - trans00.y()),
295 Vec2(trans10.z() - trans00.z(), trans01.z() - trans00.z()));
296 }
297
298 // Calculates the maximum allowed lod from derivates
calculateLodMax(const tcu::Vector<tcu::Vec2,3> & derivateParts,const tcu::IVec3 & textureSize,const Vec2 & screenDerivate)299 static float calculateLodMax(const tcu::Vector<tcu::Vec2, 3>& derivateParts, const tcu::IVec3& textureSize, const Vec2& screenDerivate)
300 {
301 float dudx = derivateParts[0].x() * (float)textureSize.x() * screenDerivate.x();
302 float dudy = derivateParts[0].y() * (float)textureSize.x() * screenDerivate.y();
303 float dvdx = derivateParts[1].x() * (float)textureSize.y() * screenDerivate.x();
304 float dvdy = derivateParts[1].y() * (float)textureSize.y() * screenDerivate.y();
305 float dwdx = derivateParts[2].x() * (float)textureSize.z() * screenDerivate.x();
306 float dwdy = derivateParts[2].y() * (float)textureSize.z() * screenDerivate.y();
307
308 const float mu = de::max(de::abs(dudx), de::abs(dudy));
309 const float mv = de::max(de::abs(dvdx), de::abs(dvdy));
310 const float mw = de::max(de::abs(dwdx), de::abs(dwdy));
311 return deFloatLog2(mu + mv + mw);
312 }
313
314 // Calculates the minimum allowed lod from derivates
calculateLodMin(const tcu::Vector<tcu::Vec2,3> & derivateParts,const tcu::IVec3 & textureSize,const Vec2 & screenDerivate)315 static float calculateLodMin(const tcu::Vector<tcu::Vec2, 3>& derivateParts, const tcu::IVec3& textureSize, const Vec2& screenDerivate)
316 {
317 float dudx = derivateParts[0].x() * (float)textureSize.x() * screenDerivate.x();
318 float dudy = derivateParts[0].y() * (float)textureSize.x() * screenDerivate.y();
319 float dvdx = derivateParts[1].x() * (float)textureSize.y() * screenDerivate.x();
320 float dvdy = derivateParts[1].y() * (float)textureSize.y() * screenDerivate.y();
321 float dwdx = derivateParts[2].x() * (float)textureSize.z() * screenDerivate.x();
322 float dwdy = derivateParts[2].y() * (float)textureSize.z() * screenDerivate.y();
323
324 const float mu = de::max(de::abs(dudx), de::abs(dudy));
325 const float mv = de::max(de::abs(dvdx), de::abs(dvdy));
326 const float mw = de::max(de::abs(dwdx), de::abs(dwdy));
327 return deFloatLog2(de::max(mu, de::max(mv, mw)));
328 }
329
330 class MultiTexShader : public sglr::ShaderProgram
331 {
332 public:
333 MultiTexShader (deUint32 randSeed,
334 int numUnits,
335 const vector<GLenum>& unitTypes,
336 const vector<glu::DataType>& samplerTypes,
337 const vector<Vec4>& texScales,
338 const vector<Vec4>& texBiases,
339 const vector<int>& num2dArrayLayers); // \note 2d array layer "coordinate" isn't normalized, so this is needed here.
340
341 void setUniforms (sglr::Context& context, deUint32 program) const;
342 void makeSafeLods (const vector<IVec3>& textureSizes, const IVec2& viewportSize); // Modifies texture coordinates so that LODs aren't too close to x.5 or 0.0 .
343
344 private:
345 void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
346 void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
347
348 int m_numUnits;
349 vector<GLenum> m_unitTypes; // 2d, cube map, 2d array or 3d.
350 vector<Vec4> m_texScales;
351 vector<Vec4> m_texBiases;
352 vector<Mat4> m_transformations;
353 vector<tcu::Vector<tcu::Vec2, 3> > m_lodDerivateParts; // Parts of lod derivates; computed in init(), used in eval().
354 };
355
MultiTexShader(deUint32 randSeed,int numUnits,const vector<GLenum> & unitTypes,const vector<glu::DataType> & samplerTypes,const vector<Vec4> & texScales,const vector<Vec4> & texBiases,const vector<int> & num2dArrayLayers)356 MultiTexShader::MultiTexShader (deUint32 randSeed,
357 int numUnits,
358 const vector<GLenum>& unitTypes,
359 const vector<glu::DataType>& samplerTypes,
360 const vector<Vec4>& texScales,
361 const vector<Vec4>& texBiases,
362 const vector<int>& num2dArrayLayers)
363 : sglr::ShaderProgram (generateShaderProgramDeclaration(numUnits, unitTypes, samplerTypes))
364 , m_numUnits (numUnits)
365 , m_unitTypes (unitTypes)
366 , m_texScales (texScales)
367 , m_texBiases (texBiases)
368 {
369 // 2d-to-cube-face transformations.
370 // \note 2d coordinates range from 0 to 1 and cube face coordinates from -1 to 1, so scaling is done as well.
371 static const float s_cubeTransforms[][3*3] =
372 {
373 // Face -X: (x, y, 1) -> (-1, -(2*y-1), +(2*x-1))
374 { 0.0f, 0.0f, -1.0f,
375 0.0f, -2.0f, 1.0f,
376 2.0f, 0.0f, -1.0f },
377 // Face +X: (x, y, 1) -> (+1, -(2*y-1), -(2*x-1))
378 { 0.0f, 0.0f, 1.0f,
379 0.0f, -2.0f, 1.0f,
380 -2.0f, 0.0f, 1.0f },
381 // Face -Y: (x, y, 1) -> (+(2*x-1), -1, -(2*y-1))
382 { 2.0f, 0.0f, -1.0f,
383 0.0f, 0.0f, -1.0f,
384 0.0f, -2.0f, 1.0f },
385 // Face +Y: (x, y, 1) -> (+(2*x-1), +1, +(2*y-1))
386 { 2.0f, 0.0f, -1.0f,
387 0.0f, 0.0f, 1.0f,
388 0.0f, 2.0f, -1.0f },
389 // Face -Z: (x, y, 1) -> (-(2*x-1), -(2*y-1), -1)
390 { -2.0f, 0.0f, 1.0f,
391 0.0f, -2.0f, 1.0f,
392 0.0f, 0.0f, -1.0f },
393 // Face +Z: (x, y, 1) -> (+(2*x-1), -(2*y-1), +1)
394 { 2.0f, 0.0f, -1.0f,
395 0.0f, -2.0f, 1.0f,
396 0.0f, 0.0f, 1.0f }
397 };
398
399 // Generate transformation matrices.
