1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_QUATERNION_H
12 #define EIGEN_QUATERNION_H
13 namespace Eigen {
14 
15 
16 /***************************************************************************
17 * Definition of QuaternionBase<Derived>
18 * The implementation is at the end of the file
19 ***************************************************************************/
20 
21 namespace internal {
22 template<typename Other,
23          int OtherRows=Other::RowsAtCompileTime,
24          int OtherCols=Other::ColsAtCompileTime>
25 struct quaternionbase_assign_impl;
26 }
27 
28 /** \geometry_module \ingroup Geometry_Module
29   * \class QuaternionBase
30   * \brief Base class for quaternion expressions
31   * \tparam Derived derived type (CRTP)
32   * \sa class Quaternion
33   */
34 template<class Derived>
35 class QuaternionBase : public RotationBase<Derived, 3>
36 {
37   typedef RotationBase<Derived, 3> Base;
38 public:
39   using Base::operator*;
40   using Base::derived;
41 
42   typedef typename internal::traits<Derived>::Scalar Scalar;
43   typedef typename NumTraits<Scalar>::Real RealScalar;
44   typedef typename internal::traits<Derived>::Coefficients Coefficients;
45   enum {
46     Flags = Eigen::internal::traits<Derived>::Flags
47   };
48 
49  // typedef typename Matrix<Scalar,4,1> Coefficients;
50   /** the type of a 3D vector */
51   typedef Matrix<Scalar,3,1> Vector3;
52   /** the equivalent rotation matrix type */
53   typedef Matrix<Scalar,3,3> Matrix3;
54   /** the equivalent angle-axis type */
55   typedef AngleAxis<Scalar> AngleAxisType;
56 
57 
58 
59   /** \returns the \c x coefficient */
x()60   inline Scalar x() const { return this->derived().coeffs().coeff(0); }
61   /** \returns the \c y coefficient */
y()62   inline Scalar y() const { return this->derived().coeffs().coeff(1); }
63   /** \returns the \c z coefficient */
z()64   inline Scalar z() const { return this->derived().coeffs().coeff(2); }
65   /** \returns the \c w coefficient */
w()66   inline Scalar w() const { return this->derived().coeffs().coeff(3); }
67 
68   /** \returns a reference to the \c x coefficient */
x()69   inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
70   /** \returns a reference to the \c y coefficient */
y()71   inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
72   /** \returns a reference to the \c z coefficient */
z()73   inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
74   /** \returns a reference to the \c w coefficient */
w()75   inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
76 
77   /** \returns a read-only vector expression of the imaginary part (x,y,z) */
vec()78   inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
79 
80   /** \returns a vector expression of the imaginary part (x,y,z) */
vec()81   inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
82 
83   /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
coeffs()84   inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
85 
86   /** \returns a vector expression of the coefficients (x,y,z,w) */
coeffs()87   inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
88 
89   EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
90   template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
91 
92 // disabled this copy operator as it is giving very strange compilation errors when compiling
93 // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
94 // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
95 // we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
96 //  Derived& operator=(const QuaternionBase& other)
97 //  { return operator=<Derived>(other); }
98 
99   Derived& operator=(const AngleAxisType& aa);
100   template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
101 
102   /** \returns a quaternion representing an identity rotation
103     * \sa MatrixBase::Identity()
104     */
Identity()105   static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
106 
107   /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
108     */
setIdentity()109   inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
110 
111   /** \returns the squared norm of the quaternion's coefficients
112     * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
113     */
squaredNorm()114   inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
115 
116   /** \returns the norm of the quaternion's coefficients
117     * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
118     */
norm()119   inline Scalar norm() const { return coeffs().norm(); }
120 
121   /** Normalizes the quaternion \c *this
122     * \sa normalized(), MatrixBase::normalize() */
normalize()123   inline void normalize() { coeffs().normalize(); }
124   /** \returns a normalized copy of \c *this
125     * \sa normalize(), MatrixBase::normalized() */
normalized()126   inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
127 
128     /** \returns the dot product of \c *this and \a other
129     * Geometrically speaking, the dot product of two unit quaternions
130     * corresponds to the cosine of half the angle between the two rotations.
131     * \sa angularDistance()
132     */
dot(const QuaternionBase<OtherDerived> & other)133   template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
134 
135   template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
136 
137   /** \returns an equivalent 3x3 rotation matrix */
138   Matrix3 toRotationMatrix() const;
139 
140   /** \returns the quaternion which transform \a a into \a b through a rotation */
141   template<typename Derived1, typename Derived2>
142   Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
143 
144   template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
145   template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
146 
147   /** \returns the quaternion describing the inverse rotation */
148   Quaternion<Scalar> inverse() const;
149 
150   /** \returns the conjugated quaternion */
151   Quaternion<Scalar> conjugate() const;
152 
153   template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
154 
155   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
156     * determined by \a prec.
