1 /*
2 * IO verification helpers
3 */
4 #include <unistd.h>
5 #include <fcntl.h>
6 #include <string.h>
7 #include <assert.h>
8 #include <pthread.h>
9 #include <libgen.h>
10
11 #include "fio.h"
12 #include "verify.h"
13 #include "trim.h"
14 #include "lib/rand.h"
15 #include "lib/hweight.h"
16
17 #include "crc/md5.h"
18 #include "crc/crc64.h"
19 #include "crc/crc32.h"
20 #include "crc/crc32c.h"
21 #include "crc/crc16.h"
22 #include "crc/crc7.h"
23 #include "crc/sha256.h"
24 #include "crc/sha512.h"
25 #include "crc/sha1.h"
26 #include "crc/xxhash.h"
27
28 static void populate_hdr(struct thread_data *td, struct io_u *io_u,
29 struct verify_header *hdr, unsigned int header_num,
30 unsigned int header_len);
31
fill_buffer_pattern(struct thread_data * td,void * p,unsigned int len)32 void fill_buffer_pattern(struct thread_data *td, void *p, unsigned int len)
33 {
34 fill_pattern(p, len, td->o.buffer_pattern, td->o.buffer_pattern_bytes);
35 }
36
__fill_buffer(struct thread_options * o,unsigned long seed,void * p,unsigned int len)37 void __fill_buffer(struct thread_options *o, unsigned long seed, void *p,
38 unsigned int len)
39 {
40 __fill_random_buf_percentage(seed, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes);
41 }
42
fill_buffer(struct thread_data * td,void * p,unsigned int len)43 unsigned long fill_buffer(struct thread_data *td, void *p, unsigned int len)
44 {
45 struct frand_state *fs = &td->verify_state;
46 struct thread_options *o = &td->o;
47
48 return fill_random_buf_percentage(fs, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes);
49 }
50
fill_verify_pattern(struct thread_data * td,void * p,unsigned int len,struct io_u * io_u,unsigned long seed,int use_seed)51 void fill_verify_pattern(struct thread_data *td, void *p, unsigned int len,
52 struct io_u *io_u, unsigned long seed, int use_seed)
53 {
54 struct thread_options *o = &td->o;
55
56 if (!o->verify_pattern_bytes) {
57 dprint(FD_VERIFY, "fill random bytes len=%u\n", len);
58
59 if (use_seed)
60 __fill_buffer(o, seed, p, len);
61 else
62 io_u->rand_seed = fill_buffer(td, p, len);
63 return;
64 }
65
66 if (io_u->buf_filled_len >= len) {
67 dprint(FD_VERIFY, "using already filled verify pattern b=%d len=%u\n",
68 o->verify_pattern_bytes, len);
69 return;
70 }
71
72 fill_pattern(p, len, o->verify_pattern, o->verify_pattern_bytes);
73 io_u->buf_filled_len = len;
74 }
75
get_hdr_inc(struct thread_data * td,struct io_u * io_u)76 static unsigned int get_hdr_inc(struct thread_data *td, struct io_u *io_u)
77 {
78 unsigned int hdr_inc;
79
80 hdr_inc = io_u->buflen;
81 if (td->o.verify_interval && td->o.verify_interval <= io_u->buflen)
82 hdr_inc = td->o.verify_interval;
83
84 return hdr_inc;
85 }
86
fill_pattern_headers(struct thread_data * td,struct io_u * io_u,unsigned long seed,int use_seed)87 static void fill_pattern_headers(struct thread_data *td, struct io_u *io_u,
88 unsigned long seed, int use_seed)
89 {
90 unsigned int hdr_inc, header_num;
91 struct verify_header *hdr;
92 void *p = io_u->buf;
93
94 fill_verify_pattern(td, p, io_u->buflen, io_u, seed, use_seed);
95
96 hdr_inc = get_hdr_inc(td, io_u);
97 header_num = 0;
98 for (; p < io_u->buf + io_u->buflen; p += hdr_inc) {
99 hdr = p;
100 populate_hdr(td, io_u, hdr, header_num, hdr_inc);
101 header_num++;
102 }
103 }
104
memswp(void * buf1,void * buf2,unsigned int len)105 static void memswp(void *buf1, void *buf2, unsigned int len)
106 {
107 char swap[200];
108
109 assert(len <= sizeof(swap));
110
111 memcpy(&swap, buf1, len);
112 memcpy(buf1, buf2, len);
113 memcpy(buf2, &swap, len);