400
401 de::Random rnd(randSeed);
402
403 m_transformations.reserve(m_numUnits);
404 m_lodDerivateParts.reserve(m_numUnits);
405
406 int tex2dArrayNdx = 0; // Keep track of 2d texture array index.
407
408 DE_ASSERT((int)m_unitTypes.size() == m_numUnits);
409
410 for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
411 {
412 if (m_unitTypes[unitNdx] == GL_TEXTURE_2D)
413 {
414 float rotAngle = rnd.getFloat(0.0f, 2.0f*DE_PI);
415 float xScaleFactor = rnd.getFloat(0.7f, 1.5f);
416 float yScaleFactor = rnd.getFloat(0.7f, 1.5f);
417 float xShearAmount = rnd.getFloat(0.0f, 0.5f);
418 float yShearAmount = rnd.getFloat(0.0f, 0.5f);
419 float xTranslationAmount = rnd.getFloat(-0.5f, 0.5f);
420 float yTranslationAmount = rnd.getFloat(-0.5f, 0.5f);
421
422 static const float tempOffsetData[3*3] = // For temporarily centering the coordinates to get nicer transformations.
423 {
424 1.0f, 0.0f, -0.5f,
425 0.0f, 1.0f, -0.5f,
426 0.0f, 0.0f, 1.0f
427 };
428 float rotTransfData[3*3] =
429 {
430 deFloatCos(rotAngle), -deFloatSin(rotAngle), 0.0f,
431 deFloatSin(rotAngle), deFloatCos(rotAngle), 0.0f,
432 0.0f, 0.0f, 1.0f
433 };
434 float scaleTransfData[3*3] =
435 {
436 xScaleFactor, 0.0f, 0.0f,
437 0.0f, yScaleFactor, 0.0f,
438 0.0f, 0.0f, 1.0f
439 };
440 float xShearTransfData[3*3] =
441 {
442 1.0f, xShearAmount, 0.0f,
443 0.0f, 1.0f, 0.0f,
444 0.0f, 0.0f, 1.0f
445 };
446 float yShearTransfData[3*3] =
447 {
448 1.0f, 0.0f, 0.0f,
449 yShearAmount, 1.0f, 0.0f,
450 0.0f, 0.0f, 1.0f
451 };
452 float translationTransfData[3*3] =
453 {
454 1.0f, 0.0f, xTranslationAmount,
455 0.0f, 1.0f, yTranslationAmount,
456 0.0f, 0.0f, 1.0f
457 };
458
459 Mat4 transformation = matExtend3To4(Mat3(tempOffsetData) *
460 Mat3(translationTransfData) *
461 Mat3(rotTransfData) *
462 Mat3(scaleTransfData) *
463 Mat3(xShearTransfData) *
464 Mat3(yShearTransfData) *
465 (Mat3(tempOffsetData) * (-1.0f)));
466
467 m_lodDerivateParts.push_back(calculateLodDerivateParts(transformation));
468 m_transformations.push_back(transformation);
469 }
470 else if (m_unitTypes[unitNdx] == GL_TEXTURE_CUBE_MAP)
471 {
472 DE_STATIC_ASSERT((int)tcu::CUBEFACE_LAST == DE_LENGTH_OF_ARRAY(s_cubeTransforms));
473
474 float planarTransData[3*3];
475
476 // In case of a cube map, we only want to render one face, so the transformation needs to be restricted - only enlarging scaling is done.
477
478 for (int i = 0; i < DE_LENGTH_OF_ARRAY(planarTransData); i++)
479 {
480 if (i == 0 || i == 4)
481 planarTransData[i] = rnd.getFloat(0.1f, 0.9f); // Two first diagonal cells control the scaling.
482 else if (i == 8)
483 planarTransData[i] = 1.0f;
484 else
485 planarTransData[i] = 0.0f;
486 }
487
488 int faceNdx = rnd.getInt(0, (int)tcu::CUBEFACE_LAST - 1);
489 Mat3 planarTrans (planarTransData); // Planar, face-agnostic transformation.
490 Mat4 finalTrans = matExtend3To4(Mat3(s_cubeTransforms[faceNdx]) * planarTrans); // Final transformation from planar to cube map coordinates, including the transformation just generated.
491 Mat4 planarTrans4x4 = matExtend3To4(planarTrans);
492
493 m_lodDerivateParts.push_back(calculateLodDerivateParts(planarTrans4x4));
494 m_transformations.push_back(finalTrans);
495 }
496 else
497 {
498 DE_ASSERT(m_unitTypes[unitNdx] == GL_TEXTURE_3D || m_unitTypes[unitNdx] == GL_TEXTURE_2D_ARRAY);
499
500 float transData[4*4];
501
502 for (int i = 0; i < 4*4; i++)
503 {
504 float sign = rnd.getBool() ? 1.0f : -1.0f;
505 transData[i] = rnd.getFloat(0.7f, 1.4f) * sign;
506 }
507
508 Mat4 transformation(transData);
509
510 if (m_unitTypes[unitNdx] == GL_TEXTURE_2D_ARRAY)
511 {
512 // Z direction: Translate by 0.5 and scale by layer amount.
513
514 float numLayers = (float)num2dArrayLayers[tex2dArrayNdx];
515
516 static const float zTranslationTransfData[4*4] =
517 {
518 1.0f, 0.0f, 0.0f, 0.0f,
519 0.0f, 1.0f, 0.0f, 0.0f,
520 0.0f, 0.0f, 1.0f, 0.5f,
521 0.0f, 0.0f, 0.0f, 1.0f
522 };
523
524 float zScaleTransfData[4*4] =
525 {
526 1.0f, 0.0f, 0.0f, 0.0f,
527 0.0f, 1.0f, 0.0f, 0.0f,
528 0.0f, 0.0f, numLayers, 0.0f,
529 0.0f, 0.0f, 0.0f, 1.0f
530 };
531
532 transformation = transformation * Mat4(zScaleTransfData) * Mat4(zTranslationTransfData);
533
534 tex2dArrayNdx++;
535 }
536
537 m_lodDerivateParts.push_back(calculateLodDerivateParts(transformation));
538 m_transformations.push_back(Mat4(transformation));
539 }
540 }
541 }
542
setUniforms(sglr::Context & ctx,deUint32 program) const543 void MultiTexShader::setUniforms (sglr::Context& ctx, deUint32 program) const
544 {
545 ctx.useProgram(program);
546
547 // Sampler and matrix uniforms.
