1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_HYPERPLANE_H
12 #define EIGEN_HYPERPLANE_H
13 
14 namespace Eigen {
15 
16 /** \geometry_module \ingroup Geometry_Module
17   *
18   * \class Hyperplane
19   *
20   * \brief A hyperplane
21   *
22   * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
23   * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
24   *
25   * \param _Scalar the scalar type, i.e., the type of the coefficients
26   * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
27   *             Notice that the dimension of the hyperplane is _AmbientDim-1.
28   *
29   * This class represents an hyperplane as the zero set of the implicit equation
30   * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
31   * and \f$ d \f$ is the distance (offset) to the origin.
32   */
33 template <typename _Scalar, int _AmbientDim, int _Options>
34 class Hyperplane
35 {
36 public:
37   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
38   enum {
39     AmbientDimAtCompileTime = _AmbientDim,
40     Options = _Options
41   };
42   typedef _Scalar Scalar;
43   typedef typename NumTraits<Scalar>::Real RealScalar;
44   typedef DenseIndex Index;
45   typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
46   typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
47                         ? Dynamic
48                         : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
49   typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
50   typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;
51 
52   /** Default constructor without initialization */
Hyperplane()53   inline Hyperplane() {}
54 
55   template<int OtherOptions>
Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions> & other)56   Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
57    : m_coeffs(other.coeffs())
58   {}
59 
60   /** Constructs a dynamic-size hyperplane with \a _dim the dimension
61     * of the ambient space */
Hyperplane(Index _dim)62   inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
63 
64   /** Construct a plane from its normal \a n and a point \a e onto the plane.
65     * \warning the vector normal is assumed to be normalized.
66     */
Hyperplane(const VectorType & n,const VectorType & e)67   inline Hyperplane(const VectorType& n, const VectorType& e)
68     : m_coeffs(n.size()+1)
69   {
70     normal() = n;
71     offset() = -n.dot(e);
72   }
73 
74   /** Constructs a plane from its normal \a n and distance to the origin \a d
75     * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
76     * \warning the vector normal is assumed to be normalized.
77     */
Hyperplane(const VectorType & n,const Scalar & d)78   inline Hyperplane(const VectorType& n, const Scalar& d)
79     : m_coeffs(n.size()+1)
80   {
81     normal() = n;
82     offset() = d;
83   }
84 
85   /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
86     * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
87     */
Through(const VectorType & p0,const VectorType & p1)88   static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
89   {
90     Hyperplane result(p0.size());
91     result.normal() = (p1 - p0).unitOrthogonal();
92     result.offset() = -p0.dot(result.normal());
93     return result;
94   }
95 
96   /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
97     * is required to be exactly 3.
98     */
Through(const VectorType & p0,const VectorType & p1,const VectorType & p2)99   static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
100   {
101     EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
102     Hyperplane result(p0.size());
103     VectorType v0(p2 - p0), v1(p1 - p0);
104     result.normal() = v0.cross(v1);
105     RealScalar norm = result.normal().norm();
106     if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
107     {
108       Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
109       JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
110       result.normal() = svd.matrixV().col(2);
111     }
112     else
113       result.normal() /= norm;
114     result.offset() = -p0.dot(result.normal());
115     return result;
116   }
117 
118   /** Constructs a hyperplane passing through the parametrized line \a parametrized.
119     * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
120     * so an arbitrary choice is made.
121     */
122   // FIXME to be consitent with the rest this could be implemented as a static Through function ??
Hyperplane(const ParametrizedLine<Scalar,AmbientDimAtCompileTime> & parametrized)123   explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
124   {
125     normal() = parametrized.direction().unitOrthogonal();
126     offset() = -parametrized.origin().dot(normal());
127   }
128 
~Hyperplane()129   ~Hyperplane() {}
130 
131   /** \returns the dimension in which the plane holds */
dim()132   inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
133 
134   /** normalizes \c *this */
normalize(void)135   void normalize(void)
136   {
137     m_coeffs /= normal().norm();
138   }
139 
140   /** \returns the signed distance between the plane \c *this and a point \a p.
