1 #ifndef _LINUX_HASH_H
2 #define _LINUX_HASH_H
3 
4 #include <inttypes.h>
5 #include "arch/arch.h"
6 
7 /* Fast hashing routine for a long.
8    (C) 2002 William Lee Irwin III, IBM */
9 
10 /*
11  * Knuth recommends primes in approximately golden ratio to the maximum
12  * integer representable by a machine word for multiplicative hashing.
13  * Chuck Lever verified the effectiveness of this technique:
14  * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
15  *
16  * These primes are chosen to be bit-sparse, that is operations on
17  * them can use shifts and additions instead of multiplications for
18  * machines where multiplications are slow.
19  */
20 
21 #if BITS_PER_LONG == 32
22 /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
23 #define GOLDEN_RATIO_PRIME 0x9e370001UL
24 #elif BITS_PER_LONG == 64
25 /*  2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
26 #define GOLDEN_RATIO_PRIME 0x9e37fffffffc0001UL
27 #else
28 #error Define GOLDEN_RATIO_PRIME for your wordsize.
29 #endif
30 
31 #define GR_PRIME_64	0x9e37fffffffc0001ULL
32 
__hash_long(unsigned long val)33 static inline unsigned long __hash_long(unsigned long val)
34 {
35 	unsigned long hash = val;
36 
37 #if BITS_PER_LONG == 64
38 	/*  Sigh, gcc can't optimise this alone like it does for 32 bits. */
39 	unsigned long n = hash;
40 	n <<= 18;
41 	hash -= n;
42 	n <<= 33;
43 	hash -= n;
44 	n <<= 3;
45 	hash += n;
46 	n <<= 3;
47 	hash -= n;
48 	n <<= 4;
49 	hash += n;
50 	n <<= 2;
51 	hash += n;
52 #else
53 	/* On some cpus multiply is faster, on others gcc will do shifts */
54 	hash *= GOLDEN_RATIO_PRIME;
55 #endif
56 
57 	return hash;
58 }
59 
hash_long(unsigned long val,unsigned int bits)60 static inline unsigned long hash_long(unsigned long val, unsigned int bits)
61 {
62 	/* High bits are more random, so use them. */
63 	return __hash_long(val) >> (BITS_PER_LONG - bits);
64 }
65 
__hash_u64(uint64_t val)66 static inline uint64_t __hash_u64(uint64_t val)
67 {
68 	return val * GR_PRIME_64;
69 }
70 
hash_ptr(void * ptr,unsigned int bits)71 static inline unsigned long hash_ptr(void *ptr, unsigned int bits)
72 {
73 	return hash_long((uintptr_t)ptr, bits);
74 }
75 
76 /*
77  * Bob Jenkins jhash
78  */
79 
80 #define JHASH_INITVAL	GOLDEN_RATIO_PRIME
81 
rol32(uint32_t word,uint32_t shift)82 static inline uint32_t rol32(uint32_t word, uint32_t shift)
83 {
84 	return (word << shift) | (word >> (32 - shift));
85 }
86 
87 /* __jhash_mix -- mix 3 32-bit values reversibly. */
88 #define __jhash_mix(a, b, c)			\
89 {						\
90 	a -= c;  a ^= rol32(c, 4);  c += b;	\
91 	b -= a;  b ^= rol32(a, 6);  a += c;	\
92 	c -= b;  c ^= rol32(b, 8);  b += a;	\
93 	a -= c;  a ^= rol32(c, 16); c += b;	\
94 	b -= a;  b ^= rol32(a, 19); a += c;	\
95 	c -= b;  c ^= rol32(b, 4);  b += a;	\
96 }
97 
98 /* __jhash_final - final mixing of 3 32-bit values (a,b,c) into c */
99 #define __jhash_final(a, b, c)			\
100 {						\
101 	c ^= b; c -= rol32(b, 14);		\
102 	a ^= c; a -= rol32(c, 11);		\
103 	b ^= a; b -= rol32(a, 25);		\
104 	c ^= b; c -= rol32(b, 16);		\
105 	a ^= c; a -= rol32(c, 4);		\
106 	b ^= a; b -= rol32(a, 14);		\
107 	c ^= b; c -= rol32(b, 24);		\
108 }
109 
jhash(const void * key,uint32_t length,uint32_t initval)110 static inline uint32_t jhash(const void *key, uint32_t length, uint32_t initval)
111 {
112 	const uint8_t *k = key;
113 	uint32_t a, b, c;
114 
115 	/* Set up the internal state */
116 	a = b = c = JHASH_INITVAL + length + initval;
117 
118 	/* All but the last block: affect some 32 bits of (a,b,c) */
119 	while (length > 12) {
120 		a += *k;
121 		b += *(k + 4);
122 		c += *(k + 8);
123 		__jhash_mix(a, b, c);
124 		length -= 12;
125 		k += 12;
126 	}
127 
128 	/* Last block: affect all 32 bits of (c) */
129 	/* All the case statements fall through */
130 	switch (length) {
131 	case 12: c += (uint32_t) k[11] << 24;
132 	case 11: c += (uint32_t) k[10] << 16;
133 	case 10: c += (uint32_t) k[9] << 8;
134 	case 9:  c += k[8];
135 	case 8:  b += (uint32_t) k[7] << 24;
136 	case 7:  b += (uint32_t) k[6] << 16;
137 	case 6:  b += (uint32_t) k[5] << 8;
138 	case 5:  b += k[4];
139 	case 4:  a += (uint32_t) k[3] << 24;
140 	case 3:  a += (uint32_t) k[2] << 16;
141 	case 2:  a += (uint32_t) k[1] << 8;
142 	case 1:  a += k[0];
143 		 __jhash_final(a, b, c);
144 	case 0: /* Nothing left to add */
145 		break;
146 	}
147 
148 	return c;
149 }
150 
151 #endif /* _LINUX_HASH_H */
152