114 }
115
hexdump(void * buffer,int len)116 static void hexdump(void *buffer, int len)
117 {
118 unsigned char *p = buffer;
119 int i;
120
121 for (i = 0; i < len; i++)
122 log_err("%02x", p[i]);
123 log_err("\n");
124 }
125
126 /*
127 * Prepare for separation of verify_header and checksum header
128 */
__hdr_size(int verify_type)129 static inline unsigned int __hdr_size(int verify_type)
130 {
131 unsigned int len = 0;
132
133 switch (verify_type) {
134 case VERIFY_NONE:
135 case VERIFY_NULL:
136 len = 0;
137 break;
138 case VERIFY_MD5:
139 len = sizeof(struct vhdr_md5);
140 break;
141 case VERIFY_CRC64:
142 len = sizeof(struct vhdr_crc64);
143 break;
144 case VERIFY_CRC32C:
145 case VERIFY_CRC32:
146 case VERIFY_CRC32C_INTEL:
147 len = sizeof(struct vhdr_crc32);
148 break;
149 case VERIFY_CRC16:
150 len = sizeof(struct vhdr_crc16);
151 break;
152 case VERIFY_CRC7:
153 len = sizeof(struct vhdr_crc7);
154 break;
155 case VERIFY_SHA256:
156 len = sizeof(struct vhdr_sha256);
157 break;
158 case VERIFY_SHA512:
159 len = sizeof(struct vhdr_sha512);
160 break;
161 case VERIFY_XXHASH:
162 len = sizeof(struct vhdr_xxhash);
163 break;
164 case VERIFY_META:
165 len = sizeof(struct vhdr_meta);
166 break;
167 case VERIFY_SHA1:
168 len = sizeof(struct vhdr_sha1);
169 break;
170 case VERIFY_PATTERN:
171 len = 0;
172 break;
173 default:
174 log_err("fio: unknown verify header!\n");
175 assert(0);
176 }
177
178 return len + sizeof(struct verify_header);
179 }
180
hdr_size(struct verify_header * hdr)181 static inline unsigned int hdr_size(struct verify_header *hdr)
182 {
183 return __hdr_size(hdr->verify_type);
184 }
185
hdr_priv(struct verify_header * hdr)186 static void *hdr_priv(struct verify_header *hdr)
187 {
188 void *priv = hdr;
189
190 return priv + sizeof(struct verify_header);
191 }
192
193 /*
194 * Verify container, pass info to verify handlers and allow them to
195 * pass info back in case of error
196 */
197 struct vcont {
198 /*
199 * Input
200 */
201 struct io_u *io_u;
202 unsigned int hdr_num;
203 struct thread_data *td;
204
205 /*
206 * Output, only valid in case of error
207 */
208 const char *name;
209 void *good_crc;
210 void *bad_crc;
211 unsigned int crc_len;
212 };
213
214 #define DUMP_BUF_SZ 255
215 static int dump_buf_warned;
216
dump_buf(char * buf,unsigned int len,unsigned long long offset,const char * type,struct fio_file * f)217 static void dump_buf(char *buf, unsigned int len, unsigned long long offset,
218 const char *type, struct fio_file *f)
219 {
220 char *ptr, fname[DUMP_BUF_SZ];
221 size_t buf_left = DUMP_BUF_SZ;
222 int ret, fd;
223
224 ptr = strdup(f->file_name);
225
226 fname[DUMP_BUF_SZ - 1] = '\0';
227 strncpy(fname, basename(ptr), DUMP_BUF_SZ - 1);
228
229 buf_left -= strlen(fname);
230 if (buf_left <= 0) {
231 if (!dump_buf_warned) {
232 log_err("fio: verify failure dump buffer too small\n");
233 dump_buf_warned = 1;
234 }
235 free(ptr);
236 return;
237 }
238
239 snprintf(fname + strlen(fname), buf_left, ".%llu.%s", offset, type);
240
241 fd = open(fname, O_CREAT | O_TRUNC | O_WRONLY, 0644);
242 if (fd < 0) {
243 perror("open verify buf file");
244 return;
245 }
246
247 while (len) {
248 ret = write(fd, buf, len);
249 if (!ret)
250 break;
251 else if (ret < 0) {
252 perror("write verify buf file");
253 break;
254 }
255 len -= ret;
256 buf += ret;
257 }
258
259 close(fd);
260 log_err(" %s data dumped as %s\n", type, fname);
261 free(ptr);
262 }
263
264 /*
265 * Dump the contents of the read block and re-generate the correct data
266 * and dump that too.
