• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* sspmv.f -- translated by f2c (version 20100827).
2     You must link the resulting object file with libf2c:
3  	on Microsoft Windows system, link with libf2c.lib;
4  	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5  	or, if you install libf2c.a in a standard place, with -lf2c -lm
6  	-- in that order, at the end of the command line, as in
7  		cc *.o -lf2c -lm
8  	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9  
10  		http://www.netlib.org/f2c/libf2c.zip
11  */
12  
13  #include "datatypes.h"
14  
sspmv_(char * uplo,integer * n,real * alpha,real * ap,real * x,integer * incx,real * beta,real * y,integer * incy,ftnlen uplo_len)15  /* Subroutine */ int sspmv_(char *uplo, integer *n, real *alpha, real *ap,
16  	real *x, integer *incx, real *beta, real *y, integer *incy, ftnlen
17  	uplo_len)
18  {
19      /* System generated locals */
20      integer i__1, i__2;
21  
22      /* Local variables */
23      integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
24      real temp1, temp2;
25      extern logical lsame_(char *, char *, ftnlen, ftnlen);
26      extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
27  
28  /*     .. Scalar Arguments .. */
29  /*     .. */
30  /*     .. Array Arguments .. */
31  /*     .. */
32  
33  /*  Purpose */
34  /*  ======= */
35  
36  /*  SSPMV  performs the matrix-vector operation */
37  
38  /*     y := alpha*A*x + beta*y, */
39  
40  /*  where alpha and beta are scalars, x and y are n element vectors and */
41  /*  A is an n by n symmetric matrix, supplied in packed form. */
42  
43  /*  Arguments */
44  /*  ========== */
45  
46  /*  UPLO   - CHARACTER*1. */
47  /*           On entry, UPLO specifies whether the upper or lower */
48  /*           triangular part of the matrix A is supplied in the packed */
49  /*           array AP as follows: */
50  
51  /*              UPLO = 'U' or 'u'   The upper triangular part of A is */
52  /*                                  supplied in AP. */
53  
54  /*              UPLO = 'L' or 'l'   The lower triangular part of A is */
55  /*                                  supplied in AP. */
56  
57  /*           Unchanged on exit. */
58  
59  /*  N      - INTEGER. */
60  /*           On entry, N specifies the order of the matrix A. */
61  /*           N must be at least zero. */
62  /*           Unchanged on exit. */
63  
64  /*  ALPHA  - REAL            . */
65  /*           On entry, ALPHA specifies the scalar alpha. */
66  /*           Unchanged on exit. */
67  
68  /*  AP     - REAL             array of DIMENSION at least */
69  /*           ( ( n*( n + 1 ) )/2 ). */
70  /*           Before entry with UPLO = 'U' or 'u', the array AP must */
71  /*           contain the upper triangular part of the symmetric matrix */
72  /*           packed sequentially, column by column, so that AP( 1 ) */
73  /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
74  /*           and a( 2, 2 ) respectively, and so on. */
75  /*           Before entry with UPLO = 'L' or 'l', the array AP must */
76  /*           contain the lower triangular part of the symmetric matrix */
77  /*           packed sequentially, column by column, so that AP( 1 ) */
78  /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
79  /*           and a( 3, 1 ) respectively, and so on. */
80  /*           Unchanged on exit. */
81  
82  /*  X      - REAL             array of dimension at least */
83  /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
84  /*           Before entry, the incremented array X must contain the n */
85  /*           element vector x. */
86  /*           Unchanged on exit. */
87  
88  /*  INCX   - INTEGER. */
89  /*           On entry, INCX specifies the increment for the elements of */
90  /*           X. INCX must not be zero. */
91  /*           Unchanged on exit. */
92  
93  /*  BETA   - REAL            . */
94  /*           On entry, BETA specifies the scalar beta. When BETA is */
95  /*           supplied as zero then Y need not be set on input. */
96  /*           Unchanged on exit. */
97  
98  /*  Y      - REAL             array of dimension at least */
99  /*           ( 1 + ( n - 1 )*abs( INCY ) ). */
100  /*           Before entry, the incremented array Y must contain the n */
101  /*           element vector y. On exit, Y is overwritten by the updated */
102  /*           vector y. */
103  
104  /*  INCY   - INTEGER. */
105  /*           On entry, INCY specifies the increment for the elements of */
106  /*           Y. INCY must not be zero. */
107  /*           Unchanged on exit. */
108  
109  /*  Further Details */
110  /*  =============== */
111  
112  /*  Level 2 Blas routine. */
113  
114  /*  -- Written on 22-October-1986. */
115  /*     Jack Dongarra, Argonne National Lab. */
