1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11 #include <Eigen/LU>
12 #include <algorithm>
13
type_name()14 template<typename T> std::string type_name() { return "other"; }
type_name()15 template<> std::string type_name<float>() { return "float"; }
type_name()16 template<> std::string type_name<double>() { return "double"; }
type_name()17 template<> std::string type_name<int>() { return "int"; }
type_name()18 template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
type_name()19 template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
type_name()20 template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
21
22 #define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl;
23
epsilon()24 template<typename T> inline typename NumTraits<T>::Real epsilon()
25 {
26 return std::numeric_limits<typename NumTraits<T>::Real>::epsilon();
27 }
28
inverse_permutation_4x4()29 template<typename MatrixType> void inverse_permutation_4x4()
30 {
31 typedef typename MatrixType::Scalar Scalar;
32 typedef typename MatrixType::RealScalar RealScalar;
33 Vector4i indices(0,1,2,3);
34 for(int i = 0; i < 24; ++i)
35 {
36 MatrixType m = MatrixType::Zero();
37 m(indices(0),0) = 1;
38 m(indices(1),1) = 1;
39 m(indices(2),2) = 1;
40 m(indices(3),3) = 1;
41 MatrixType inv = m.inverse();
42 double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon<Scalar>() );
43 VERIFY(error == 0.0);
44 std::next_permutation(indices.data(),indices.data()+4);
45 }
46 }
47
inverse_general_4x4(int repeat)48 template<typename MatrixType> void inverse_general_4x4(int repeat)
49 {
50 typedef typename MatrixType::Scalar Scalar;
51 typedef typename MatrixType::RealScalar RealScalar;
52 double error_sum = 0., error_max = 0.;
53 for(int i = 0; i < repeat; ++i)
54 {
55 MatrixType m;
56 RealScalar absdet;
57 do {
58 m = MatrixType::Random();
59 absdet = ei_abs(m.determinant());
60 } while(absdet < 10 * epsilon<Scalar>());
61 MatrixType inv = m.inverse();
62 double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon<Scalar>() );
63 error_sum += error;
64 error_max = std::max(error_max, error);
65 }
66 std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
67 double error_avg = error_sum / repeat;
68 EIGEN_DEBUG_VAR(error_avg);
69 EIGEN_DEBUG_VAR(error_max);
70 VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
71 VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
72 }
73
test_eigen2_prec_inverse_4x4()74 void test_eigen2_prec_inverse_4x4()
75 {
76 CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
77 CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) ));
78
79 CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >()));
80 CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) ));
81
82 CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
83 CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat)));
84 }
85