267 */
dump_verify_buffers(struct verify_header * hdr,struct vcont * vc)268 static void dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
269 {
270 struct thread_data *td = vc->td;
271 struct io_u *io_u = vc->io_u;
272 unsigned long hdr_offset;
273 struct io_u dummy;
274 void *buf;
275
276 if (!td->o.verify_dump)
277 return;
278
279 /*
280 * Dump the contents we just read off disk
281 */
282 hdr_offset = vc->hdr_num * hdr->len;
283
284 dump_buf(io_u->buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
285 "received", vc->io_u->file);
286
287 /*
288 * Allocate a new buf and re-generate the original data
289 */
290 buf = malloc(io_u->buflen);
291 dummy = *io_u;
292 dummy.buf = buf;
293 dummy.rand_seed = hdr->rand_seed;
294 dummy.buf_filled_len = 0;
295 dummy.buflen = io_u->buflen;
296
297 fill_pattern_headers(td, &dummy, hdr->rand_seed, 1);
298
299 dump_buf(buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
300 "expected", vc->io_u->file);
301 free(buf);
302 }
303
log_verify_failure(struct verify_header * hdr,struct vcont * vc)304 static void log_verify_failure(struct verify_header *hdr, struct vcont *vc)
305 {
306 unsigned long long offset;
307
308 offset = vc->io_u->offset;
309 offset += vc->hdr_num * hdr->len;
310 log_err("%.8s: verify failed at file %s offset %llu, length %u\n",
311 vc->name, vc->io_u->file->file_name, offset, hdr->len);
312
313 if (vc->good_crc && vc->bad_crc) {
314 log_err(" Expected CRC: ");
315 hexdump(vc->good_crc, vc->crc_len);
316 log_err(" Received CRC: ");
317 hexdump(vc->bad_crc, vc->crc_len);
318 }
319
320 dump_verify_buffers(hdr, vc);
321 }
322
323 /*
324 * Return data area 'header_num'
325 */
io_u_verify_off(struct verify_header * hdr,struct vcont * vc)326 static inline void *io_u_verify_off(struct verify_header *hdr, struct vcont *vc)
327 {
328 return vc->io_u->buf + vc->hdr_num * hdr->len + hdr_size(hdr);
329 }
330
verify_io_u_pattern(struct verify_header * hdr,struct vcont * vc)331 static int verify_io_u_pattern(struct verify_header *hdr, struct vcont *vc)
332 {
333 struct thread_data *td = vc->td;
334 struct io_u *io_u = vc->io_u;
335 char *buf, *pattern;
336 unsigned int header_size = __hdr_size(td->o.verify);
337 unsigned int len, mod, i, size, pattern_size;
338
339 pattern = td->o.verify_pattern;
340 pattern_size = td->o.verify_pattern_bytes;
341 if (pattern_size <= 1)
342 pattern_size = MAX_PATTERN_SIZE;
343 buf = (void *) hdr + header_size;
344 len = get_hdr_inc(td, io_u) - header_size;
345 mod = header_size % pattern_size;
346
347 for (i = 0; i < len; i += size) {
348 size = pattern_size - mod;
349 if (size > (len - i))
350 size = len - i;
351 if (memcmp(buf + i, pattern + mod, size))
352 /* Let the slow compare find the first mismatch byte. */
353 break;
354 mod = 0;
355 }
356
357 for (; i < len; i++) {
358 if (buf[i] != pattern[mod]) {
359 unsigned int bits;
360
361 bits = hweight8(buf[i] ^ pattern[mod]);
362 log_err("fio: got pattern %x, wanted %x. Bad bits %d\n",
363 buf[i], pattern[mod], bits);
364 log_err("fio: bad pattern block offset %u\n", i);
365 dump_verify_buffers(hdr, vc);
366 return EILSEQ;
367 }
368 mod++;
369 if (mod == td->o.verify_pattern_bytes)
370 mod = 0;
371 }
372
373 return 0;
374 }
375
verify_io_u_meta(struct verify_header * hdr,struct vcont * vc)376 static int verify_io_u_meta(struct verify_header *hdr, struct vcont *vc)
377 {
378 struct thread_data *td = vc->td;
379 struct vhdr_meta *vh = hdr_priv(hdr);
380 struct io_u *io_u = vc->io_u;
381 int ret = EILSEQ;
382
383 dprint(FD_VERIFY, "meta verify io_u %p, len %u\n", io_u, hdr->len);
384
385 if (vh->offset == io_u->offset + vc->hdr_num * td->o.verify_interval)
386 ret = 0;
387
388 if (td->o.verify_pattern_bytes)
389 ret |= verify_io_u_pattern(hdr, vc);
390
391 /*
392 * For read-only workloads, the program cannot be certain of the
393 * last numberio written to a block. Checking of numberio will be
394 * done only for workloads that write data. For verify_only,
395 * numberio will be checked in the last iteration when the correct
396 * state of numberio, that would have been written to each block
397 * in a previous run of fio, has been reached.