548
549 for (int ndx = 0; ndx < m_numUnits; ndx++)
550 {
551 string ndxStr = de::toString(ndx);
552
553 ctx.uniform1i(ctx.getUniformLocation(program, ("u_sampler" + ndxStr).c_str()), ndx);
554 ctx.uniformMatrix4fv(ctx.getUniformLocation(program, ("u_trans" + ndxStr).c_str()), 1, GL_FALSE, (GLfloat*)&m_transformations[ndx].getColumnMajorData()[0]);
555 ctx.uniform4fv(ctx.getUniformLocation(program, ("u_texScale" + ndxStr).c_str()), 1, m_texScales[ndx].getPtr());
556 ctx.uniform4fv(ctx.getUniformLocation(program, ("u_texBias" + ndxStr).c_str()), 1, m_texBiases[ndx].getPtr());
557 }
558 }
559
makeSafeLods(const vector<IVec3> & textureSizes,const IVec2 & viewportSize)560 void MultiTexShader::makeSafeLods (const vector<IVec3>& textureSizes, const IVec2& viewportSize)
561 {
562 DE_ASSERT((int)textureSizes.size() == m_numUnits);
563
564 static const float shrinkScaleMat2dData[3*3] =
565 {
566 0.95f, 0.0f, 0.0f,
567 0.0f, 0.95f, 0.0f,
568 0.0f, 0.0f, 1.0f
569 };
570 static const float shrinkScaleMat3dData[3*3] =
571 {
572 0.95f, 0.0f, 0.0f,
573 0.0f, 0.95f, 0.0f,
574 0.0f, 0.0f, 0.95f
575 };
576 Mat4 shrinkScaleMat2d = matExtend3To4(Mat3(shrinkScaleMat2dData));
577 Mat4 shrinkScaleMat3d = matExtend3To4(Mat3(shrinkScaleMat3dData));
578
579 Vec2 screenDerivate(1.0f / (float)viewportSize.x(), 1.0f / (float)viewportSize.y());
580
581 for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
582 {
583 // As long as LOD is too close to 0.0 or is positive and too close to a something-and-a-half (0.5, 1.5, 2.5 etc) or allowed lod range could round to different levels, zoom in a little to get a safer LOD.
584 for (;;)
585 {
586 const float threshold = 0.1f;
587 const float epsilon = 0.01f;
588
589 const float lodMax = calculateLodMax(m_lodDerivateParts[unitNdx], textureSizes[unitNdx], screenDerivate);
590 const float lodMin = calculateLodMin(m_lodDerivateParts[unitNdx], textureSizes[unitNdx], screenDerivate);
591
592 const deInt32 maxLevel = (lodMax + epsilon < 0.5f) ? (0) : (deCeilFloatToInt32(lodMax + epsilon + 0.5f) - 1);
593 const deInt32 minLevel = (lodMin - epsilon < 0.5f) ? (0) : (deCeilFloatToInt32(lodMin - epsilon + 0.5f) - 1);
594
595 if (de::abs(lodMax) < threshold || (lodMax > 0.0f && de::abs(deFloatFrac(lodMax) - 0.5f) < threshold) ||
596 de::abs(lodMin) < threshold || (lodMin > 0.0f && de::abs(deFloatFrac(lodMin) - 0.5f) < threshold) ||
597 maxLevel != minLevel)
598 {
599 m_transformations[unitNdx] = (m_unitTypes[unitNdx] == GL_TEXTURE_3D ? shrinkScaleMat3d : shrinkScaleMat2d) * m_transformations[unitNdx];
600 m_lodDerivateParts[unitNdx] = calculateLodDerivateParts(m_transformations[unitNdx]);
601 }
602 else
603 break;
604 }
605 }
606 }
607
shadeVertices(const rr::VertexAttrib * inputs,rr::VertexPacket * const * packets,const int numPackets) const608 void MultiTexShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
609 {
610 for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
611 {
612 rr::VertexPacket& packet = *(packets[packetNdx]);
613
614 packet.position = rr::readVertexAttribFloat(inputs[0], packet.instanceNdx, packet.vertexNdx);
615 packet.outputs[0] = rr::readVertexAttribFloat(inputs[1], packet.instanceNdx, packet.vertexNdx);
616 }
617 }
618
shadeFragments(rr::FragmentPacket * packets,const int numPackets,const rr::FragmentShadingContext & context) const619 void MultiTexShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
620 {
621 DE_ASSERT((int)m_unitTypes.size() == m_numUnits);
622 DE_ASSERT((int)m_transformations.size() == m_numUnits);
623 DE_ASSERT((int)m_lodDerivateParts.size() == m_numUnits);
624
625 for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
626 {
627 rr::FragmentPacket& packet = packets[packetNdx];
628 const float colorMultiplier = 1.0f / (float)m_numUnits;
629 Vec4 outColors[4] = { Vec4(0.0f), Vec4(0.0f), Vec4(0.0f), Vec4(0.0f) };
630
631 for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
632 {
633 tcu::Vec4 texSamples[4];
634
635 // Read tex coords
636 const tcu::Vec2 texCoords[4] =
637 {
638 rr::readTriangleVarying<float>(packet, context, 0, 0).xy(),
639 rr::readTriangleVarying<float>(packet, context, 0, 1).xy(),
640 rr::readTriangleVarying<float>(packet, context, 0, 2).xy(),
641 rr::readTriangleVarying<float>(packet, context, 0, 3).xy(),
642 };
643
644 // Transform
645 tcu::Vec3 coords3D[4] =
646 {
647 (m_transformations[unitNdx] * Vec4(texCoords[0].x(), texCoords[0].y(), 1.0f, 1.0f)).xyz(),
648 (m_transformations[unitNdx] * Vec4(texCoords[1].x(), texCoords[1].y(), 1.0f, 1.0f)).xyz(),
649 (m_transformations[unitNdx] * Vec4(texCoords[2].x(), texCoords[2].y(), 1.0f, 1.0f)).xyz(),
650 (m_transformations[unitNdx] * Vec4(texCoords[3].x(), texCoords[3].y(), 1.0f, 1.0f)).xyz(),
651 };
652