141     * \sa absDistance()
142     */
signedDistance(const VectorType & p)143   inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
144 
145   /** \returns the absolute distance between the plane \c *this and a point \a p.
146     * \sa signedDistance()
147     */
absDistance(const VectorType & p)148   inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); }
149 
150   /** \returns the projection of a point \a p onto the plane \c *this.
151     */
projection(const VectorType & p)152   inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
153 
154   /** \returns a constant reference to the unit normal vector of the plane, which corresponds
155     * to the linear part of the implicit equation.
156     */
normal()157   inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
158 
159   /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
160     * to the linear part of the implicit equation.
161     */
normal()162   inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
163 
164   /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
165     * \warning the vector normal is assumed to be normalized.
166     */
offset()167   inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
168 
169   /** \returns a non-constant reference to the distance to the origin, which is also the constant part
170     * of the implicit equation */
offset()171   inline Scalar& offset() { return m_coeffs(dim()); }
172 
173   /** \returns a constant reference to the coefficients c_i of the plane equation:
174     * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
175     */
coeffs()176   inline const Coefficients& coeffs() const { return m_coeffs; }
177 
178   /** \returns a non-constant reference to the coefficients c_i of the plane equation:
179     * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
180     */
coeffs()181   inline Coefficients& coeffs() { return m_coeffs; }
182 
183   /** \returns the intersection of *this with \a other.
184     *
185     * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
186     *
187     * \note If \a other is approximately parallel to *this, this method will return any point on *this.
188     */
intersection(const Hyperplane & other)189   VectorType intersection(const Hyperplane& other) const
190   {
191     using std::abs;
192     EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
193     Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
194     // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
195     // whether the two lines are approximately parallel.
196     if(internal::isMuchSmallerThan(det, Scalar(1)))
197     {   // special case where the two lines are approximately parallel. Pick any point on the first line.
198         if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0)))
199             return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
200         else
201             return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
202     }
203     else
204     {   // general case
205         Scalar invdet = Scalar(1) / det;
206         return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
207                           invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
208     }
209   }
210 
211   /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
212     *
213     * \param mat the Dim x Dim transformation matrix
214     * \param traits specifies whether the matrix \a mat represents an #Isometry
215     *               or a more generic #Affine transformation. The default is #Affine.
216     */
217   template<typename XprType>
218   inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
219   {
220     if (traits==Affine)
221       normal() = mat.inverse().transpose() * normal();
222     else if (traits==Isometry)
223       normal() = mat * normal();
224     else
225     {
226       eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
227     }
228     return *this;
229   }
230 
231   /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
232     *
233     * \param t the transformation of dimension Dim
234     * \param traits specifies whether the transformation \a t represents an #Isometry
235     *               or a more generic #Affine transformation. The default is #Affine.
236     *               Other kind of transformations are not supported.
237     */
238   template<int TrOptions>
239   inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
240                                 TransformTraits traits = Affine)
241   {
242     transform(t.linear(), traits);
243     offset() -= normal().dot(t.translation());
244     return *this;
245   }
246 
247   /** \returns \c *this with scalar type casted to \a NewScalarType
248     *
249     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
250     * then this function smartly returns a const reference to \c *this.
251     */
252   template<typename NewScalarType>
253   inline typename internal::cast_return_type<Hyperplane,
cast()254            Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
255   {
256     return typename internal::cast_return_type<Hyperplane,
257                     Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
258   }
259 
260   /** Copy constructor with scalar type conversion */
261   template<typename OtherScalarType,int OtherOptions>
Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions> & other)262   inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
263   { m_coeffs = other.coeffs().template cast<Scalar>(); }
264 
265   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
266     * determined by \a prec.
267     *
268     * \sa MatrixBase::isApprox() */
269   template<int OtherOptions>
270   bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
271   { return m_coeffs.isApprox(other.m_coeffs, prec); }
272 
273 protected:
274 
275   Coefficients m_coeffs;
276 };
277 
278 } // end namespace Eigen
279 
280 #endif // EIGEN_HYPERPLANE_H
281