398 */
399 if ((td_write(td) || td_rw(td)) && (td_min_bs(td) == td_max_bs(td)) &&
400 !td->o.time_based)
401 if (!td->o.verify_only || td->o.loops == 0)
402 if (vh->numberio != io_u->numberio)
403 ret = EILSEQ;
404
405 if (!ret)
406 return 0;
407
408 vc->name = "meta";
409 log_verify_failure(hdr, vc);
410 return ret;
411 }
412
verify_io_u_xxhash(struct verify_header * hdr,struct vcont * vc)413 static int verify_io_u_xxhash(struct verify_header *hdr, struct vcont *vc)
414 {
415 void *p = io_u_verify_off(hdr, vc);
416 struct vhdr_xxhash *vh = hdr_priv(hdr);
417 uint32_t hash;
418 void *state;
419
420 dprint(FD_VERIFY, "xxhash verify io_u %p, len %u\n", vc->io_u, hdr->len);
421
422 state = XXH32_init(1);
423 XXH32_update(state, p, hdr->len - hdr_size(hdr));
424 hash = XXH32_digest(state);
425
426 if (vh->hash == hash)
427 return 0;
428
429 vc->name = "xxhash";
430 vc->good_crc = &vh->hash;
431 vc->bad_crc = &hash;
432 vc->crc_len = sizeof(hash);
433 log_verify_failure(hdr, vc);
434 return EILSEQ;
435 }
436
verify_io_u_sha512(struct verify_header * hdr,struct vcont * vc)437 static int verify_io_u_sha512(struct verify_header *hdr, struct vcont *vc)
438 {
439 void *p = io_u_verify_off(hdr, vc);
440 struct vhdr_sha512 *vh = hdr_priv(hdr);
441 uint8_t sha512[128];
442 struct fio_sha512_ctx sha512_ctx = {
443 .buf = sha512,
444 };
445
446 dprint(FD_VERIFY, "sha512 verify io_u %p, len %u\n", vc->io_u, hdr->len);
447
448 fio_sha512_init(&sha512_ctx);
449 fio_sha512_update(&sha512_ctx, p, hdr->len - hdr_size(hdr));
450
451 if (!memcmp(vh->sha512, sha512_ctx.buf, sizeof(sha512)))
452 return 0;
453
454 vc->name = "sha512";
455 vc->good_crc = vh->sha512;
456 vc->bad_crc = sha512_ctx.buf;
457 vc->crc_len = sizeof(vh->sha512);
458 log_verify_failure(hdr, vc);
459 return EILSEQ;
460 }
461
verify_io_u_sha256(struct verify_header * hdr,struct vcont * vc)462 static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc)
463 {
464 void *p = io_u_verify_off(hdr, vc);
465 struct vhdr_sha256 *vh = hdr_priv(hdr);
466 uint8_t sha256[64];
467 struct fio_sha256_ctx sha256_ctx = {
468 .buf = sha256,
469 };
470
471 dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len);
472
473 fio_sha256_init(&sha256_ctx);
474 fio_sha256_update(&sha256_ctx, p, hdr->len - hdr_size(hdr));
475 fio_sha256_final(&sha256_ctx);
476
477 if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256)))
478 return 0;
479
480 vc->name = "sha256";
481 vc->good_crc = vh->sha256;
482 vc->bad_crc = sha256_ctx.buf;
483 vc->crc_len = sizeof(vh->sha256);
484 log_verify_failure(hdr, vc);
485 return EILSEQ;
486 }
487
verify_io_u_sha1(struct verify_header * hdr,struct vcont * vc)488 static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc)
489 {
490 void *p = io_u_verify_off(hdr, vc);
491 struct vhdr_sha1 *vh = hdr_priv(hdr);
492 uint32_t sha1[5];
493 struct fio_sha1_ctx sha1_ctx = {
494 .H = sha1,
495 };
496
497 dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len);
498
499 fio_sha1_init(&sha1_ctx);
500 fio_sha1_update(&sha1_ctx, p, hdr->len - hdr_size(hdr));
501 fio_sha1_final(&sha1_ctx);
502
503 if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1)))
504 return 0;
505
506 vc->name = "sha1";
507 vc->good_crc = vh->sha1;
508 vc->bad_crc = sha1_ctx.H;
509 vc->crc_len = sizeof(vh->sha1);
510 log_verify_failure(hdr, vc);
511 return EILSEQ;
512 }
513
verify_io_u_crc7(struct verify_header * hdr,struct vcont * vc)514 static int verify_io_u_crc7(struct verify_header *hdr, struct vcont *vc)
515 {
516 void *p = io_u_verify_off(hdr, vc);
517 struct vhdr_crc7 *vh = hdr_priv(hdr);
