1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "lapack_common.h"
11 #include <Eigen/Cholesky>
12 
13 // POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
14 EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info))
15 {
16   *info = 0;
17         if(UPLO(*uplo)==INVALID) *info = -1;
18   else  if(*n<0)                 *info = -2;
19   else  if(*lda<std::max(1,*n))  *info = -4;
20   if(*info!=0)
21   {
22     int e = -*info;
23     return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6);
24   }
25 
26   Scalar* a = reinterpret_cast<Scalar*>(pa);
27   MatrixType A(a,*n,*n,*lda);
28   int ret;
29   if(UPLO(*uplo)==UP) ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A));
30   else                ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A));
31 
32   if(ret>=0)
33     *info = ret+1;
34 
35   return 0;
36 }
37 
38 // POTRS solves a system of linear equations A*X = B with a symmetric
39 // positive definite matrix A using the Cholesky factorization
40 // A = U**T*U or A = L*L**T computed by DPOTRF.
41 EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info))
42 {
43   *info = 0;
44         if(UPLO(*uplo)==INVALID) *info = -1;
45   else  if(*n<0)                 *info = -2;
46   else  if(*nrhs<0)              *info = -3;
47   else  if(*lda<std::max(1,*n))  *info = -5;
48   else  if(*ldb<std::max(1,*n))  *info = -7;
49   if(*info!=0)
50   {
51     int e = -*info;
52     return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6);
53   }
54 
55   Scalar* a = reinterpret_cast<Scalar*>(pa);
56   Scalar* b = reinterpret_cast<Scalar*>(pb);
57   MatrixType A(a,*n,*n,*lda);
58   MatrixType B(b,*n,*nrhs,*ldb);
59 
60   if(UPLO(*uplo)==UP)
61   {
62     A.triangularView<Upper>().adjoint().solveInPlace(B);
63     A.triangularView<Upper>().solveInPlace(B);
64   }
65   else
66   {
67     A.triangularView<Lower>().solveInPlace(B);
68     A.triangularView<Lower>().adjoint().solveInPlace(B);
69   }
70 
71   return 0;
72 }
73