1 
2 /* @(#)k_cos.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /*
15  * __kernel_cos( x,  y )
16  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
17  * Input x is assumed to be bounded by ~pi/4 in magnitude.
18  * Input y is the tail of x.
19  *
20  * Algorithm
21  *	1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
22  *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
23  *	3. ieee_cos(x) is approximated by a polynomial of degree 14 on
24  *	   [0,pi/4]
25  *		  	                 4            14
26  *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
27  *	   where the remez error is
28  *
29  * 	|              2     4     6     8     10    12     14 |     -58
30  * 	|ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
31  * 	|    					               |
32  *
33  * 	               4     6     8     10    12     14
34  *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
35  *	       ieee_cos(x) = 1 - x*x/2 + r
36  *	   since ieee_cos(x+y) ~ ieee_cos(x) - ieee_sin(x)*y
37  *			  ~ ieee_cos(x) - x*y,
38  *	   a correction term is necessary in ieee_cos(x) and hence
39  *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
40  *	   For better accuracy when x > 0.3, let qx = |x|/4 with
41  *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
42  *	   Then
43  *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
44  *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
45  *	   magnitude of the latter is at least a quarter of x*x/2,
46  *	   thus, reducing the rounding error in the subtraction.
47  */
48 
49 #include "fdlibm.h"
50 
51 #ifdef __STDC__
52 static const double
53 #else
54 static double
55 #endif
56 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
57 C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
58 C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
59 C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
60 C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
61 C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
62 C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
63 
64 #ifdef __STDC__
__kernel_cos(double x,double y)65 	double __kernel_cos(double x, double y)
66 #else
67 	double __kernel_cos(x, y)
68 	double x,y;
69 #endif
70 {
71 	double a,hz,z,r,qx;
72 	int ix;
73 	ix = __HI(x)&0x7fffffff;	/* ix = |x|'s high word*/
74 	if(ix<0x3e400000) {			/* if x < 2**27 */
75 	    if(((int)x)==0) return one;		/* generate inexact */
76 	}
77 	z  = x*x;
78 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
79 	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */
80 	    return one - (0.5*z - (z*r - x*y));
81 	else {
82 	    if(ix > 0x3fe90000) {		/* x > 0.78125 */
83 		qx = 0.28125;
84 	    } else {
85 	        __HI(qx) = ix-0x00200000;	/* x/4 */
86 	        __LO(qx) = 0;
87 	    }
88 	    hz = 0.5*z-qx;
89 	    a  = one-qx;
90 	    return a - (hz - (z*r-x*y));
91 	}
92 }
93