653 // To 2D
654 const tcu::Vec2 coords2D[4] =
655 {
656 coords3D[0].xy(),
657 coords3D[1].xy(),
658 coords3D[2].xy(),
659 coords3D[3].xy(),
660 };
661
662 // Sample
663 switch (m_unitTypes[unitNdx])
664 {
665 case GL_TEXTURE_2D: m_uniforms[4*unitNdx].sampler.tex2D->sample4(texSamples, coords2D); break;
666 case GL_TEXTURE_CUBE_MAP: m_uniforms[4*unitNdx].sampler.texCube->sample4(texSamples, coords3D); break;
667 case GL_TEXTURE_2D_ARRAY: m_uniforms[4*unitNdx].sampler.tex2DArray->sample4(texSamples, coords3D); break;
668 case GL_TEXTURE_3D: m_uniforms[4*unitNdx].sampler.tex3D->sample4(texSamples, coords3D); break;
669 default:
670 DE_ASSERT(DE_FALSE);
671 }
672
673 // Add to sum
674 for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
675 outColors[fragNdx] += colorMultiplier * (texSamples[fragNdx]*m_texScales[unitNdx] + m_texBiases[unitNdx]);
676 }
677
678 // output
679 for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
680 rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, outColors[fragNdx]);
681 }
682 }
683
684 class TextureUnitCase : public TestCase
685 {
686 public:
687 enum CaseType
688 {
689 CASE_ONLY_2D = 0,
690 CASE_ONLY_CUBE,
691 CASE_ONLY_2D_ARRAY,
692 CASE_ONLY_3D,
693 CASE_MIXED,
694
695 CASE_LAST
696 };
697 TextureUnitCase (Context& context, const char* name, const char* desc, int numUnits /* \note If non-positive, use all units */, CaseType caseType, deUint32 randSeed);
698 ~TextureUnitCase (void);
699
700 void init (void);
701 void deinit (void);
702 IterateResult iterate (void);
703
704 private:
705 struct TextureParameters
706 {
707 GLenum internalFormat;
708 GLenum wrapModeS;
709 GLenum wrapModeT;
710 GLenum wrapModeR;
711 GLenum minFilter;
712 GLenum magFilter;
713 };
714
715 TextureUnitCase (const TextureUnitCase& other);
716 TextureUnitCase& operator= (const TextureUnitCase& other);
717
718 void upload2dTexture (int texNdx, sglr::Context& context);
719 void uploadCubeTexture (int texNdx, sglr::Context& context);
720 void upload2dArrayTexture (int texNdx, sglr::Context& context);
721 void upload3dTexture (int texNdx, sglr::Context& context);
722
723 void render (sglr::Context& context);
724
725 const int m_numUnitsParam;
726 const CaseType m_caseType;
727 const deUint32 m_randSeed;
728
729 int m_numTextures; //!< \note Needed in addition to m_numUnits since same texture may be bound to many texture units.
730 int m_numUnits; //!< = m_numUnitsParam > 0 ? m_numUnitsParam : implementationDefinedMaximum
731
732 vector<GLenum> m_textureTypes;
733 vector<TextureParameters> m_textureParams;
734 vector<tcu::Texture2D*> m_textures2d;
735 vector<tcu::TextureCube*> m_texturesCube;
736 vector<tcu::Texture2DArray*> m_textures2dArray;
737 vector<tcu::Texture3D*> m_textures3d;
738 vector<int> m_unitTextures; //!< Which texture is used in a particular unit.
739 vector<int> m_ndxTexType; //!< Index of a texture in m_textures2d, m_texturesCube, m_textures2dArray or m_textures3d, depending on texture type.
740 MultiTexShader* m_shader;
741 };
742
TextureUnitCase(Context & context,const char * name,const char * desc,int numUnits,CaseType caseType,deUint32 randSeed)743 TextureUnitCase::TextureUnitCase (Context& context, const char* name, const char* desc, int numUnits, CaseType caseType, deUint32 randSeed)
744 : TestCase (context, tcu::NODETYPE_SELF_VALIDATE, name, desc)
745 , m_numUnitsParam (numUnits)
746 , m_caseType (caseType)
747 , m_randSeed (randSeed)
748 , m_shader (DE_NULL)
749 {
750 }
751
~TextureUnitCase(void)752 TextureUnitCase::~TextureUnitCase (void)
753 {
754 TextureUnitCase::deinit();
755 }
756
deinit(void)757 void TextureUnitCase::deinit (void)
758 {
759 for (vector<tcu::Texture2D*>::iterator i = m_textures2d.begin(); i != m_textures2d.end(); i++)
760 delete *i;
761 m_textures2d.clear();
762
763 for (vector<tcu::TextureCube*>::iterator i = m_texturesCube.begin(); i != m_texturesCube.end(); i++)
764 delete *i;
765 m_texturesCube.clear();
766
767 for (vector<tcu::Texture2DArray*>::iterator i = m_textures2dArray.begin(); i != m_textures2dArray.end(); i++)
768 delete *i;
769 m_textures2dArray.clear();
770
771 for (vector<tcu::Texture3D*>::iterator i = m_textures3d.begin(); i != m_textures3d.end(); i++)
772 delete *i;
773 m_textures3d.clear();
774
775 delete m_shader;
776 m_shader = DE_NULL;
777 }
778
init(void)779 void TextureUnitCase::init (void)
780 {
781 m_numUnits = m_numUnitsParam > 0 ? m_numUnitsParam : m_context.getContextInfo().getInt(GL_MAX_TEXTURE_IMAGE_UNITS);
782
783 // Make the textures.
784
785 try
786 {
787 tcu::TestLog& log = m_testCtx.getLog();
788 de::Random rnd (m_randSeed);
789
790 if (rnd.getFloat() < 0.7f)
791 m_numTextures = m_numUnits; // In most cases use one unit per texture.
