1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2010 Vincent Lejeune
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 #ifndef EIGEN_QR_H
13 #define EIGEN_QR_H
14 
15 namespace Eigen {
16 
17 /** \ingroup QR_Module
18   *
19   *
20   * \class HouseholderQR
21   *
22   * \brief Householder QR decomposition of a matrix
23   *
24   * \param MatrixType the type of the matrix of which we are computing the QR decomposition
25   *
26   * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
27   * such that
28   * \f[
29   *  \mathbf{A} = \mathbf{Q} \, \mathbf{R}
30   * \f]
31   * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
32   * The result is stored in a compact way compatible with LAPACK.
33   *
34   * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
35   * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
36   *
37   * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
38   * FullPivHouseholderQR or ColPivHouseholderQR.
39   *
40   * \sa MatrixBase::householderQr()
41   */
42 template<typename _MatrixType> class HouseholderQR
43 {
44   public:
45 
46     typedef _MatrixType MatrixType;
47     enum {
48       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
49       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
50       Options = MatrixType::Options,
51       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
52       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
53     };
54     typedef typename MatrixType::Scalar Scalar;
55     typedef typename MatrixType::RealScalar RealScalar;
56     typedef typename MatrixType::Index Index;
57     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
58     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
59     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
60     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
61 
62     /**
63       * \brief Default Constructor.
64       *
65       * The default constructor is useful in cases in which the user intends to
66       * perform decompositions via HouseholderQR::compute(const MatrixType&).
67       */
HouseholderQR()68     HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
69 
70     /** \brief Default Constructor with memory preallocation
71       *
72       * Like the default constructor but with preallocation of the internal data
73       * according to the specified problem \a size.
74       * \sa HouseholderQR()
75       */
HouseholderQR(Index rows,Index cols)76     HouseholderQR(Index rows, Index cols)
77       : m_qr(rows, cols),
78         m_hCoeffs((std::min)(rows,cols)),
79         m_temp(cols),
80         m_isInitialized(false) {}
81 
82     /** \brief Constructs a QR factorization from a given matrix
83       *
84       * This constructor computes the QR factorization of the matrix \a matrix by calling
85       * the method compute(). It is a short cut for:
86       *
87       * \code
88       * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
89       * qr.compute(matrix);
90       * \endcode
91       *
92       * \sa compute()
93       */
HouseholderQR(const MatrixType & matrix)94     HouseholderQR(const MatrixType& matrix)
95       : m_qr(matrix.rows(), matrix.cols()),
96         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
97         m_temp(matrix.cols()),
98         m_isInitialized(false)
99     {
100       compute(matrix);
101     }
102 
103     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
104       * *this is the QR decomposition, if any exists.
105       *
106       * \param b the right-hand-side of the equation to solve.
107       *
108       * \returns a solution.
109       *
110       * \note The case where b is a matrix is not yet implemented. Also, this
111       *       code is space inefficient.
112       *
113       * \note_about_checking_solutions
114       *
115       * \note_about_arbitrary_choice_of_solution
116       *
117       * Example: \include HouseholderQR_solve.cpp
118       * Output: \verbinclude HouseholderQR_solve.out
119       */
120     template<typename Rhs>
121     inline const internal::solve_retval<HouseholderQR, Rhs>
solve(const MatrixBase<Rhs> & b)122     solve(const MatrixBase<Rhs>& b) const
123     {
124       eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
125       return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
126     }
127 
128     /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
129       *
130       * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
131       * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
132       *
133       * Example: \include HouseholderQR_householderQ.cpp
134       * Output: \verbinclude HouseholderQR_householderQ.out
135       */
householderQ()136     HouseholderSequenceType householderQ() const
137     {
138       eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
139       return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
140     }
141 
142     /** \returns a reference to the matrix where the Householder QR decomposition is stored
143       * in a LAPACK-compatible way.
144       */
matrixQR()145     const MatrixType& matrixQR() const
146     {
147         eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
148         return m_qr;
149     }
150 
151     HouseholderQR& compute(const MatrixType& matrix);
152 
153     /** \returns the absolute value of the determinant of the matrix of which
154       * *this is the QR decomposition. It has only linear complexity
155       * (that is, O(n) where n is the dimension of the square matrix)
156       * as the QR decomposition has already been computed.
157       *
158       * \note This is only for square matrices.
159       *
160       * \warning a determinant can be very big or small, so for matrices
161       * of large enough dimension, there is a risk of overflow/underflow.
162       * One way to work around that is to use logAbsDeterminant() instead.
163       *
164       * \sa logAbsDeterminant(), MatrixBase::determinant()
165       */
166     typename MatrixType::RealScalar absDeterminant() const;
167 
168     /** \returns the natural log of the absolute value of the determinant of the matrix of which
169       * *this is the QR decomposition. It has only linear complexity
170       * (that is, O(n) where n is the dimension of the square matrix)
171       * as the QR decomposition has already been computed.
172       *
173       * \note This is only for square matrices.
174       *
175       * \note This method is useful to work around the risk of overflow/underflow that's inherent
176       * to determinant computation.
177       *
178       * \sa absDeterminant(), MatrixBase::determinant()
179       */
180     typename MatrixType::RealScalar logAbsDeterminant() const;
181 
rows()182     inline Index rows() const { return m_qr.rows(); }
cols()183     inline Index cols() const { return m_qr.cols(); }
184 
185     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
186       *
187       * For advanced uses only.