157     *
158     * \sa MatrixBase::isApprox() */
159   template<class OtherDerived>
160   bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
161   { return coeffs().isApprox(other.coeffs(), prec); }
162 
163 	/** return the result vector of \a v through the rotation*/
164   EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
165 
166   /** \returns \c *this with scalar type casted to \a NewScalarType
167     *
168     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
169     * then this function smartly returns a const reference to \c *this.
170     */
171   template<typename NewScalarType>
cast()172   inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
173   {
174     return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
175   }
176 
177 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
178 # include EIGEN_QUATERNIONBASE_PLUGIN
179 #endif
180 };
181 
182 /***************************************************************************
183 * Definition/implementation of Quaternion<Scalar>
184 ***************************************************************************/
185 
186 /** \geometry_module \ingroup Geometry_Module
187   *
188   * \class Quaternion
189   *
190   * \brief The quaternion class used to represent 3D orientations and rotations
191   *
192   * \tparam _Scalar the scalar type, i.e., the type of the coefficients
193   * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
194   *
195   * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
196   * orientations and rotations of objects in three dimensions. Compared to other representations
197   * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
198   * \li \b compact storage (4 scalars)
199   * \li \b efficient to compose (28 flops),
200   * \li \b stable spherical interpolation
201   *
202   * The following two typedefs are provided for convenience:
203   * \li \c Quaternionf for \c float
204   * \li \c Quaterniond for \c double
205   *
206   * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
207   *
208   * \sa  class AngleAxis, class Transform
209   */
210 
211 namespace internal {
212 template<typename _Scalar,int _Options>
213 struct traits<Quaternion<_Scalar,_Options> >
214 {
215   typedef Quaternion<_Scalar,_Options> PlainObject;
216   typedef _Scalar Scalar;
217   typedef Matrix<_Scalar,4,1,_Options> Coefficients;
218   enum{
219     IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
220     Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
221   };
222 };
223 }
224 
225 template<typename _Scalar, int _Options>
226 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
227 {
228   typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
229   enum { IsAligned = internal::traits<Quaternion>::IsAligned };
230 
231 public:
232   typedef _Scalar Scalar;
233 
234   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
235   using Base::operator*=;
236 
237   typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
238   typedef typename Base::AngleAxisType AngleAxisType;
239 
240   /** Default constructor leaving the quaternion uninitialized. */
241   inline Quaternion() {}
242 
243   /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
244     * its four coefficients \a w, \a x, \a y and \a z.
245     *
246     * \warning Note the order of the arguments: the real \a w coefficient first,
247     * while internally the coefficients are stored in the following order:
248     * [\c x, \c y, \c z, \c w]
249     */
250   inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
251 
252   /** Constructs and initialize a quaternion from the array data */
253   inline Quaternion(const Scalar* data) : m_coeffs(data) {}
254 
255   /** Copy constructor */
256   template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
257 
258   /** Constructs and initializes a quaternion from the angle-axis \a aa */
259   explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
260 
261   /** Constructs and initializes a quaternion from either:
262     *  - a rotation matrix expression,
263     *  - a 4D vector expression representing quaternion coefficients.
264     */
265   template<typename Derived>
266   explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
267 
268   /** Explicit copy constructor with scalar conversion */
269   template<typename OtherScalar, int OtherOptions>
270   explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
271   { m_coeffs = other.coeffs().template cast<Scalar>(); }
272 
273   template<typename Derived1, typename Derived2>
274   static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
275 
276   inline Coefficients& coeffs() { return m_coeffs;}
277   inline const Coefficients& coeffs() const { return m_coeffs;}
278 
279   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
280 
281 protected:
282   Coefficients m_coeffs;
283 
284 #ifndef EIGEN_PARSED_BY_DOXYGEN
285     static EIGEN_STRONG_INLINE void _check_template_params()
286     {
287       EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
288         INVALID_MATRIX_TEMPLATE_PARAMETERS)
289     }
290 #endif
291 };
292 
293 /** \ingroup Geometry_Module
294   * single precision quaternion type */
295 typedef Quaternion<float> Quaternionf;
296 /** \ingroup Geometry_Module
297   * double precision quaternion type */
298 typedef Quaternion<double> Quaterniond;
299 
300 /***************************************************************************
301 * Specialization of Map<Quaternion<Scalar>>
302 ***************************************************************************/
303 
304 namespace internal {
305   template<typename _Scalar, int _Options>
306   struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
307   {
308     typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
309   };
310 }
311 
312 namespace internal {
313   template<typename _Scalar, int _Options>
314   struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
315   {
316     typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
317     typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
318     enum {
319       Flags = TraitsBase::Flags & ~LvalueBit
320     };
321   };
322 }
323 
324 /** \ingroup Geometry_Module
325   * \brief Quaternion expression mapping a constant memory buffer
326   *
327   * \tparam _Scalar the type of the Quaternion coefficients
328   * \tparam _Options see class Map
329   *
330   * This is a specialization of class Map for Quaternion. This class allows to view
331   * a 4 scalar memory buffer as an Eigen's Quaternion object.