792 else
793 m_numTextures = rnd.getInt(deMax32(1, m_numUnits - 2), m_numUnits); // Sometimes assign same texture to multiple units.
794
795 log << tcu::TestLog::Message << ("Using " + de::toString(m_numUnits) + " texture unit(s) and " + de::toString(m_numTextures) + " texture(s)").c_str() << tcu::TestLog::EndMessage;
796
797 m_textureTypes.reserve(m_numTextures);
798 m_textureParams.reserve(m_numTextures);
799 m_ndxTexType.reserve(m_numTextures);
800
801 // Generate textures.
802
803 for (int texNdx = 0; texNdx < m_numTextures; texNdx++)
804 {
805 // Either fixed or randomized target types, and randomized parameters for every texture.
806
807 TextureParameters params;
808
809 DE_STATIC_ASSERT(CASE_ONLY_2D == 0 && CASE_MIXED + 1 == CASE_LAST);
810
811 int texType = m_caseType == CASE_MIXED ? rnd.getInt(0, (int)CASE_MIXED - 1) : (int)m_caseType;
812 bool is2dTex = texType == 0;
813 bool isCubeTex = texType == 1;
814 bool is2dArrayTex = texType == 2;
815 bool is3dTex = texType == 3;
816
817 DE_ASSERT(is2dTex || isCubeTex || is2dArrayTex || is3dTex);
818
819 GLenum type = is2dTex ? GL_TEXTURE_2D : isCubeTex ? GL_TEXTURE_CUBE_MAP : is2dArrayTex ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_3D;
820 const int texWidth = is2dTex ? TEXTURE_WIDTH_2D : isCubeTex ? TEXTURE_WIDTH_CUBE : is2dArrayTex ? TEXTURE_WIDTH_2D_ARRAY : TEXTURE_WIDTH_3D;
821 const int texHeight = is2dTex ? TEXTURE_HEIGHT_2D : isCubeTex ? TEXTURE_HEIGHT_CUBE : is2dArrayTex ? TEXTURE_HEIGHT_2D_ARRAY : TEXTURE_HEIGHT_3D;
822
823 const int texDepth = is3dTex ? TEXTURE_DEPTH_3D : 1;
824 const int texLayers = is2dArrayTex ? TEXTURE_LAYERS_2D_ARRAY : 1;
825
826 bool mipmaps = (deIsPowerOfTwo32(texWidth) && deIsPowerOfTwo32(texHeight) && deIsPowerOfTwo32(texDepth));
827 int numLevels = mipmaps ? deLog2Floor32(de::max(de::max(texWidth, texHeight), texDepth))+1 : 1;
828
829 params.internalFormat = s_testSizedInternalFormats[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testSizedInternalFormats) - 1)];
830
831 bool isFilterable = glu::isGLInternalColorFormatFilterable(params.internalFormat);
832
833 params.wrapModeS = s_testWrapModes[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
834 params.wrapModeT = s_testWrapModes[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
835 params.wrapModeR = s_testWrapModes[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testWrapModes) - 1)];
836
837 params.magFilter = isFilterable ? s_testMagFilters[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testMagFilters) - 1)] : GL_NEAREST;
838
839 if (mipmaps)
840 params.minFilter = isFilterable ?
841 s_testMinFilters [rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testMinFilters) - 1)] :
842 s_testNearestMinFilters [rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testNearestMinFilters) - 1)];
843 else
844 params.minFilter = isFilterable ?
845 s_testNonMipmapMinFilters [rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_testNonMipmapMinFilters) - 1)] :
846 GL_NEAREST;
847
848 m_textureTypes.push_back(type);
849 m_textureParams.push_back(params);
850
851 // Create new texture.
852
853 tcu::TextureFormat texFormat = glu::mapGLInternalFormat((deUint32)params.internalFormat);
854
855 if (is2dTex)
856 {
857 m_ndxTexType.push_back((int)m_textures2d.size()); // Remember the index this texture has in the 2d texture vector.
858 m_textures2d.push_back(new tcu::Texture2D(texFormat, texWidth, texHeight));
859 }
860 else if (isCubeTex)
861 {
862 m_ndxTexType.push_back((int)m_texturesCube.size()); // Remember the index this texture has in the cube texture vector.
863 DE_ASSERT(texWidth == texHeight);
864 m_texturesCube.push_back(new tcu::TextureCube(texFormat, texWidth));
865 }
866 else if (is2dArrayTex)
867 {
868 m_ndxTexType.push_back((int)m_textures2dArray.size()); // Remember the index this texture has in the 2d array texture vector.
869 m_textures2dArray.push_back(new tcu::Texture2DArray(texFormat, texWidth, texHeight, texLayers));
870 }
871 else
872 {
873 m_ndxTexType.push_back((int)m_textures3d.size()); // Remember the index this texture has in the 3d vector.
874 m_textures3d.push_back(new tcu::Texture3D(texFormat, texWidth, texHeight, texDepth));
875 }
876
877 tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(texFormat);
878 Vec4 cBias = fmtInfo.valueMin;
879 Vec4 cScale = fmtInfo.valueMax-fmtInfo.valueMin;
880
881 // Fill with grid texture.
882
883 int numFaces = isCubeTex ? (int)tcu::CUBEFACE_LAST : 1;
884
885 for (int face = 0; face < numFaces; face++)
886 {
887 deUint32 rgb = rnd.getUint32() & 0x00ffffff;
888 deUint32 alpha = 0xff000000;
889
890 deUint32 colorA = alpha | rgb;
891 deUint32 colorB = alpha | ((~rgb) & 0x00ffffff);
892
893 for (int levelNdx = 0; levelNdx < numLevels; levelNdx++)
894 {
895 if (is2dTex)
896 m_textures2d.back()->allocLevel(levelNdx);
897 else if (isCubeTex)
898 m_texturesCube.back()->allocLevel((tcu::CubeFace)face, levelNdx);
899 else if (is2dArrayTex)
900 m_textures2dArray.back()->allocLevel(levelNdx);
901 else
902 m_textures3d.back()->allocLevel(levelNdx);
903
904 int curCellSize = deMax32(1, GRID_CELL_SIZE >> levelNdx); // \note Scale grid cell size for mipmaps.
