1 /*
2 * lib/prio_tree.c - priority search tree
3 *
4 * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5 *
6 * This file is released under the GPL v2.
7 *
8 * Based on the radix priority search tree proposed by Edward M. McCreight
9 * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10 *
11 * 02Feb2004 Initial version
12 */
13
14 #include <stdlib.h>
15 #include <limits.h>
16 #include "../fio.h"
17 #include "prio_tree.h"
18
19 /*
20 * A clever mix of heap and radix trees forms a radix priority search tree (PST)
21 * which is useful for storing intervals, e.g, we can consider a vma as a closed
22 * interval of file pages [offset_begin, offset_end], and store all vmas that
23 * map a file in a PST. Then, using the PST, we can answer a stabbing query,
24 * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
25 * given input interval X (a set of consecutive file pages), in "O(log n + m)"
26 * time where 'log n' is the height of the PST, and 'm' is the number of stored
27 * intervals (vmas) that overlap (map) with the input interval X (the set of
28 * consecutive file pages).
29 *
30 * In our implementation, we store closed intervals of the form [radix_index,
31 * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
32 * is designed for storing intervals with unique radix indices, i.e., each
33 * interval have different radix_index. However, this limitation can be easily
34 * overcome by using the size, i.e., heap_index - radix_index, as part of the
35 * index, so we index the tree using [(radix_index,size), heap_index].
36 *
37 * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
38 * machine, the maximum height of a PST can be 64. We can use a balanced version
39 * of the priority search tree to optimize the tree height, but the balanced
40 * tree proposed by McCreight is too complex and memory-hungry for our purpose.
41 */
42
get_index(const struct prio_tree_node * node,unsigned long * radix,unsigned long * heap)43 static void get_index(const struct prio_tree_node *node,
44 unsigned long *radix, unsigned long *heap)
45 {
46 *radix = node->start;
47 *heap = node->last;
48 }
49
50 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
51
prio_tree_init(void)52 static void fio_init prio_tree_init(void)
53 {
54 unsigned int i;
55
56 for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
57 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
58 index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
59 }
60
61 /*
62 * Maximum heap_index that can be stored in a PST with index_bits bits
63 */
prio_tree_maxindex(unsigned int bits)64 static inline unsigned long prio_tree_maxindex(unsigned int bits)
65 {
66 return index_bits_to_maxindex[bits - 1];
67 }
68
69 /*
70 * Extend a priority search tree so that it can store a node with heap_index
71 * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
72 * However, this function is used rarely and the common case performance is
73 * not bad.
74 */
prio_tree_expand(struct prio_tree_root * root,struct prio_tree_node * node,unsigned long max_heap_index)75 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
76 struct prio_tree_node *node, unsigned long max_heap_index)
77 {
78 struct prio_tree_node *first = NULL, *prev, *last = NULL;
79
80 if (max_heap_index > prio_tree_maxindex(root->index_bits))
81 root->index_bits++;
82
83 while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
84 root->index_bits++;
85
86 if (prio_tree_empty(root))
87 continue;
88
89 if (first == NULL) {
90 first = root->prio_tree_node;
91 prio_tree_remove(root, root->prio_tree_node);
92 INIT_PRIO_TREE_NODE(first);
93 last = first;
94 } else {
95 prev = last;
96 last = root->prio_tree_node;
97 prio_tree_remove(root, root->prio_tree_node);
98 INIT_PRIO_TREE_NODE(last);
99 prev->left = last;
100 last->parent = prev;
101 }
102 }
103
104 INIT_PRIO_TREE_NODE(node);
105
106 if (first) {
107 node->left = first;
108 first->parent = node;
109 } else
110 last = node;
111
112 if (!prio_tree_empty(root)) {
113 last->left = root->prio_tree_node;
114 last->left->parent = last;
115 }
116
117 root->prio_tree_node = node;
118 return node;
119 }
120
121 /*
122 * Replace a prio_tree_node with a new node and return the old node
123 */
prio_tree_replace(struct prio_tree_root * root,struct prio_tree_node * old,struct prio_tree_node * node)124 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
125 struct prio_tree_node *old, struct prio_tree_node *node)
126 {
127 INIT_PRIO_TREE_NODE(node);
128
129 if (prio_tree_root(old)) {
130 assert(root->prio_tree_node == old);
131 /*
132 * We can reduce root->index_bits here. However, it is complex
133 * and does not help much to improve performance (IMO).