518 unsigned char c;
519
520 dprint(FD_VERIFY, "crc7 verify io_u %p, len %u\n", vc->io_u, hdr->len);
521
522 c = fio_crc7(p, hdr->len - hdr_size(hdr));
523
524 if (c == vh->crc7)
525 return 0;
526
527 vc->name = "crc7";
528 vc->good_crc = &vh->crc7;
529 vc->bad_crc = &c;
530 vc->crc_len = 1;
531 log_verify_failure(hdr, vc);
532 return EILSEQ;
533 }
534
verify_io_u_crc16(struct verify_header * hdr,struct vcont * vc)535 static int verify_io_u_crc16(struct verify_header *hdr, struct vcont *vc)
536 {
537 void *p = io_u_verify_off(hdr, vc);
538 struct vhdr_crc16 *vh = hdr_priv(hdr);
539 unsigned short c;
540
541 dprint(FD_VERIFY, "crc16 verify io_u %p, len %u\n", vc->io_u, hdr->len);
542
543 c = fio_crc16(p, hdr->len - hdr_size(hdr));
544
545 if (c == vh->crc16)
546 return 0;
547
548 vc->name = "crc16";
549 vc->good_crc = &vh->crc16;
550 vc->bad_crc = &c;
551 vc->crc_len = 2;
552 log_verify_failure(hdr, vc);
553 return EILSEQ;
554 }
555
verify_io_u_crc64(struct verify_header * hdr,struct vcont * vc)556 static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc)
557 {
558 void *p = io_u_verify_off(hdr, vc);
559 struct vhdr_crc64 *vh = hdr_priv(hdr);
560 unsigned long long c;
561
562 dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len);
563
564 c = fio_crc64(p, hdr->len - hdr_size(hdr));
565
566 if (c == vh->crc64)
567 return 0;
568
569 vc->name = "crc64";
570 vc->good_crc = &vh->crc64;
571 vc->bad_crc = &c;
572 vc->crc_len = 8;
573 log_verify_failure(hdr, vc);
574 return EILSEQ;
575 }
576
verify_io_u_crc32(struct verify_header * hdr,struct vcont * vc)577 static int verify_io_u_crc32(struct verify_header *hdr, struct vcont *vc)
578 {
579 void *p = io_u_verify_off(hdr, vc);
580 struct vhdr_crc32 *vh = hdr_priv(hdr);
581 uint32_t c;
582
583 dprint(FD_VERIFY, "crc32 verify io_u %p, len %u\n", vc->io_u, hdr->len);
584
585 c = fio_crc32(p, hdr->len - hdr_size(hdr));
586
587 if (c == vh->crc32)
588 return 0;
589
590 vc->name = "crc32";
591 vc->good_crc = &vh->crc32;
592 vc->bad_crc = &c;
593 vc->crc_len = 4;
594 log_verify_failure(hdr, vc);
595 return EILSEQ;
596 }
597
verify_io_u_crc32c(struct verify_header * hdr,struct vcont * vc)598 static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc)
599 {
600 void *p = io_u_verify_off(hdr, vc);
601 struct vhdr_crc32 *vh = hdr_priv(hdr);
602 uint32_t c;
603
604 dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len);
605
606 c = fio_crc32c(p, hdr->len - hdr_size(hdr));
607
608 if (c == vh->crc32)
609 return 0;
610
611 vc->name = "crc32c";
612 vc->good_crc = &vh->crc32;
613 vc->bad_crc = &c;
614 vc->crc_len = 4;
615 log_verify_failure(hdr, vc);
616 return EILSEQ;
617 }
618
verify_io_u_md5(struct verify_header * hdr,struct vcont * vc)619 static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc)
620 {
621 void *p = io_u_verify_off(hdr, vc);
622 struct vhdr_md5 *vh = hdr_priv(hdr);
623 uint32_t hash[MD5_HASH_WORDS];
624 struct fio_md5_ctx md5_ctx = {
625 .hash = hash,
626 };
627
628 dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len);
629
630 fio_md5_init(&md5_ctx);
631 fio_md5_update(&md5_ctx, p, hdr->len - hdr_size(hdr));
632 fio_md5_final(&md5_ctx);
633
634 if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash)))
635 return 0;
636
637 vc->name = "md5";
638 vc->good_crc = vh->md5_digest;
639 vc->bad_crc = md5_ctx.hash;
640 vc->crc_len = sizeof(hash);
641 log_verify_failure(hdr, vc);
642 return EILSEQ;
643 }
644
645 /*
646 * Push IO verification to a separate thread
647 */
verify_io_u_async(struct thread_data * td,struct io_u ** io_u_ptr)648 int verify_io_u_async(struct thread_data *td, struct io_u **io_u_ptr)