905
906 tcu::PixelBufferAccess access = is2dTex ? m_textures2d.back()->getLevel(levelNdx)
907 : isCubeTex ? m_texturesCube.back()->getLevelFace(levelNdx, (tcu::CubeFace)face)
908 : is2dArrayTex ? m_textures2dArray.back()->getLevel(levelNdx)
909 : m_textures3d.back()->getLevel(levelNdx);
910
911 tcu::fillWithGrid(access, curCellSize, toVec4(tcu::RGBA(colorA))*cScale + cBias, toVec4(tcu::RGBA(colorB))*cScale + cBias);
912 }
913 }
914 }
915
916 // Assign a texture index to each unit.
917
918 m_unitTextures.reserve(m_numUnits);
919
920 // \note Every texture is used at least once.
921 for (int i = 0; i < m_numTextures; i++)
922 m_unitTextures.push_back(i);
923
924 // Assign a random texture to remaining units.
925 while ((int)m_unitTextures.size() < m_numUnits)
926 m_unitTextures.push_back(rnd.getInt(0, m_numTextures - 1));
927
928 rnd.shuffle(m_unitTextures.begin(), m_unitTextures.end());
929
930 // Generate information for shader.
931
932 vector<GLenum> unitTypes;
933 vector<Vec4> texScales;
934 vector<Vec4> texBiases;
935 vector<glu::DataType> samplerTypes;
936 vector<int> num2dArrayLayers;
937
938 unitTypes.reserve(m_numUnits);
939 texScales.reserve(m_numUnits);
940 texBiases.reserve(m_numUnits);
941 samplerTypes.reserve(m_numUnits);
942 num2dArrayLayers.reserve(m_numUnits);
943
944 for (int i = 0; i < m_numUnits; i++)
945 {
946 int texNdx = m_unitTextures[i];
947 GLenum type = m_textureTypes[texNdx];
948 tcu::TextureFormat fmt = glu::mapGLInternalFormat(m_textureParams[texNdx].internalFormat);
949 tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(fmt);
950
951 unitTypes.push_back(type);
952
953 if (type == GL_TEXTURE_2D_ARRAY)
954 num2dArrayLayers.push_back(m_textures2dArray[m_ndxTexType[texNdx]]->getNumLayers());
955
956 texScales.push_back(fmtInfo.lookupScale);
957 texBiases.push_back(fmtInfo.lookupBias);
958
959 switch (type)
960 {
961 case GL_TEXTURE_2D: samplerTypes.push_back(glu::getSampler2DType(fmt)); break;
962 case GL_TEXTURE_CUBE_MAP: samplerTypes.push_back(glu::getSamplerCubeType(fmt)); break;
963 case GL_TEXTURE_2D_ARRAY: samplerTypes.push_back(glu::getSampler2DArrayType(fmt)); break;
964 case GL_TEXTURE_3D: samplerTypes.push_back(glu::getSampler3DType(fmt)); break;
965 default:
966 DE_ASSERT(DE_FALSE);
967 }
968 }
969
970 // Create shader.
971
972 DE_ASSERT(m_shader == DE_NULL);
973 m_shader = new MultiTexShader(rnd.getUint32(), m_numUnits, unitTypes, samplerTypes, texScales, texBiases, num2dArrayLayers);
974 }
975 catch (const std::exception&)
976 {
977 // Clean up to save memory.
978 TextureUnitCase::deinit();
979 throw;
980 }
981 }
982
iterate(void)983 TextureUnitCase::IterateResult TextureUnitCase::iterate (void)
984 {
985 glu::RenderContext& renderCtx = m_context.getRenderContext();
986 const tcu::RenderTarget& renderTarget = renderCtx.getRenderTarget();
987 tcu::TestLog& log = m_testCtx.getLog();
988 de::Random rnd (m_randSeed);
989
990 int viewportWidth = deMin32(VIEWPORT_WIDTH, renderTarget.getWidth());
991 int viewportHeight = deMin32(VIEWPORT_HEIGHT, renderTarget.getHeight());
992 int viewportX = rnd.getInt(0, renderTarget.getWidth() - viewportWidth);
993 int viewportY = rnd.getInt(0, renderTarget.getHeight() - viewportHeight);
994
995 tcu::Surface gles3Frame (viewportWidth, viewportHeight);
996 tcu::Surface refFrame (viewportWidth, viewportHeight);
997
998 {
999 // First we do some tricks to make the LODs safer wrt. precision issues. See MultiTexShader::makeSafeLods().
1000
1001 vector<IVec3> texSizes;
1002 texSizes.reserve(m_numUnits);
1003
1004 for (int i = 0; i < m_numUnits; i++)
1005 {
1006 int texNdx = m_unitTextures[i];
1007 int texNdxInType = m_ndxTexType[texNdx];
1008 GLenum type = m_textureTypes[texNdx];
1009
1010 switch (type)
1011 {
1012 case GL_TEXTURE_2D: texSizes.push_back(IVec3(m_textures2d[texNdxInType]->getWidth(), m_textures2d[texNdxInType]->getHeight(), 0)); break;
1013 case GL_TEXTURE_CUBE_MAP: texSizes.push_back(IVec3(m_texturesCube[texNdxInType]->getSize(), m_texturesCube[texNdxInType]->getSize(), 0)); break;
1014 case GL_TEXTURE_2D_ARRAY: texSizes.push_back(IVec3(m_textures2dArray[texNdxInType]->getWidth(), m_textures2dArray[texNdxInType]->getHeight(), 0)); break;
1015 case GL_TEXTURE_3D: texSizes.push_back(IVec3(m_textures3d[texNdxInType]->getWidth(), m_textures3d[texNdxInType]->getHeight(), m_textures3d[texNdxInType]->getDepth())); break;
1016 default:
1017 DE_ASSERT(DE_FALSE);
1018 }
1019 }
1020
1021 m_shader->makeSafeLods(texSizes, IVec2(viewportWidth, viewportHeight));
1022 }
1023
1024 // Render using GLES3.
1025 {
1026 sglr::GLContext context(renderCtx, log, sglr::GLCONTEXT_LOG_CALLS|sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(viewportX, viewportY, viewportWidth, viewportHeight));
1027
1028 render(context);
1029
1030 context.readPixels(gles3Frame, 0, 0, viewportWidth, viewportHeight);
1031 }
1032
1033 // Render reference image.
