1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
11 
12 namespace Eigen {
13 
14 /** \geometry_module \ingroup Geometry_Module
15   *
16   * \class Scaling
17   *
18   * \brief Represents a possibly non uniform scaling transformation
19   *
20   * \param _Scalar the scalar type, i.e., the type of the coefficients.
21   * \param _Dim the  dimension of the space, can be a compile time value or Dynamic
22   *
23   * \note This class is not aimed to be used to store a scaling transformation,
24   * but rather to make easier the constructions and updates of Transform objects.
25   *
26   * \sa class Translation, class Transform
27   */
28 template<typename _Scalar, int _Dim>
29 class Scaling
30 {
31 public:
32   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
33   /** dimension of the space */
34   enum { Dim = _Dim };
35   /** the scalar type of the coefficients */
36   typedef _Scalar Scalar;
37   /** corresponding vector type */
38   typedef Matrix<Scalar,Dim,1> VectorType;
39   /** corresponding linear transformation matrix type */
40   typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
41   /** corresponding translation type */
42   typedef Translation<Scalar,Dim> TranslationType;
43   /** corresponding affine transformation type */
44   typedef Transform<Scalar,Dim> TransformType;
45 
46 protected:
47 
48   VectorType m_coeffs;
49 
50 public:
51 
52   /** Default constructor without initialization. */
Scaling()53   Scaling() {}
54   /** Constructs and initialize a uniform scaling transformation */
Scaling(const Scalar & s)55   explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); }
56   /** 2D only */
Scaling(const Scalar & sx,const Scalar & sy)57   inline Scaling(const Scalar& sx, const Scalar& sy)
58   {
59     ei_assert(Dim==2);
60     m_coeffs.x() = sx;
61     m_coeffs.y() = sy;
62   }
63   /** 3D only */
Scaling(const Scalar & sx,const Scalar & sy,const Scalar & sz)64   inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
65   {
66     ei_assert(Dim==3);
67     m_coeffs.x() = sx;
68     m_coeffs.y() = sy;
69     m_coeffs.z() = sz;
70   }
71   /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
Scaling(const VectorType & coeffs)72   explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {}
73 
coeffs()74   const VectorType& coeffs() const { return m_coeffs; }
coeffs()75   VectorType& coeffs() { return m_coeffs; }
76 
77   /** Concatenates two scaling */
78   inline Scaling operator* (const Scaling& other) const
79   { return Scaling(coeffs().cwise() * other.coeffs()); }
80 
81   /** Concatenates a scaling and a translation */
82   inline TransformType operator* (const TranslationType& t) const;
83 
84   /** Concatenates a scaling and an affine transformation */
85   inline TransformType operator* (const TransformType& t) const;
86 
87   /** Concatenates a scaling and a linear transformation matrix */
88   // TODO returns an expression
89   inline LinearMatrixType operator* (const LinearMatrixType& other) const
90   { return coeffs().asDiagonal() * other; }
91 
92   /** Concatenates a linear transformation matrix and a scaling */
93   // TODO returns an expression
94   friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s)
95   { return other * s.coeffs().asDiagonal(); }
96 
97   template<typename Derived>
98   inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const
99   { return *this * r.toRotationMatrix(); }
100 
101   /** Applies scaling to vector */
102   inline VectorType operator* (const VectorType& other) const
103   { return coeffs().asDiagonal() * other; }
104 
105   /** \returns the inverse scaling */
inverse()106   inline Scaling inverse() const
107   { return Scaling(coeffs().cwise().inverse()); }
108 
109   inline Scaling& operator=(const Scaling& other)
110   {
111     m_coeffs = other.m_coeffs;
112     return *this;
113   }
114 
115   /** \returns \c *this with scalar type casted to \a NewScalarType
116     *
117     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
118     * then this function smartly returns a const reference to \c *this.
119     */
120   template<typename NewScalarType>
cast()121   inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
122   { return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }
123 
124   /** Copy constructor with scalar type conversion */
125   template<typename OtherScalarType>
Scaling(const Scaling<OtherScalarType,Dim> & other)126   inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
127   { m_coeffs = other.coeffs().template cast<Scalar>(); }
128 
129   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
130     * determined by \a prec.
131     *
132     * \sa MatrixBase::isApprox() */
133   bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
134   { return m_coeffs.isApprox(other.m_coeffs, prec); }
135 
136 };
137 
138 /** \addtogroup Geometry_Module */
139 //@{
140 typedef Scaling<float, 2> Scaling2f;
141 typedef Scaling<double,2> Scaling2d;
142 typedef Scaling<float, 3> Scaling3f;
143 typedef Scaling<double,3> Scaling3d;
144 //@}
145 
146 template<typename Scalar, int Dim>
147 inline typename Scaling<Scalar,Dim>::TransformType
148 Scaling<Scalar,Dim>::operator* (const TranslationType& t) const
149 {
150   TransformType res;
151   res.matrix().setZero();
152   res.linear().diagonal() = coeffs();
153   res.translation() = m_coeffs.cwise() * t.vector();
154   res(Dim,Dim) = Scalar(1);
155   return res;
156 }
157 
158 template<typename Scalar, int Dim>
159 inline typename Scaling<Scalar,Dim>::TransformType
160 Scaling<Scalar,Dim>::operator* (const TransformType& t) const
161 {
162   TransformType res = t;
163   res.prescale(m_coeffs);
164   return res;
165 }
166 
167 } // end namespace Eigen
168