649 {
650 struct io_u *io_u = *io_u_ptr;
651
652 pthread_mutex_lock(&td->io_u_lock);
653
654 if (io_u->file)
655 put_file_log(td, io_u->file);
656
657 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
658 td->cur_depth--;
659 io_u->flags &= ~IO_U_F_IN_CUR_DEPTH;
660 }
661 flist_add_tail(&io_u->verify_list, &td->verify_list);
662 *io_u_ptr = NULL;
663 pthread_mutex_unlock(&td->io_u_lock);
664
665 pthread_cond_signal(&td->verify_cond);
666 return 0;
667 }
668
verify_trimmed_io_u(struct thread_data * td,struct io_u * io_u)669 static int verify_trimmed_io_u(struct thread_data *td, struct io_u *io_u)
670 {
671 static char zero_buf[1024];
672 unsigned int this_len, len;
673 int ret = 0;
674 void *p;
675
676 if (!td->o.trim_zero)
677 return 0;
678
679 len = io_u->buflen;
680 p = io_u->buf;
681 do {
682 this_len = sizeof(zero_buf);
683 if (this_len > len)
684 this_len = len;
685 if (memcmp(p, zero_buf, this_len)) {
686 ret = EILSEQ;
687 break;
688 }
689 len -= this_len;
690 p += this_len;
691 } while (len);
692
693 if (!ret)
694 return 0;
695
696 log_err("trim: verify failed at file %s offset %llu, length %lu"
697 ", block offset %lu\n",
698 io_u->file->file_name, io_u->offset, io_u->buflen,
699 (unsigned long) (p - io_u->buf));
700 return ret;
701 }
702
verify_header(struct io_u * io_u,struct verify_header * hdr,unsigned int hdr_num,unsigned int hdr_len)703 static int verify_header(struct io_u *io_u, struct verify_header *hdr,
704 unsigned int hdr_num, unsigned int hdr_len)
705 {
706 void *p = hdr;
707 uint32_t crc;
708
709 if (hdr->magic != FIO_HDR_MAGIC) {
710 log_err("verify: bad magic header %x, wanted %x",
711 hdr->magic, FIO_HDR_MAGIC);
712 goto err;
713 }
714 if (hdr->len != hdr_len) {
715 log_err("verify: bad header length %u, wanted %u",
716 hdr->len, hdr_len);
717 goto err;
718 }
719 if (hdr->rand_seed != io_u->rand_seed) {
720 log_err("verify: bad header rand_seed %"PRIu64
721 ", wanted %"PRIu64,
722 hdr->rand_seed, io_u->rand_seed);
723 goto err;
724 }
725
726 crc = fio_crc32c(p, offsetof(struct verify_header, crc32));
727 if (crc != hdr->crc32) {
728 log_err("verify: bad header crc %x, calculated %x",
729 hdr->crc32, crc);
730 goto err;
731 }
732 return 0;
733
734 err:
735 log_err(" at file %s offset %llu, length %u\n",
736 io_u->file->file_name,
737 io_u->offset + hdr_num * hdr_len, hdr_len);
738 return EILSEQ;
739 }
740
verify_io_u(struct thread_data * td,struct io_u ** io_u_ptr)741 int verify_io_u(struct thread_data *td, struct io_u **io_u_ptr)
742 {
743 struct verify_header *hdr;
744 struct io_u *io_u = *io_u_ptr;
745 unsigned int header_size, hdr_inc, hdr_num = 0;
746 void *p;
747 int ret;
748
749 if (td->o.verify == VERIFY_NULL || io_u->ddir != DDIR_READ)
750 return 0;
751 /*
752 * If the IO engine is faking IO (like null), then just pretend
753 * we verified everything.
754 */
755 if (td->io_ops->flags & FIO_FAKEIO)
756 return 0;
757
758 if (io_u->flags & IO_U_F_TRIMMED) {
759 ret = verify_trimmed_io_u(td, io_u);
760 goto done;
761 }
762
763 hdr_inc = get_hdr_inc(td, io_u);
764
765 ret = 0;
766 for (p = io_u->buf; p < io_u->buf + io_u->buflen;
767 p += hdr_inc, hdr_num++) {
768 struct vcont vc = {
769 .io_u = io_u,
770 .hdr_num = hdr_num,
771 .td = td,
772 };
773 unsigned int verify_type;
774
775 if (ret && td->o.verify_fatal)
776 break;
777
778 header_size = __hdr_size(td->o.verify);
779 if (td->o.verify_offset)
780 memswp(p, p + td->o.verify_offset, header_size);
781 hdr = p;
782
783 /*
784 * Make rand_seed check pass when have verifysort or
785 * verify_backlog.