134 */
135 node->parent = node;
136 root->prio_tree_node = node;
137 } else {
138 node->parent = old->parent;
139 if (old->parent->left == old)
140 old->parent->left = node;
141 else
142 old->parent->right = node;
143 }
144
145 if (!prio_tree_left_empty(old)) {
146 node->left = old->left;
147 old->left->parent = node;
148 }
149
150 if (!prio_tree_right_empty(old)) {
151 node->right = old->right;
152 old->right->parent = node;
153 }
154
155 return old;
156 }
157
158 /*
159 * Insert a prio_tree_node @node into a radix priority search tree @root. The
160 * algorithm typically takes O(log n) time where 'log n' is the number of bits
161 * required to represent the maximum heap_index. In the worst case, the algo
162 * can take O((log n)^2) - check prio_tree_expand.
163 *
164 * If a prior node with same radix_index and heap_index is already found in
165 * the tree, then returns the address of the prior node. Otherwise, inserts
166 * @node into the tree and returns @node.
167 */
prio_tree_insert(struct prio_tree_root * root,struct prio_tree_node * node)168 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
169 struct prio_tree_node *node)
170 {
171 struct prio_tree_node *cur, *res = node;
172 unsigned long radix_index, heap_index;
173 unsigned long r_index, h_index, index, mask;
174 int size_flag = 0;
175
176 get_index(node, &radix_index, &heap_index);
177
178 if (prio_tree_empty(root) ||
179 heap_index > prio_tree_maxindex(root->index_bits))
180 return prio_tree_expand(root, node, heap_index);
181
182 cur = root->prio_tree_node;
183 mask = 1UL << (root->index_bits - 1);
184
185 while (mask) {
186 get_index(cur, &r_index, &h_index);
187
188 if (r_index == radix_index && h_index == heap_index)
189 return cur;
190
191 if (h_index < heap_index ||
192 (h_index == heap_index && r_index > radix_index)) {
193 struct prio_tree_node *tmp = node;
194 node = prio_tree_replace(root, cur, node);
195 cur = tmp;
196 /* swap indices */
197 index = r_index;
198 r_index = radix_index;
199 radix_index = index;
200 index = h_index;
201 h_index = heap_index;
202 heap_index = index;
203 }
204
205 if (size_flag)
206 index = heap_index - radix_index;
207 else
208 index = radix_index;
209
210 if (index & mask) {
211 if (prio_tree_right_empty(cur)) {
212 INIT_PRIO_TREE_NODE(node);
213 cur->right = node;
214 node->parent = cur;
215 return res;
216 } else
217 cur = cur->right;
218 } else {
219 if (prio_tree_left_empty(cur)) {
220 INIT_PRIO_TREE_NODE(node);
221 cur->left = node;
222 node->parent = cur;
223 return res;
224 } else
225 cur = cur->left;
226 }
227
228 mask >>= 1;
229
230 if (!mask) {
231 mask = 1UL << (BITS_PER_LONG - 1);
232 size_flag = 1;
233 }
234 }
235 /* Should not reach here */
236 assert(0);
237 return NULL;
238 }
239
240 /*
241 * Remove a prio_tree_node @node from a radix priority search tree @root. The
242 * algorithm takes O(log n) time where 'log n' is the number of bits required
243 * to represent the maximum heap_index.
244 */
prio_tree_remove(struct prio_tree_root * root,struct prio_tree_node * node)245 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
246 {
247 struct prio_tree_node *cur;
248 unsigned long r_index, h_index_right, h_index_left;
249
250 cur = node;
251
252 while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
253 if (!prio_tree_left_empty(cur))
254 get_index(cur->left, &r_index, &h_index_left);
255 else {
256 cur = cur->right;
257 continue;
258 }
259
260 if (!prio_tree_right_empty(cur))
261 get_index(cur->right, &r_index, &h_index_right);
262 else {
263 cur = cur->left;
264 continue;
265 }
266
267 /* both h_index_left and h_index_right cannot be 0 */
268 if (h_index_left >= h_index_right)
269 cur = cur->left;
270 else
271 cur = cur->right;
272 }
273
274 if (prio_tree_root(cur)) {
275 assert(root->prio_tree_node == cur);
276 INIT_PRIO_TREE_ROOT(root);
277 return;
278 }
279
280 if (cur->parent->right == cur)
281 cur->parent->right = cur->parent;
282 else
283 cur->parent->left = cur->parent;
284
285 while (cur != node)
286 cur = prio_tree_replace(root, cur->parent, cur);
287 }
288
289 /*
290 * Following functions help to enumerate all prio_tree_nodes in the tree that
291 * overlap with the input interval X [radix_index, heap_index]. The enumeration
292 * takes O(log n + m) time where 'log n' is the height of the tree (which is
293 * proportional to # of bits required to represent the maximum heap_index) and
294 * 'm' is the number of prio_tree_nodes that overlap the interval X.