332   *
333   * \sa class Map, class Quaternion, class QuaternionBase
334   */
335 template<typename _Scalar, int _Options>
336 class Map<const Quaternion<_Scalar>, _Options >
337   : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
338 {
339     typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
340 
341   public:
342     typedef _Scalar Scalar;
343     typedef typename internal::traits<Map>::Coefficients Coefficients;
344     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
345     using Base::operator*=;
346 
347     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
348       *
349       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
350       * \code *coeffs == {x, y, z, w} \endcode
351       *
352       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
353     EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
354 
355     inline const Coefficients& coeffs() const { return m_coeffs;}
356 
357   protected:
358     const Coefficients m_coeffs;
359 };
360 
361 /** \ingroup Geometry_Module
362   * \brief Expression of a quaternion from a memory buffer
363   *
364   * \tparam _Scalar the type of the Quaternion coefficients
365   * \tparam _Options see class Map
366   *
367   * This is a specialization of class Map for Quaternion. This class allows to view
368   * a 4 scalar memory buffer as an Eigen's  Quaternion object.
369   *
370   * \sa class Map, class Quaternion, class QuaternionBase
371   */
372 template<typename _Scalar, int _Options>
373 class Map<Quaternion<_Scalar>, _Options >
374   : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
375 {
376     typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
377 
378   public:
379     typedef _Scalar Scalar;
380     typedef typename internal::traits<Map>::Coefficients Coefficients;
381     EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
382     using Base::operator*=;
383 
384     /** Constructs a Mapped Quaternion object from the pointer \a coeffs
385       *
386       * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
387       * \code *coeffs == {x, y, z, w} \endcode
388       *
389       * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
390     EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
391 
392     inline Coefficients& coeffs() { return m_coeffs; }
393     inline const Coefficients& coeffs() const { return m_coeffs; }
394 
395   protected:
396     Coefficients m_coeffs;
397 };
398 
399 /** \ingroup Geometry_Module
400   * Map an unaligned array of single precision scalars as a quaternion */
401 typedef Map<Quaternion<float>, 0>         QuaternionMapf;
402 /** \ingroup Geometry_Module
403   * Map an unaligned array of double precision scalars as a quaternion */
404 typedef Map<Quaternion<double>, 0>        QuaternionMapd;
405 /** \ingroup Geometry_Module
406   * Map a 16-byte aligned array of single precision scalars as a quaternion */
407 typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
408 /** \ingroup Geometry_Module
409   * Map a 16-byte aligned array of double precision scalars as a quaternion */
410 typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
411 
412 /***************************************************************************
413 * Implementation of QuaternionBase methods
414 ***************************************************************************/
415 
416 // Generic Quaternion * Quaternion product
417 // This product can be specialized for a given architecture via the Arch template argument.
418 namespace internal {
419 template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
420 {
421   static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
422     return Quaternion<Scalar>
423     (
424       a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
425       a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
426       a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
427       a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
428     );
429   }
430 };
431 }
432 
433 /** \returns the concatenation of two rotations as a quaternion-quaternion product */
434 template <class Derived>
435 template <class OtherDerived>
436 EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
437 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
438 {
439   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
440    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
441   return internal::quat_product<Architecture::Target, Derived, OtherDerived,
442                          typename internal::traits<Derived>::Scalar,
443                          internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
444 }
445 
446 /** \sa operator*(Quaternion) */
447 template <class Derived>
448 template <class OtherDerived>
449 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
450 {
451   derived() = derived() * other.derived();
452   return derived();
453 }
454 
455 /** Rotation of a vector by a quaternion.
456   * \remarks If the quaternion is used to rotate several points (>1)
457   * then it is much more efficient to first convert it to a 3x3 Matrix.
458   * Comparison of the operation cost for n transformations:
459   *   - Quaternion2:    30n
460   *   - Via a Matrix3: 24 + 15n
461   */
462 template <class Derived>
463 EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
464 QuaternionBase<Derived>::_transformVector(const Vector3& v) const
465 {
466     // Note that this algorithm comes from the optimization by hand
467     // of the conversion to a Matrix followed by a Matrix/Vector product.