188       */
hCoeffs()189     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
190 
191   protected:
192 
check_template_parameters()193     static void check_template_parameters()
194     {
195       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
196     }
197 
198     MatrixType m_qr;
199     HCoeffsType m_hCoeffs;
200     RowVectorType m_temp;
201     bool m_isInitialized;
202 };
203 
204 template<typename MatrixType>
absDeterminant()205 typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
206 {
207   using std::abs;
208   eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
209   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
210   return abs(m_qr.diagonal().prod());
211 }
212 
213 template<typename MatrixType>
logAbsDeterminant()214 typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
215 {
216   eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
217   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
218   return m_qr.diagonal().cwiseAbs().array().log().sum();
219 }
220 
221 namespace internal {
222 
223 /** \internal */
224 template<typename MatrixQR, typename HCoeffs>
225 void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
226 {
227   typedef typename MatrixQR::Index Index;
228   typedef typename MatrixQR::Scalar Scalar;
229   typedef typename MatrixQR::RealScalar RealScalar;
230   Index rows = mat.rows();
231   Index cols = mat.cols();
232   Index size = (std::min)(rows,cols);
233 
234   eigen_assert(hCoeffs.size() == size);
235 
236   typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
237   TempType tempVector;
238   if(tempData==0)
239   {
240     tempVector.resize(cols);
241     tempData = tempVector.data();
242   }
243 
244   for(Index k = 0; k < size; ++k)
245   {
246     Index remainingRows = rows - k;
247     Index remainingCols = cols - k - 1;
248 
249     RealScalar beta;
250     mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
251     mat.coeffRef(k,k) = beta;
252 
253     // apply H to remaining part of m_qr from the left
254     mat.bottomRightCorner(remainingRows, remainingCols)
255         .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
256   }
257 }
258 
259 /** \internal */
260 template<typename MatrixQR, typename HCoeffs,
261   typename MatrixQRScalar = typename MatrixQR::Scalar,
262   bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
263 struct householder_qr_inplace_blocked
264 {
265   // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
266   static void run(MatrixQR& mat, HCoeffs& hCoeffs,
267       typename MatrixQR::Index maxBlockSize=32,
268       typename MatrixQR::Scalar* tempData = 0)
269   {
270     typedef typename MatrixQR::Index Index;
271     typedef typename MatrixQR::Scalar Scalar;
272     typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
273 
274     Index rows = mat.rows();
275     Index cols = mat.cols();
276     Index size = (std::min)(rows, cols);
277 
278     typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
279     TempType tempVector;
280     if(tempData==0)
281     {
282       tempVector.resize(cols);
283       tempData = tempVector.data();
284     }
285 
286     Index blockSize = (std::min)(maxBlockSize,size);
287 
288     Index k = 0;
289     for (k = 0; k < size; k += blockSize)
290     {
291       Index bs = (std::min)(size-k,blockSize);  // actual size of the block
292       Index tcols = cols - k - bs;            // trailing columns
293       Index brows = rows-k;                   // rows of the block
294 
295       // partition the matrix:
296       //        A00 | A01 | A02
297       // mat  = A10 | A11 | A12
298       //        A20 | A21 | A22
299       // and performs the qr dec of [A11^T A12^T]^T
300       // and update [A21^T A22^T]^T using level 3 operations.
301       // Finally, the algorithm continue on A22
302 
303       BlockType A11_21 = mat.block(k,k,brows,bs);
304       Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
305 
306       householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
307 
308       if(tcols)
309       {
310         BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
311         apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
312       }
313     }
314   }
315 };
316 
317 template<typename _MatrixType, typename Rhs>
318 struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
319   : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
320 {
321   EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
322 
323   template<typename Dest> void evalTo(Dest& dst) const
324   {
325     const Index rows = dec().rows(), cols = dec().cols();
326     const Index rank = (std::min)(rows, cols);
327     eigen_assert(rhs().rows() == rows);
328 
329     typename Rhs::PlainObject c(rhs());
330 
331     // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
332     c.applyOnTheLeft(householderSequence(
333       dec().matrixQR().leftCols(rank),
334       dec().hCoeffs().head(rank)).transpose()
335     );
336 
337     dec().matrixQR()
338        .topLeftCorner(rank, rank)
339        .template triangularView<Upper>()
340        .solveInPlace(c.topRows(rank));
341 
342     dst.topRows(rank) = c.topRows(rank);
343     dst.bottomRows(cols-rank).setZero();
344   }
345 };
346 
347 } // end namespace internal
348 
349 /** Performs the QR factorization of the given matrix \a matrix. The result of
350   * the factorization is stored into \c *this, and a reference to \c *this
351   * is returned.
352   *
353   * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
354   */
355 template<typename MatrixType>
356 HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
357 {
358   check_template_parameters();
359 
360   Index rows = matrix.rows();
361   Index cols = matrix.cols();
362   Index size = (std::min)(rows,cols);
363 
364   m_qr = matrix;
365   m_hCoeffs.resize(size);
366 
367   m_temp.resize(cols);
368 
369   internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
370 
371   m_isInitialized = true;
372   return *this;
373 }
374 
375 /** \return the Householder QR decomposition of \c *this.
376   *
377   * \sa class HouseholderQR
378   */
379 template<typename Derived>
380 const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
381 MatrixBase<Derived>::householderQr() const
382 {
383   return HouseholderQR<PlainObject>(eval());
384 }
385 
386 } // end namespace Eigen
387 
388 #endif // EIGEN_QR_H
389