295 */
296
prio_tree_left(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)297 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
298 unsigned long *r_index, unsigned long *h_index)
299 {
300 if (prio_tree_left_empty(iter->cur))
301 return NULL;
302
303 get_index(iter->cur->left, r_index, h_index);
304
305 if (iter->r_index <= *h_index) {
306 iter->cur = iter->cur->left;
307 iter->mask >>= 1;
308 if (iter->mask) {
309 if (iter->size_level)
310 iter->size_level++;
311 } else {
312 if (iter->size_level) {
313 assert(prio_tree_left_empty(iter->cur));
314 assert(prio_tree_right_empty(iter->cur));
315 iter->size_level++;
316 iter->mask = ULONG_MAX;
317 } else {
318 iter->size_level = 1;
319 iter->mask = 1UL << (BITS_PER_LONG - 1);
320 }
321 }
322 return iter->cur;
323 }
324
325 return NULL;
326 }
327
prio_tree_right(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)328 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
329 unsigned long *r_index, unsigned long *h_index)
330 {
331 unsigned long value;
332
333 if (prio_tree_right_empty(iter->cur))
334 return NULL;
335
336 if (iter->size_level)
337 value = iter->value;
338 else
339 value = iter->value | iter->mask;
340
341 if (iter->h_index < value)
342 return NULL;
343
344 get_index(iter->cur->right, r_index, h_index);
345
346 if (iter->r_index <= *h_index) {
347 iter->cur = iter->cur->right;
348 iter->mask >>= 1;
349 iter->value = value;
350 if (iter->mask) {
351 if (iter->size_level)
352 iter->size_level++;
353 } else {
354 if (iter->size_level) {
355 assert(prio_tree_left_empty(iter->cur));
356 assert(prio_tree_right_empty(iter->cur));
357 iter->size_level++;
358 iter->mask = ULONG_MAX;
359 } else {
360 iter->size_level = 1;
361 iter->mask = 1UL << (BITS_PER_LONG - 1);
362 }
363 }
364 return iter->cur;
365 }
366
367 return NULL;
368 }
369
prio_tree_parent(struct prio_tree_iter * iter)370 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
371 {
372 iter->cur = iter->cur->parent;
373 if (iter->mask == ULONG_MAX)
374 iter->mask = 1UL;
375 else if (iter->size_level == 1)
376 iter->mask = 1UL;
377 else
378 iter->mask <<= 1;
379 if (iter->size_level)
380 iter->size_level--;
381 if (!iter->size_level && (iter->value & iter->mask))
382 iter->value ^= iter->mask;
383 return iter->cur;
384 }
385
overlap(struct prio_tree_iter * iter,unsigned long r_index,unsigned long h_index)386 static inline int overlap(struct prio_tree_iter *iter,
387 unsigned long r_index, unsigned long h_index)
388 {
389 return iter->h_index >= r_index && iter->r_index <= h_index;
390 }
391
392 /*
393 * prio_tree_first:
394 *
395 * Get the first prio_tree_node that overlaps with the interval [radix_index,
396 * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
397 * traversal of the tree.
398 */
prio_tree_first(struct prio_tree_iter * iter)399 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
400 {
401 struct prio_tree_root *root;
402 unsigned long r_index, h_index;
403
404 INIT_PRIO_TREE_ITER(iter);
405
406 root = iter->root;
407 if (prio_tree_empty(root))
408 return NULL;
409
410 get_index(root->prio_tree_node, &r_index, &h_index);
411
412 if (iter->r_index > h_index)
413 return NULL;
414
415 iter->mask = 1UL << (root->index_bits - 1);
416 iter->cur = root->prio_tree_node;
417
418 while (1) {
419 if (overlap(iter, r_index, h_index))
420 return iter->cur;
421
422 if (prio_tree_left(iter, &r_index, &h_index))
423 continue;
424
425 if (prio_tree_right(iter, &r_index, &h_index))
426 continue;
427
428 break;
429 }
430 return NULL;
431 }
432
433 /*
434 * prio_tree_next:
435 *
436 * Get the next prio_tree_node that overlaps with the input interval in iter
437 */
prio_tree_next(struct prio_tree_iter * iter)438 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
439 {
440 unsigned long r_index, h_index;
441
442 if (iter->cur == NULL)
443 return prio_tree_first(iter);
444
445 repeat:
446 while (prio_tree_left(iter, &r_index, &h_index))
447 if (overlap(iter, r_index, h_index))
448 return iter->cur;
449
450 while (!prio_tree_right(iter, &r_index, &h_index)) {
451 while (!prio_tree_root(iter->cur) &&
452 iter->cur->parent->right == iter->cur)
453 prio_tree_parent(iter);
454
455 if (prio_tree_root(iter->cur))
456 return NULL;
457
458 prio_tree_parent(iter);
459 }
460
461 if (overlap(iter, r_index, h_index))
462 return iter->cur;
463
464 goto repeat;
465 }
466