1 
2 /* @(#)e_jn.c 1.4 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /*
15  * __ieee754_jn(n, x), __ieee754_yn(n, x)
16  * floating point Bessel's function of the 1st and 2nd kind
17  * of order n
18  *
19  * Special cases:
20  *	y0(0)=ieee_y1(0)=ieee_yn(n,0) = -inf with division by zero signal;
21  *	y0(-ve)=ieee_y1(-ve)=ieee_yn(n,-ve) are NaN with invalid signal.
22  * Note 2. About ieee_jn(n,x), ieee_yn(n,x)
23  *	For n=0, ieee_j0(x) is called,
24  *	for n=1, ieee_j1(x) is called,
25  *	for n<x, forward recursion us used starting
26  *	from values of ieee_j0(x) and ieee_j1(x).
27  *	for n>x, a continued fraction approximation to
28  *	j(n,x)/j(n-1,x) is evaluated and then backward
29  *	recursion is used starting from a supposed value
30  *	for j(n,x). The resulting value of j(0,x) is
31  *	compared with the actual value to correct the
32  *	supposed value of j(n,x).
33  *
34  *	yn(n,x) is similar in all respects, except
35  *	that forward recursion is used for all
36  *	values of n>1.
37  *
38  */
39 
40 #include "fdlibm.h"
41 
42 #ifdef __STDC__
43 static const double
44 #else
45 static double
46 #endif
47 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
48 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
49 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
50 
51 static double zero  =  0.00000000000000000000e+00;
52 
53 #ifdef __STDC__
__ieee754_jn(int n,double x)54 	double __ieee754_jn(int n, double x)
55 #else
56 	double __ieee754_jn(n,x)
57 	int n; double x;
58 #endif
59 {
60 	int i,hx,ix,lx, sgn;
61 	double a, b, temp, di;
62 	double z, w;
63 
64     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
65      * Thus, J(-n,x) = J(n,-x)
66      */
67 	hx = __HI(x);
68 	ix = 0x7fffffff&hx;
69 	lx = __LO(x);
70     /* if J(n,NaN) is NaN */
71 	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
72 	if(n<0){
73 		n = -n;
74 		x = -x;
75 		hx ^= 0x80000000;
76 	}
77 	if(n==0) return(__ieee754_j0(x));
78 	if(n==1) return(__ieee754_j1(x));
79 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
80 	x = ieee_fabs(x);
81 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
82 	    b = zero;
83 	else if((double)n<=x) {
84 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
85 	    if(ix>=0x52D00000) { /* x > 2**302 */
86     /* (x >> n**2)
87      *	    Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
88      *	    Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
89      *	    Let s=ieee_sin(x), c=ieee_cos(x),
90      *		xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
91      *
92      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
93      *		----------------------------------
94      *		   0	 s-c		 c+s
95      *		   1	-s-c 		-c+s
96      *		   2	-s+c		-c-s
97      *		   3	 s+c		 c-s
98      */
99 		switch(n&3) {
100 		    case 0: temp =  ieee_cos(x)+ieee_sin(x); break;
101 		    case 1: temp = -ieee_cos(x)+ieee_sin(x); break;
102 		    case 2: temp = -ieee_cos(x)-ieee_sin(x); break;
103 		    case 3: temp =  ieee_cos(x)-ieee_sin(x); break;
104 		}
105 		b = invsqrtpi*temp/ieee_sqrt(x);
106 	    } else {
107 	        a = __ieee754_j0(x);
108 	        b = __ieee754_j1(x);
109 	        for(i=1;i<n;i++){
110 		    temp = b;
111 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
112 		    a = temp;
113 	        }
114 	    }
115 	} else {
116 	    if(ix<0x3e100000) {	/* x < 2**-29 */
117     /* x is tiny, return the first Taylor expansion of J(n,x)
118      * J(n,x) = 1/n!*(x/2)^n  - ...
119      */
120 		if(n>33)	/* underflow */
121 		    b = zero;
122 		else {
123 		    temp = x*0.5; b = temp;
124 		    for (a=one,i=2;i<=n;i++) {
125 			a *= (double)i;		/* a = n! */
126 			b *= temp;		/* b = (x/2)^n */
127 		    }
128 		    b = b/a;
129 		}
130 	    } else {
131 		/* use backward recurrence */
132 		/* 			x      x^2      x^2
133 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
134 		 *			2n  - 2(n+1) - 2(n+2)
135 		 *
136 		 * 			1      1        1
137 		 *  (for large x)   =  ----  ------   ------   .....
