1 /*****************************************************************************/
2 // Copyright 2006-2007 Adobe Systems Incorporated
3 // All Rights Reserved.
4 //
5 // NOTICE:  Adobe permits you to use, modify, and distribute this file in
6 // accordance with the terms of the Adobe license agreement accompanying it.
7 /*****************************************************************************/
8 
9 /* $Id: //mondo/dng_sdk_1_4/dng_sdk/source/dng_spline.cpp#1 $ */
10 /* $DateTime: 2012/05/30 13:28:51 $ */
11 /* $Change: 832332 $ */
12 /* $Author: tknoll $ */
13 
14 /*****************************************************************************/
15 
16 #include "dng_spline.h"
17 
18 #include "dng_assertions.h"
19 #include "dng_exceptions.h"
20 
21 /******************************************************************************/
22 
dng_spline_solver()23 dng_spline_solver::dng_spline_solver ()
24 
25 	:	X ()
26 	,	Y ()
27 	,	S ()
28 
29 	{
30 
31 	}
32 
33 /******************************************************************************/
34 
~dng_spline_solver()35 dng_spline_solver::~dng_spline_solver ()
36 	{
37 
38 	}
39 
40 /******************************************************************************/
41 
Reset()42 void dng_spline_solver::Reset ()
43 	{
44 
45 	X.clear ();
46 	Y.clear ();
47 
48 	S.clear ();
49 
50 	}
51 
52 /******************************************************************************/
53 
Add(real64 x,real64 y)54 void dng_spline_solver::Add (real64 x, real64 y)
55 	{
56 
57 	X.push_back (x);
58 	Y.push_back (y);
59 
60 	}
61 
62 /******************************************************************************/
63 
Solve()64 void dng_spline_solver::Solve ()
65 	{
66 
67 	// This code computes the unique curve such that:
68 	//		It is C0, C1, and C2 continuous
69 	//		The second derivative is zero at the end points
70 
71 	int32 count = (int32) X.size ();
72 
73 	DNG_ASSERT (count >= 2, "Too few points");
74 
75 	int32 start = 0;
76 	int32 end   = count;
77 
78 	real64 A =  X [start+1] - X [start];
79 	real64 B = (Y [start+1] - Y [start]) / A;
80 
81 	S.resize (count);
82 
83 	S [start] = B;
84 
85 	int32 j;
86 
87 	// Slopes here are a weighted average of the slopes
88 	// to each of the adjcent control points.
89 
90 	for (j = start + 2; j < end; ++j)
91 		{
92 
93 		real64 C = X [j] - X [j-1];
94 		real64 D = (Y [j] - Y [j-1]) / C;
95 
96 		S [j-1] = (B * C + D * A) / (A + C);
97 
98 		A = C;
99 		B = D;
100 
101 		}
102 
103 	S [end-1] = 2.0 * B - S [end-2];
104 	S [start] = 2.0 * S [start] - S [start+1];
105 
106 	if ((end - start) > 2)
107 		{
108 
109 		dng_std_vector<real64> E;
110 		dng_std_vector<real64> F;
111 		dng_std_vector<real64> G;
112 
113 		E.resize (count);
114 		F.resize (count);
115 		G.resize (count);
116 
117 		F [start] = 0.5;
118 		E [end-1] = 0.5;
119 		G [start] = 0.75 * (S [start] + S [start+1]);
120 		G [end-1] = 0.75 * (S [end-2] + S [end-1]);
121 
122 		for (j = start+1; j < end - 1; ++j)
123 			{
124 
125 			A = (X [j+1] - X [j-1]) * 2.0;
126 
127 			E [j] = (X [j+1] - X [j]) / A;
128 			F [j] = (X [j] - X [j-1]) / A;
129 			G [j] = 1.5 * S [j];
130 
131 			}
132 
133 		for (j = start+1; j < end; ++j)
134 			{
135 
136 			A = 1.0 - F [j-1] * E [j];
137 
138 			if (j != end-1) F [j] /= A;
139 
140 			G [j] = (G [j] - G [j-1] * E [j]) / A;
141 
142 			}
143 
144 		for (j = end - 2; j >= start; --j)
145 			G [j] = G [j] - F [j] * G [j+1];
146 
147 		for (j = start; j < end; ++j)
148 			S [j] = G [j];
149 
150 		}
151 
152 	}
153 
154 /******************************************************************************/
155 
IsIdentity() const156 bool dng_spline_solver::IsIdentity () const
157 	{
158 
159 	int32 count = (int32) X.size ();
160 
161 	if (count != 2)
162 		return false;
163 
164 	if (X [0] != 0.0 || X [1] != 1.0 ||
165 		Y [0] != 0.0 || Y [1] != 1.0)
166 		return false;
167 
168 	return true;
169 
170 	}
171 
172 /******************************************************************************/
173 
Evaluate(real64 x) const174 real64 dng_spline_solver::Evaluate (real64 x) const
175 	{
176 
177 	int32 count = (int32) X.size ();
178 
179 	// Check for off each end of point list.
180 
181 	if (x <= X [0])
182 		return Y [0];
183 
184 	if (x >= X [count-1])
185 		return Y [count-1];
186 
187 	// Binary search for the index.
188 
189 	int32 lower = 1;
190 	int32 upper = count - 1;
191 
192 	while (upper > lower)
193 		{
194 
195 		int32 mid = (lower + upper) >> 1;
196 
197 		if (x == X [mid])
198 			{
199 			return Y [mid];
200 			}
201 
202 		if (x > X [mid])
203 			lower = mid + 1;
204 		else
205 			upper = mid;
206 
207 		}
208 
209 	DNG_ASSERT (upper == lower, "Binary search error in point list");
210 
211 	int32 j = lower;
212 
213 	// X [j - 1] < x <= X [j]
214 	// A is the distance between the X [j] and X [j - 1]
215 	// B and C describe the fractional distance to either side. B + C = 1.
216 
217 	// We compute a cubic spline between the two points with slopes
218 	// S[j-1] and S[j] at either end. Specifically, we compute the 1-D Bezier
219 	// with control values:
220 	//
221 	//		Y[j-1], Y[j-1] + S[j-1]*A, Y[j]-S[j]*A, Y[j]
222 
223 	return EvaluateSplineSegment (x,
224 								  X [j - 1],
225 								  Y [j - 1],
226 								  S [j - 1],
227 								  X [j    ],
228 								  Y [j    ],
229 								  S [j    ]);
230 
231 	}
232 
233 /*****************************************************************************/
234