116  /*     Jeremy Du Croz, Nag Central Office. */
117  /*     Sven Hammarling, Nag Central Office. */
118  /*     Richard Hanson, Sandia National Labs. */
119  
120  /*  ===================================================================== */
121  
122  /*     .. Parameters .. */
123  /*     .. */
124  /*     .. Local Scalars .. */
125  /*     .. */
126  /*     .. External Functions .. */
127  /*     .. */
128  /*     .. External Subroutines .. */
129  /*     .. */
130  
131  /*     Test the input parameters. */
132  
133      /* Parameter adjustments */
134      --y;
135      --x;
136      --ap;
137  
138      /* Function Body */
139      info = 0;
140      if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
141  	    ftnlen)1, (ftnlen)1)) {
142  	info = 1;
143      } else if (*n < 0) {
144  	info = 2;
145      } else if (*incx == 0) {
146  	info = 6;
147      } else if (*incy == 0) {
148  	info = 9;
149      }
150      if (info != 0) {
151  	xerbla_("SSPMV ", &info, (ftnlen)6);
152  	return 0;
153      }
154  
155  /*     Quick return if possible. */
156  
157      if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
158  	return 0;
159      }
160  
161  /*     Set up the start points in  X  and  Y. */
162  
163      if (*incx > 0) {
164  	kx = 1;
165      } else {
166  	kx = 1 - (*n - 1) * *incx;
167      }
168      if (*incy > 0) {
169  	ky = 1;
170      } else {
171  	ky = 1 - (*n - 1) * *incy;
172      }
173  
174  /*     Start the operations. In this version the elements of the array AP */
175  /*     are accessed sequentially with one pass through AP. */
176  
177  /*     First form  y := beta*y. */
178  
179      if (*beta != 1.f) {
180  	if (*incy == 1) {
181  	    if (*beta == 0.f) {
182  		i__1 = *n;
183  		for (i__ = 1; i__ <= i__1; ++i__) {
184  		    y[i__] = 0.f;
185  /* L10: */
186  		}
187  	    } else {
188  		i__1 = *n;
189  		for (i__ = 1; i__ <= i__1; ++i__) {
190  		    y[i__] = *beta * y[i__];
191  /* L20: */
192  		}
193  	    }
194  	} else {
195  	    iy = ky;
196  	    if (*beta == 0.f) {
197  		i__1 = *n;
198  		for (i__ = 1; i__ <= i__1; ++i__) {
199  		    y[iy] = 0.f;
200  		    iy += *incy;
201  /* L30: */
202  		}
203  	    } else {
204  		i__1 = *n;
205  		for (i__ = 1; i__ <= i__1; ++i__) {
206  		    y[iy] = *beta * y[iy];
207  		    iy += *incy;
208  /* L40: */
209  		}
210  	    }
211  	}
212      }
213      if (*alpha == 0.f) {
214  	return 0;
215      }
216      kk = 1;
217      if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
218  
219  /*        Form  y  when AP contains the upper triangle. */
220  
221  	if (*incx == 1 && *incy == 1) {
222  	    i__1 = *n;
223  	    for (j = 1; j <= i__1; ++j) {
224  		temp1 = *alpha * x[j];
225  		temp2 = 0.f;
226  		k = kk;
227  		i__2 = j - 1;
228  		for (i__ = 1; i__ <= i__2; ++i__) {
229  		    y[i__] += temp1 * ap[k];
230  		    temp2 += ap[k] * x[i__];
231  		    ++k;
232  /* L50: */
233  		}
234  		y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
235  		kk += j;
236  /* L60: */
237  	    }
238  	} else {
239  	    jx = kx;
240  	    jy = ky;
241  	    i__1 = *n;
242  	    for (j = 1; j <= i__1; ++j) {
243  		temp1 = *alpha * x[jx];
244  		temp2 = 0.f;
245  		ix = kx;
246  		iy = ky;
247  		i__2 = kk + j - 2;
248  		for (k = kk; k <= i__2; ++k) {
249  		    y[iy] += temp1 * ap[k];
250  		    temp2 += ap[k] * x[ix];
251  		    ix += *incx;
252  		    iy += *incy;
253  /* L70: */
254  		}
255  		y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
256  		jx += *incx;
257  		jy += *incy;
258  		kk += j;
259  /* L80: */
260  	    }
261  	}
262      } else {
263  
264  /*        Form  y  when AP contains the lower triangle. */
265  
266  	if (*incx == 1 && *incy == 1) {
267  	    i__1 = *n;
268  	    for (j = 1; j <= i__1; ++j) {
269  		temp1 = *alpha * x[j];
270  		temp2 = 0.f;
271  		y[j] += temp1 * ap[kk];
272  		k = kk + 1;
273  		i__2 = *n;
274  		for (i__ = j + 1; i__ <= i__2; ++i__) {
275  		    y[i__] += temp1 * ap[k];
276  		    temp2 += ap[k] * x[i__];
277  		    ++k;
278  /* L90: */
279  		}
280  		y[j] += *alpha * temp2;
281  		kk += *n - j + 1;
282  /* L100: */
283  	    }
284  	} else {
285  	    jx = kx;
286  	    jy = ky;
287  	    i__1 = *n;
288  	    for (j = 1; j <= i__1; ++j) {
289  		temp1 = *alpha * x[jx];
290  		temp2 = 0.f;
291  		y[jy] += temp1 * ap[kk];
292  		ix = jx;
293  		iy = jy;
294  		i__2 = kk + *n - j;
295  		for (k = kk + 1; k <= i__2; ++k) {
296  		    ix += *incx;
297  		    iy += *incy;
298  		    y[iy] += temp1 * ap[k];
299  		    temp2 += ap[k] * x[ix];
300  /* L110: */
301  		}
302  		y[jy] += *alpha * temp2;
303  		jx += *incx;
304  		jy += *incy;
305  		kk += *n - j + 1;
306  /* L120: */
307  	    }
308  	}
309      }
310  
311      return 0;
312  
313  /*     End of SSPMV . */
314  
315  } /* sspmv_ */
316  
317