1034 {
1035 sglr::ReferenceContextBuffers buffers (tcu::PixelFormat(8,8,8,renderTarget.getPixelFormat().alphaBits?8:0), 0 /* depth */, 0 /* stencil */, viewportWidth, viewportHeight);
1036 sglr::ReferenceContext context (sglr::ReferenceContextLimits(renderCtx), buffers.getColorbuffer(), buffers.getDepthbuffer(), buffers.getStencilbuffer());
1037
1038 render(context);
1039
1040 context.readPixels(refFrame, 0, 0, viewportWidth, viewportHeight);
1041 }
1042
1043 // Compare images.
1044 const float threshold = 0.001f;
1045 bool isOk = tcu::fuzzyCompare(log, "ComparisonResult", "Image comparison result", refFrame, gles3Frame, threshold, tcu::COMPARE_LOG_RESULT);
1046
1047 // Store test result.
1048 m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
1049 isOk ? "Pass" : "Image comparison failed");
1050
1051 return STOP;
1052 }
1053
upload2dTexture(int texNdx,sglr::Context & context)1054 void TextureUnitCase::upload2dTexture (int texNdx, sglr::Context& context)
1055 {
1056 int ndx2d = m_ndxTexType[texNdx];
1057 const tcu::Texture2D* texture = m_textures2d[ndx2d];
1058 glu::TransferFormat formatGl = glu::getTransferFormat(glu::mapGLInternalFormat(m_textureParams[texNdx].internalFormat));
1059
1060 context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
1061
1062 for (int levelNdx = 0; levelNdx < texture->getNumLevels(); levelNdx++)
1063 {
1064 if (texture->isLevelEmpty(levelNdx))
1065 continue;
1066
1067 tcu::ConstPixelBufferAccess access = texture->getLevel(levelNdx);
1068 int width = access.getWidth();
1069 int height = access.getHeight();
1070
1071 DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
1072
1073 context.texImage2D(GL_TEXTURE_2D, levelNdx, m_textureParams[texNdx].internalFormat, width, height, 0 /* border */, formatGl.format, formatGl.dataType, access.getDataPtr());
1074 GLU_EXPECT_NO_ERROR(context.getError(), "Set 2d texture image data");
1075 }
1076 }
1077
uploadCubeTexture(int texNdx,sglr::Context & context)1078 void TextureUnitCase::uploadCubeTexture (int texNdx, sglr::Context& context)
1079 {
1080 int ndxCube = m_ndxTexType[texNdx];
1081 const tcu::TextureCube* texture = m_texturesCube[ndxCube];
1082 glu::TransferFormat formatGl = glu::getTransferFormat(glu::mapGLInternalFormat(m_textureParams[texNdx].internalFormat));
1083
1084 context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
1085
1086 for (int face = 0; face < (int)tcu::CUBEFACE_LAST; face++)
1087 {
1088 for (int levelNdx = 0; levelNdx < texture->getNumLevels(); levelNdx++)
1089 {
1090 if (texture->isLevelEmpty((tcu::CubeFace)face, levelNdx))
1091 continue;
1092
1093 tcu::ConstPixelBufferAccess access = texture->getLevelFace(levelNdx, (tcu::CubeFace)face);
1094 int width = access.getWidth();
1095 int height = access.getHeight();
1096
1097 DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
1098
1099 context.texImage2D(s_cubeFaceTargets[face], levelNdx, m_textureParams[texNdx].internalFormat, width, height, 0 /* border */, formatGl.format, formatGl.dataType, access.getDataPtr());
1100 GLU_EXPECT_NO_ERROR(context.getError(), "Set cube map image data");
1101 }
1102 }
1103 }
1104
upload2dArrayTexture(int texNdx,sglr::Context & context)1105 void TextureUnitCase::upload2dArrayTexture (int texNdx, sglr::Context& context)
1106 {
1107 int ndx2dArray = m_ndxTexType[texNdx];
1108 const tcu::Texture2DArray* texture = m_textures2dArray[ndx2dArray];
1109 glu::TransferFormat formatGl = glu::getTransferFormat(glu::mapGLInternalFormat(m_textureParams[texNdx].internalFormat));
1110
1111 context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
1112
1113 for (int levelNdx = 0; levelNdx < texture->getNumLevels(); levelNdx++)
1114 {
1115 if (texture->isLevelEmpty(levelNdx))
1116 continue;
1117
1118 tcu::ConstPixelBufferAccess access = texture->getLevel(levelNdx);
1119 int width = access.getWidth();
1120 int height = access.getHeight();
1121 int layers = access.getDepth();
1122
1123 DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
1124 DE_ASSERT(access.getSlicePitch() == access.getFormat().getPixelSize()*width*height);
1125
1126 context.texImage3D(GL_TEXTURE_2D_ARRAY, levelNdx, m_textureParams[texNdx].internalFormat, width, height, layers, 0 /* border */, formatGl.format, formatGl.dataType, access.getDataPtr());
1127 GLU_EXPECT_NO_ERROR(context.getError(), "Set 2d array texture image data");
1128 }
1129 }
1130
upload3dTexture(int texNdx,sglr::Context & context)1131 void TextureUnitCase::upload3dTexture (int texNdx, sglr::Context& context)
1132 {
1133 int ndx3d = m_ndxTexType[texNdx];
1134 const tcu::Texture3D* texture = m_textures3d[ndx3d];
1135 glu::TransferFormat formatGl = glu::getTransferFormat(glu::mapGLInternalFormat(m_textureParams[texNdx].internalFormat));
1136
1137 context.pixelStorei(GL_UNPACK_ALIGNMENT, 1);
1138
1139 for (int levelNdx = 0; levelNdx < texture->getNumLevels(); levelNdx++)
1140 {
1141 if (texture->isLevelEmpty(levelNdx))
1142 continue;
1143
1144 tcu::ConstPixelBufferAccess access = texture->getLevel(levelNdx);
1145 int width = access.getWidth();
1146 int height = access.getHeight();
1147 int depth = access.getDepth();
1148
1149 DE_ASSERT(access.getRowPitch() == access.getFormat().getPixelSize()*width);
1150 DE_ASSERT(access.getSlicePitch() == access.getFormat().getPixelSize()*width*height);
1151
1152 context.texImage3D(GL_TEXTURE_3D, levelNdx, m_textureParams[texNdx].internalFormat, width, height, depth, 0 /* border */, formatGl.format, formatGl.dataType, access.getDataPtr());
1153 GLU_EXPECT_NO_ERROR(context.getError(), "Set 3d texture image data");
1154 }
1155 }
1156
render(sglr::Context & context)1157 void TextureUnitCase::render (sglr::Context& context)
1158 {
1159 // Setup textures.