468     // It appears to be much faster than the common algorithm found
469     // in the literature (30 versus 39 flops). It also requires two
470     // Vector3 as temporaries.
471     Vector3 uv = this->vec().cross(v);
472     uv += uv;
473     return v + this->w() * uv + this->vec().cross(uv);
474 }
475 
476 template<class Derived>
477 EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
478 {
479   coeffs() = other.coeffs();
480   return derived();
481 }
482 
483 template<class Derived>
484 template<class OtherDerived>
485 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
486 {
487   coeffs() = other.coeffs();
488   return derived();
489 }
490 
491 /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
492   */
493 template<class Derived>
494 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
495 {
496   using std::cos;
497   using std::sin;
498   Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
499   this->w() = cos(ha);
500   this->vec() = sin(ha) * aa.axis();
501   return derived();
502 }
503 
504 /** Set \c *this from the expression \a xpr:
505   *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
506   *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
507   *     and \a xpr is converted to a quaternion
508   */
509 
510 template<class Derived>
511 template<class MatrixDerived>
512 inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
513 {
514   EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
515    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
516   internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
517   return derived();
518 }
519 
520 /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
521   * be normalized, otherwise the result is undefined.
522   */
523 template<class Derived>
524 inline typename QuaternionBase<Derived>::Matrix3
525 QuaternionBase<Derived>::toRotationMatrix(void) const
526 {
527   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
528   // if not inlined then the cost of the return by value is huge ~ +35%,
529   // however, not inlining this function is an order of magnitude slower, so
530   // it has to be inlined, and so the return by value is not an issue
531   Matrix3 res;
532 
533   const Scalar tx  = Scalar(2)*this->x();
534   const Scalar ty  = Scalar(2)*this->y();
535   const Scalar tz  = Scalar(2)*this->z();
536   const Scalar twx = tx*this->w();
537   const Scalar twy = ty*this->w();
538   const Scalar twz = tz*this->w();
539   const Scalar txx = tx*this->x();
540   const Scalar txy = ty*this->x();
541   const Scalar txz = tz*this->x();
542   const Scalar tyy = ty*this->y();
543   const Scalar tyz = tz*this->y();
544   const Scalar tzz = tz*this->z();
545 
546   res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
547   res.coeffRef(0,1) = txy-twz;
548   res.coeffRef(0,2) = txz+twy;
549   res.coeffRef(1,0) = txy+twz;
550   res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
551   res.coeffRef(1,2) = tyz-twx;
552   res.coeffRef(2,0) = txz-twy;
553   res.coeffRef(2,1) = tyz+twx;
554   res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
555 
556   return res;
557 }
558 
559 /** Sets \c *this to be a quaternion representing a rotation between
560   * the two arbitrary vectors \a a and \a b. In other words, the built
561   * rotation represent a rotation sending the line of direction \a a
562   * to the line of direction \a b, both lines passing through the origin.
563   *
564   * \returns a reference to \c *this.
565   *
566   * Note that the two input vectors do \b not have to be normalized, and
567   * do not need to have the same norm.
568   */
569 template<class Derived>
570 template<typename Derived1, typename Derived2>
571 inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
572 {
573   using std::max;
574   using std::sqrt;
575   Vector3 v0 = a.normalized();
576   Vector3 v1 = b.normalized();
577   Scalar c = v1.dot(v0);
578 
579   // if dot == -1, vectors are nearly opposites
580   // => accurately compute the rotation axis by computing the
581   //    intersection of the two planes. This is done by solving:
582   //       x^T v0 = 0
583   //       x^T v1 = 0
584   //    under the constraint:
585   //       ||x|| = 1
586   //    which yields a singular value problem
587   if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
588   {
589     c = (max)(c,Scalar(-1));
590     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
591     JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
592     Vector3 axis = svd.matrixV().col(2);
593 
594     Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
595     this->w() = sqrt(w2);
596     this->vec() = axis * sqrt(Scalar(1) - w2);
597     return derived();
598   }
599   Vector3 axis = v0.cross(v1);
600   Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
601   Scalar invs = Scalar(1)/s;
602   this->vec() = axis * invs;
603   this->w() = s * Scalar(0.5);
604 
605   return derived();
606 }
607 
608 
609 /** Returns a quaternion representing a rotation between
610   * the two arbitrary vectors \a a and \a b. In other words, the built
611   * rotation represent a rotation sending the line of direction \a a
612   * to the line of direction \a b, both lines passing through the origin.