786 */
787 if (td->o.verifysort || (td->flags & TD_F_VER_BACKLOG))
788 io_u->rand_seed = hdr->rand_seed;
789
790 ret = verify_header(io_u, hdr, hdr_num, hdr_inc);
791 if (ret)
792 return ret;
793
794 if (td->o.verify != VERIFY_NONE)
795 verify_type = td->o.verify;
796 else
797 verify_type = hdr->verify_type;
798
799 switch (verify_type) {
800 case VERIFY_MD5:
801 ret = verify_io_u_md5(hdr, &vc);
802 break;
803 case VERIFY_CRC64:
804 ret = verify_io_u_crc64(hdr, &vc);
805 break;
806 case VERIFY_CRC32C:
807 case VERIFY_CRC32C_INTEL:
808 ret = verify_io_u_crc32c(hdr, &vc);
809 break;
810 case VERIFY_CRC32:
811 ret = verify_io_u_crc32(hdr, &vc);
812 break;
813 case VERIFY_CRC16:
814 ret = verify_io_u_crc16(hdr, &vc);
815 break;
816 case VERIFY_CRC7:
817 ret = verify_io_u_crc7(hdr, &vc);
818 break;
819 case VERIFY_SHA256:
820 ret = verify_io_u_sha256(hdr, &vc);
821 break;
822 case VERIFY_SHA512:
823 ret = verify_io_u_sha512(hdr, &vc);
824 break;
825 case VERIFY_XXHASH:
826 ret = verify_io_u_xxhash(hdr, &vc);
827 break;
828 case VERIFY_META:
829 ret = verify_io_u_meta(hdr, &vc);
830 break;
831 case VERIFY_SHA1:
832 ret = verify_io_u_sha1(hdr, &vc);
833 break;
834 case VERIFY_PATTERN:
835 ret = verify_io_u_pattern(hdr, &vc);
836 break;
837 default:
838 log_err("Bad verify type %u\n", hdr->verify_type);
839 ret = EINVAL;
840 }
841
842 if (ret && verify_type != hdr->verify_type)
843 log_err("fio: verify type mismatch (%u media, %u given)\n",
844 hdr->verify_type, verify_type);
845 }
846
847 done:
848 if (ret && td->o.verify_fatal)
849 fio_mark_td_terminate(td);
850
851 return ret;
852 }
853
fill_meta(struct verify_header * hdr,struct thread_data * td,struct io_u * io_u,unsigned int header_num)854 static void fill_meta(struct verify_header *hdr, struct thread_data *td,
855 struct io_u *io_u, unsigned int header_num)
856 {
857 struct vhdr_meta *vh = hdr_priv(hdr);
858
859 vh->thread = td->thread_number;
860
861 vh->time_sec = io_u->start_time.tv_sec;
862 vh->time_usec = io_u->start_time.tv_usec;
863
864 vh->numberio = io_u->numberio;
865
866 vh->offset = io_u->offset + header_num * td->o.verify_interval;
867 }
868
fill_xxhash(struct verify_header * hdr,void * p,unsigned int len)869 static void fill_xxhash(struct verify_header *hdr, void *p, unsigned int len)
870 {
871 struct vhdr_xxhash *vh = hdr_priv(hdr);
872 void *state;
873
874 state = XXH32_init(1);
875 XXH32_update(state, p, len);
876 vh->hash = XXH32_digest(state);
877 }
878
fill_sha512(struct verify_header * hdr,void * p,unsigned int len)879 static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len)
880 {
881 struct vhdr_sha512 *vh = hdr_priv(hdr);
882 struct fio_sha512_ctx sha512_ctx = {
883 .buf = vh->sha512,
884 };
885
886 fio_sha512_init(&sha512_ctx);
887 fio_sha512_update(&sha512_ctx, p, len);
888 }
889
fill_sha256(struct verify_header * hdr,void * p,unsigned int len)890 static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len)
891 {
892 struct vhdr_sha256 *vh = hdr_priv(hdr);
893 struct fio_sha256_ctx sha256_ctx = {
894 .buf = vh->sha256,
895 };
896
897 fio_sha256_init(&sha256_ctx);
898 fio_sha256_update(&sha256_ctx, p, len);
899 fio_sha256_final(&sha256_ctx);
900 }
901
fill_sha1(struct verify_header * hdr,void * p,unsigned int len)902 static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len)
903 {
904 struct vhdr_sha1 *vh = hdr_priv(hdr);
905 struct fio_sha1_ctx sha1_ctx = {
906 .H = vh->sha1,
907 };
908
909 fio_sha1_init(&sha1_ctx);
910 fio_sha1_update(&sha1_ctx, p, len);
911 fio_sha1_final(&sha1_ctx);
912 }
913
fill_crc7(struct verify_header * hdr,void * p,unsigned int len)914 static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len)
915 {
916 struct vhdr_crc7 *vh = hdr_priv(hdr);
917
918 vh->crc7 = fio_crc7(p, len);
919 }
920
fill_crc16(struct verify_header * hdr,void * p,unsigned int len)921 static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len)
922 {
923 struct vhdr_crc16 *vh = hdr_priv(hdr);
924
925 vh->crc16 = fio_crc16(p, len);
926 }
927
fill_crc32(struct verify_header * hdr,void * p,unsigned int len)928 static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