1160
1161 vector<deUint32> textureGLNames;
1162 vector<bool> isTextureSetUp(m_numTextures, false); // \note Same texture may be bound to multiple units, but we only want to set up parameters and data once per texture.
1163
1164 textureGLNames.resize(m_numTextures);
1165 context.genTextures(m_numTextures, &textureGLNames[0]);
1166 GLU_EXPECT_NO_ERROR(context.getError(), "Generate textures");
1167
1168 for (int unitNdx = 0; unitNdx < m_numUnits; unitNdx++)
1169 {
1170 int texNdx = m_unitTextures[unitNdx];
1171
1172 // Bind texture to unit.
1173 context.activeTexture(GL_TEXTURE0 + unitNdx);
1174 GLU_EXPECT_NO_ERROR(context.getError(), "Set active texture");
1175 context.bindTexture(m_textureTypes[texNdx], textureGLNames[texNdx]);
1176 GLU_EXPECT_NO_ERROR(context.getError(), "Bind texture");
1177
1178 if (!isTextureSetUp[texNdx])
1179 {
1180 // Binding this texture for first time, so set parameters and data.
1181
1182 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_S, m_textureParams[texNdx].wrapModeS);
1183 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_T, m_textureParams[texNdx].wrapModeT);
1184 if (m_textureTypes[texNdx] == GL_TEXTURE_3D)
1185 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_WRAP_R, m_textureParams[texNdx].wrapModeR);
1186 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_MIN_FILTER, m_textureParams[texNdx].minFilter);
1187 context.texParameteri(m_textureTypes[texNdx], GL_TEXTURE_MAG_FILTER, m_textureParams[texNdx].magFilter);
1188 GLU_EXPECT_NO_ERROR(context.getError(), "Set texture parameters");
1189
1190 switch (m_textureTypes[texNdx])
1191 {
1192 case GL_TEXTURE_2D: upload2dTexture(texNdx, context); break;
1193 case GL_TEXTURE_CUBE_MAP: uploadCubeTexture(texNdx, context); break;
1194 case GL_TEXTURE_2D_ARRAY: upload2dArrayTexture(texNdx, context); break;
1195 case GL_TEXTURE_3D: upload3dTexture(texNdx, context); break;
1196 default:
1197 DE_ASSERT(DE_FALSE);
1198 }
1199
1200 isTextureSetUp[texNdx] = true; // Don't set up this texture's parameters and data again later.
1201 }
1202 }
1203
1204 GLU_EXPECT_NO_ERROR(context.getError(), "Set textures");
1205
1206 // Setup shader
1207
1208 deUint32 shaderID = context.createProgram(m_shader);
1209
1210 // Draw.
1211
1212 context.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
1213 context.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
1214 m_shader->setUniforms(context, shaderID);
1215 sglr::drawQuad(context, shaderID, Vec3(-1.0f, -1.0f, 0.0f), Vec3(1.0f, 1.0f, 0.0f));
1216 GLU_EXPECT_NO_ERROR(context.getError(), "Draw");
1217
1218 // Delete previously generated texture names.
1219
1220 context.deleteTextures(m_numTextures, &textureGLNames[0]);
1221 GLU_EXPECT_NO_ERROR(context.getError(), "Delete textures");
1222 }
1223
TextureUnitTests(Context & context)1224 TextureUnitTests::TextureUnitTests (Context& context)
1225 : TestCaseGroup(context, "units", "Texture Unit Usage Tests")
1226 {
1227 }
1228
~TextureUnitTests(void)1229 TextureUnitTests::~TextureUnitTests (void)
1230 {
1231 }
1232
init(void)1233 void TextureUnitTests::init (void)
1234 {
1235 const int numTestsPerGroup = 10;
1236
1237 static const int unitCounts[] =
1238 {
1239 2,
1240 4,
1241 8,
1242 -1 // \note Negative stands for the implementation-specified maximum.
1243 };
1244
1245 for (int unitCountNdx = 0; unitCountNdx < DE_LENGTH_OF_ARRAY(unitCounts); unitCountNdx++)
1246 {
1247 int numUnits = unitCounts[unitCountNdx];
1248
1249 string countGroupName = (unitCounts[unitCountNdx] < 0 ? "all" : de::toString(numUnits)) + "_units";
1250
1251 tcu::TestCaseGroup* countGroup = new tcu::TestCaseGroup(m_testCtx, countGroupName.c_str(), "");
1252 addChild(countGroup);
1253
1254 DE_STATIC_ASSERT((int)TextureUnitCase::CASE_ONLY_2D == 0);
1255
1256 for (int caseType = (int)TextureUnitCase::CASE_ONLY_2D; caseType < (int)TextureUnitCase::CASE_LAST; caseType++)
1257 {
1258 const char* caseTypeGroupName = (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_2D ? "only_2d"
1259 : (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_CUBE ? "only_cube"
1260 : (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_2D_ARRAY ? "only_2d_array"
1261 : (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_ONLY_3D ? "only_3d"
1262 : (TextureUnitCase::CaseType)caseType == TextureUnitCase::CASE_MIXED ? "mixed"
1263 : DE_NULL;
1264
1265 DE_ASSERT(caseTypeGroupName != DE_NULL);
1266
1267 tcu::TestCaseGroup* caseTypeGroup = new tcu::TestCaseGroup(m_testCtx, caseTypeGroupName, "");
1268 countGroup->addChild(caseTypeGroup);
1269
1270 for (int testNdx = 0; testNdx < numTestsPerGroup; testNdx++)
1271 caseTypeGroup->addChild(new TextureUnitCase(m_context, de::toString(testNdx).c_str(), "", numUnits, (TextureUnitCase::CaseType)caseType, deUint32Hash((deUint32)testNdx)));
1272 }
1273 }
1274 }
1275
1276 } // Functional
1277 } // gles3
1278 } // deqp
1279