613   *
614   * \returns resulting quaternion
615   *
616   * Note that the two input vectors do \b not have to be normalized, and
617   * do not need to have the same norm.
618   */
619 template<typename Scalar, int Options>
620 template<typename Derived1, typename Derived2>
621 Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
622 {
623     Quaternion quat;
624     quat.setFromTwoVectors(a, b);
625     return quat;
626 }
627 
628 
629 /** \returns the multiplicative inverse of \c *this
630   * Note that in most cases, i.e., if you simply want the opposite rotation,
631   * and/or the quaternion is normalized, then it is enough to use the conjugate.
632   *
633   * \sa QuaternionBase::conjugate()
634   */
635 template <class Derived>
636 inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
637 {
638   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
639   Scalar n2 = this->squaredNorm();
640   if (n2 > Scalar(0))
641     return Quaternion<Scalar>(conjugate().coeffs() / n2);
642   else
643   {
644     // return an invalid result to flag the error
645     return Quaternion<Scalar>(Coefficients::Zero());
646   }
647 }
648 
649 /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
650   * if the quaternion is normalized.
651   * The conjugate of a quaternion represents the opposite rotation.
652   *
653   * \sa Quaternion2::inverse()
654   */
655 template <class Derived>
656 inline Quaternion<typename internal::traits<Derived>::Scalar>
657 QuaternionBase<Derived>::conjugate() const
658 {
659   return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
660 }
661 
662 /** \returns the angle (in radian) between two rotations
663   * \sa dot()
664   */
665 template <class Derived>
666 template <class OtherDerived>
667 inline typename internal::traits<Derived>::Scalar
668 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
669 {
670   using std::atan2;
671   using std::abs;
672   Quaternion<Scalar> d = (*this) * other.conjugate();
673   return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) );
674 }
675 
676 
677 
678 /** \returns the spherical linear interpolation between the two quaternions
679   * \c *this and \a other at the parameter \a t in [0;1].
680   *
681   * This represents an interpolation for a constant motion between \c *this and \a other,
682   * see also http://en.wikipedia.org/wiki/Slerp.
683   */
684 template <class Derived>
685 template <class OtherDerived>
686 Quaternion<typename internal::traits<Derived>::Scalar>
687 QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
688 {
689   using std::acos;
690   using std::sin;
691   using std::abs;
692   static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
693   Scalar d = this->dot(other);
694   Scalar absD = abs(d);
695 
696   Scalar scale0;
697   Scalar scale1;
698 
699   if(absD>=one)
700   {
701     scale0 = Scalar(1) - t;
702     scale1 = t;
703   }
704   else
705   {
706     // theta is the angle between the 2 quaternions
707     Scalar theta = acos(absD);
708     Scalar sinTheta = sin(theta);
709 
710     scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
711     scale1 = sin( ( t * theta) ) / sinTheta;
712   }
713   if(d<Scalar(0)) scale1 = -scale1;
714 
715   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
716 }
717 
718 namespace internal {
719 
720 // set from a rotation matrix
721 template<typename Other>
722 struct quaternionbase_assign_impl<Other,3,3>
723 {
724   typedef typename Other::Scalar Scalar;
725   typedef DenseIndex Index;
726   template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
727   {
728     using std::sqrt;
729     // This algorithm comes from  "Quaternion Calculus and Fast Animation",
730     // Ken Shoemake, 1987 SIGGRAPH course notes
731     Scalar t = mat.trace();
732     if (t > Scalar(0))
733     {
734       t = sqrt(t + Scalar(1.0));
735       q.w() = Scalar(0.5)*t;
736       t = Scalar(0.5)/t;
737       q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
738       q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
739       q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
740     }
741     else
742     {
743       DenseIndex i = 0;
744       if (mat.coeff(1,1) > mat.coeff(0,0))
745         i = 1;
746       if (mat.coeff(2,2) > mat.coeff(i,i))
747         i = 2;
748       DenseIndex j = (i+1)%3;
749       DenseIndex k = (j+1)%3;
750 
751       t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
752       q.coeffs().coeffRef(i) = Scalar(0.5) * t;
753       t = Scalar(0.5)/t;
754       q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
755       q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
756       q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
757     }
758   }
759 };
760 
761 // set from a vector of coefficients assumed to be a quaternion
762 template<typename Other>
763 struct quaternionbase_assign_impl<Other,4,1>
764 {
765   typedef typename Other::Scalar Scalar;
766   template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
767   {
768     q.coeffs() = vec;
769   }
770 };
771 
772 } // end namespace internal
773 
774 } // end namespace Eigen
775 
776 #endif // EIGEN_QUATERNION_H
777