138 		 *			2n   2(n+1)   2(n+2)
139 		 *			-- - ------ - ------ -
140 		 *			 x     x         x
141 		 *
142 		 * Let w = 2n/x and h=2/x, then the above quotient
143 		 * is equal to the continued fraction:
144 		 *		    1
145 		 *	= -----------------------
146 		 *		       1
147 		 *	   w - -----------------
148 		 *			  1
149 		 * 	        w+h - ---------
150 		 *		       w+2h - ...
151 		 *
152 		 * To determine how many terms needed, let
153 		 * Q(0) = w, Q(1) = w(w+h) - 1,
154 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
155 		 * When Q(k) > 1e4	good for single
156 		 * When Q(k) > 1e9	good for double
157 		 * When Q(k) > 1e17	good for quadruple
158 		 */
159 	    /* determine k */
160 		double t,v;
161 		double q0,q1,h,tmp; int k,m;
162 		w  = (n+n)/(double)x; h = 2.0/(double)x;
163 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
164 		while(q1<1.0e9) {
165 			k += 1; z += h;
166 			tmp = z*q1 - q0;
167 			q0 = q1;
168 			q1 = tmp;
169 		}
170 		m = n+n;
171 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
172 		a = t;
173 		b = one;
174 		/*  estimate ieee_log((2/x)^n*n!) = n*ieee_log(2/x)+n*ln(n)
175 		 *  Hence, if n*(ieee_log(2n/x)) > ...
176 		 *  single 8.8722839355e+01
177 		 *  double 7.09782712893383973096e+02
178 		 *  long double 1.1356523406294143949491931077970765006170e+04
179 		 *  then recurrent value may overflow and the result is
180 		 *  likely underflow to zero
181 		 */
182 		tmp = n;
183 		v = two/x;
184 		tmp = tmp*__ieee754_log(ieee_fabs(v*tmp));
185 		if(tmp<7.09782712893383973096e+02) {
186 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
187 		        temp = b;
188 			b *= di;
189 			b  = b/x - a;
190 		        a = temp;
191 			di -= two;
192 	     	    }
193 		} else {
194 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
195 		        temp = b;
196 			b *= di;
197 			b  = b/x - a;
198 		        a = temp;
199 			di -= two;
200 		    /* scale b to avoid spurious overflow */
201 			if(b>1e100) {
202 			    a /= b;
203 			    t /= b;
204 			    b  = one;
205 			}
206 	     	    }
207 		}
208 	    	b = (t*__ieee754_j0(x)/b);
209 	    }
210 	}
211 	if(sgn==1) return -b; else return b;
212 }
213 
214 #ifdef __STDC__
__ieee754_yn(int n,double x)215 	double __ieee754_yn(int n, double x)
216 #else
217 	double __ieee754_yn(n,x)
218 	int n; double x;
219 #endif
220 {
221 	int i,hx,ix,lx;
222 	int sign;
223 	double a, b, temp;
224 
225 	hx = __HI(x);
226 	ix = 0x7fffffff&hx;
227 	lx = __LO(x);
228     /* if Y(n,NaN) is NaN */
229 	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
230 	if((ix|lx)==0) return -one/zero;
231 	if(hx<0) return zero/zero;
232 	sign = 1;
233 	if(n<0){
234 		n = -n;
235 		sign = 1 - ((n&1)<<1);
236 	}
237 	if(n==0) return(__ieee754_y0(x));
238 	if(n==1) return(sign*__ieee754_y1(x));
239 	if(ix==0x7ff00000) return zero;
240 	if(ix>=0x52D00000) { /* x > 2**302 */
241     /* (x >> n**2)
242      *	    Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
243      *	    Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
244      *	    Let s=ieee_sin(x), c=ieee_cos(x),
245      *		xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
246      *
247      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
248      *		----------------------------------
249      *		   0	 s-c		 c+s
250      *		   1	-s-c 		-c+s
251      *		   2	-s+c		-c-s
252      *		   3	 s+c		 c-s
253      */
254 		switch(n&3) {
255 		    case 0: temp =  ieee_sin(x)-ieee_cos(x); break;
256 		    case 1: temp = -ieee_sin(x)-ieee_cos(x); break;
257 		    case 2: temp = -ieee_sin(x)+ieee_cos(x); break;
258 		    case 3: temp =  ieee_sin(x)+ieee_cos(x); break;
259 		}
260 		b = invsqrtpi*temp/ieee_sqrt(x);
261 	} else {
262 	    a = __ieee754_y0(x);
263 	    b = __ieee754_y1(x);
264 	/* quit if b is -inf */
265 	    for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
266 		temp = b;
267 		b = ((double)(i+i)/x)*b - a;
268 		a = temp;
269 	    }
270 	}
271 	if(sign>0) return b; else return -b;
272 }
273