1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
11 #define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
12
13 namespace Eigen {
14
15 namespace internal {
16
17 template<typename Lhs, typename Rhs, typename ResultType>
conservative_sparse_sparse_product_impl(const Lhs & lhs,const Rhs & rhs,ResultType & res)18 static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
19 {
20 typedef typename remove_all<Lhs>::type::Scalar Scalar;
21 typedef typename remove_all<Lhs>::type::Index Index;
22
23 // make sure to call innerSize/outerSize since we fake the storage order.
24 Index rows = lhs.innerSize();
25 Index cols = rhs.outerSize();
26 eigen_assert(lhs.outerSize() == rhs.innerSize());
27
28 std::vector<bool> mask(rows,false);
29 Matrix<Scalar,Dynamic,1> values(rows);
30 Matrix<Index,Dynamic,1> indices(rows);
31
32 // estimate the number of non zero entries
33 // given a rhs column containing Y non zeros, we assume that the respective Y columns
34 // of the lhs differs in average of one non zeros, thus the number of non zeros for
35 // the product of a rhs column with the lhs is X+Y where X is the average number of non zero
36 // per column of the lhs.
37 // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
38 Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
39
40 res.setZero();
41 res.reserve(Index(estimated_nnz_prod));
42 // we compute each column of the result, one after the other
43 for (Index j=0; j<cols; ++j)
44 {
45
46 res.startVec(j);
47 Index nnz = 0;
48 for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
49 {
50 Scalar y = rhsIt.value();
51 Index k = rhsIt.index();
52 for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
53 {
54 Index i = lhsIt.index();
55 Scalar x = lhsIt.value();
56 if(!mask[i])
57 {
58 mask[i] = true;
59 values[i] = x * y;
60 indices[nnz] = i;
61 ++nnz;
62 }
63 else
64 values[i] += x * y;
65 }
66 }
67
68 // unordered insertion
69 for(Index k=0; k<nnz; ++k)
70 {
71 Index i = indices[k];
72 res.insertBackByOuterInnerUnordered(j,i) = values[i];
73 mask[i] = false;
74 }
75
76 #if 0
77 // alternative ordered insertion code:
78
79 Index t200 = rows/(log2(200)*1.39);
80 Index t = (rows*100)/139;
81
82 // FIXME reserve nnz non zeros
83 // FIXME implement fast sort algorithms for very small nnz
84 // if the result is sparse enough => use a quick sort
85 // otherwise => loop through the entire vector
86 // In order to avoid to perform an expensive log2 when the
87 // result is clearly very sparse we use a linear bound up to 200.
88 //if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
89 //res.startVec(j);
90 if(true)
91 {
92 if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
93 for(Index k=0; k<nnz; ++k)
94 {
95 Index i = indices[k];
96 res.insertBackByOuterInner(j,i) = values[i];
97 mask[i] = false;
98 }
99 }
100 else
101 {
102 // dense path
103 for(Index i=0; i<rows; ++i)
104 {
105 if(mask[i])
106 {
107 mask[i] = false;
108 res.insertBackByOuterInner(j,i) = values[i];
109 }
110 }
111 }
112 #endif
113
114 }
115 res.finalize();
116 }
117
118
119 } // end namespace internal
120
121 namespace internal {
122
123 template<typename Lhs, typename Rhs, typename ResultType,
124 int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
125 int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
126 int ResStorageOrder = (traits<ResultType>::Flags&RowMajorBit) ? RowMajor : ColMajor>
127 struct conservative_sparse_sparse_product_selector;
128
129 template<typename Lhs, typename Rhs, typename ResultType>
130 struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
131 {
132 typedef typename remove_all<Lhs>::type LhsCleaned;
133 typedef typename LhsCleaned::Scalar Scalar;
134
135 static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
136 {
137 typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
138 typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
139 ColMajorMatrix resCol(lhs.rows(),rhs.cols());
140 internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
141 // sort the non zeros:
142 RowMajorMatrix resRow(resCol);
143 res = resRow;
144 }
145 };
146
147 template<typename Lhs, typename Rhs, typename ResultType>
148 struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
149 {
150 static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
151 {
152 typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
153 RowMajorMatrix rhsRow = rhs;
154 RowMajorMatrix resRow(lhs.rows(), rhs.cols());
155 internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
156 res = resRow;
157 }
158 };
159
160 template<typename Lhs, typename Rhs, typename ResultType>
161 struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
162 {
163 static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
164 {
165 typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
166 RowMajorMatrix lhsRow = lhs;
167 RowMajorMatrix resRow(lhs.rows(), rhs.cols());
168 internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
169 res = resRow;
170 }
171 };
172
173 template<typename Lhs, typename Rhs, typename ResultType>
174 struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
175 {
176 static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
177 {
178 typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
179 RowMajorMatrix resRow(lhs.rows(), rhs.cols());
180 internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
181 res = resRow;
182 }
183 };
184
185
186 template<typename Lhs, typename Rhs, typename ResultType>
187 struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
188 {
189 typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
190
191 static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
192 {
193 typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
194 ColMajorMatrix resCol(lhs.rows(), rhs.cols());
195 internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
196 res = resCol;
197 }
198 };
199
200 template<typename Lhs, typename Rhs, typename ResultType>
201 struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
202 {
203 static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
204 {
205 typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
206 ColMajorMatrix lhsCol = lhs;
207 ColMajorMatrix resCol(lhs.rows(), rhs.cols());
208 internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
209 res = resCol;
210 }
211 };
212
213 template<typename Lhs, typename Rhs, typename ResultType>
214 struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
215 {
216 static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
217 {
218 typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
219 ColMajorMatrix rhsCol = rhs;
220 ColMajorMatrix resCol(lhs.rows(), rhs.cols());
221 internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
222 res = resCol;
223 }
224 };
225
226 template<typename Lhs, typename Rhs, typename ResultType>
227 struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
228 {
229 static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
230 {
231 typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
232 typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
233 RowMajorMatrix resRow(lhs.rows(),rhs.cols());
234 internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
235 // sort the non zeros:
236 ColMajorMatrix resCol(resRow);
237 res = resCol;
238 }
239 };
240
241 } // end namespace internal
242
243 } // end namespace Eigen
244
245 #endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
246