929 {
930 struct vhdr_crc32 *vh = hdr_priv(hdr);
931
932 vh->crc32 = fio_crc32(p, len);
933 }
934
fill_crc32c(struct verify_header * hdr,void * p,unsigned int len)935 static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len)
936 {
937 struct vhdr_crc32 *vh = hdr_priv(hdr);
938
939 vh->crc32 = fio_crc32c(p, len);
940 }
941
fill_crc64(struct verify_header * hdr,void * p,unsigned int len)942 static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len)
943 {
944 struct vhdr_crc64 *vh = hdr_priv(hdr);
945
946 vh->crc64 = fio_crc64(p, len);
947 }
948
fill_md5(struct verify_header * hdr,void * p,unsigned int len)949 static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
950 {
951 struct vhdr_md5 *vh = hdr_priv(hdr);
952 struct fio_md5_ctx md5_ctx = {
953 .hash = (uint32_t *) vh->md5_digest,
954 };
955
956 fio_md5_init(&md5_ctx);
957 fio_md5_update(&md5_ctx, p, len);
958 fio_md5_final(&md5_ctx);
959 }
960
populate_hdr(struct thread_data * td,struct io_u * io_u,struct verify_header * hdr,unsigned int header_num,unsigned int header_len)961 static void populate_hdr(struct thread_data *td, struct io_u *io_u,
962 struct verify_header *hdr, unsigned int header_num,
963 unsigned int header_len)
964 {
965 unsigned int data_len;
966 void *data, *p;
967
968 p = (void *) hdr;
969
970 hdr->magic = FIO_HDR_MAGIC;
971 hdr->verify_type = td->o.verify;
972 hdr->len = header_len;
973 hdr->rand_seed = io_u->rand_seed;
974 hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32));
975
976 data_len = header_len - hdr_size(hdr);
977
978 data = p + hdr_size(hdr);
979 switch (td->o.verify) {
980 case VERIFY_MD5:
981 dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n",
982 io_u, hdr->len);
983 fill_md5(hdr, data, data_len);
984 break;
985 case VERIFY_CRC64:
986 dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n",
987 io_u, hdr->len);
988 fill_crc64(hdr, data, data_len);
989 break;
990 case VERIFY_CRC32C:
991 case VERIFY_CRC32C_INTEL:
992 dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n",
993 io_u, hdr->len);
994 fill_crc32c(hdr, data, data_len);
995 break;
996 case VERIFY_CRC32:
997 dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n",
998 io_u, hdr->len);
999 fill_crc32(hdr, data, data_len);
1000 break;
1001 case VERIFY_CRC16:
1002 dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n",
1003 io_u, hdr->len);
1004 fill_crc16(hdr, data, data_len);
1005 break;
1006 case VERIFY_CRC7:
1007 dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n",
1008 io_u, hdr->len);
1009 fill_crc7(hdr, data, data_len);
1010 break;
1011 case VERIFY_SHA256:
1012 dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n",
1013 io_u, hdr->len);
1014 fill_sha256(hdr, data, data_len);
1015 break;
1016 case VERIFY_SHA512:
1017 dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n",
1018 io_u, hdr->len);
1019 fill_sha512(hdr, data, data_len);
1020 break;
1021 case VERIFY_XXHASH:
1022 dprint(FD_VERIFY, "fill xxhash io_u %p, len %u\n",
1023 io_u, hdr->len);
1024 fill_xxhash(hdr, data, data_len);
1025 break;
1026 case VERIFY_META:
1027 dprint(FD_VERIFY, "fill meta io_u %p, len %u\n",
1028 io_u, hdr->len);
1029 fill_meta(hdr, td, io_u, header_num);
1030 break;
1031 case VERIFY_SHA1:
1032 dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n",
1033 io_u, hdr->len);
1034 fill_sha1(hdr, data, data_len);
1035 break;
1036 case VERIFY_PATTERN:
1037 /* nothing to do here */
1038 break;
1039 default:
1040 log_err("fio: bad verify type: %d\n", td->o.verify);
1041 assert(0);
1042 }
1043 if (td->o.verify_offset)
1044 memswp(p, p + td->o.verify_offset, hdr_size(hdr));
1045 }
1046
1047 /*
1048 * fill body of io_u->buf with random data and add a header with the
1049 * checksum of choice
1050 */
populate_verify_io_u(struct thread_data * td,struct io_u * io_u)1051 void populate_verify_io_u(struct thread_data *td, struct io_u *io_u)
1052 {
1053 if (td->o.verify == VERIFY_NULL)
1054 return;
1055
1056 io_u->numberio = td->io_issues[io_u->ddir];
1057
1058 fill_pattern_headers(td, io_u, 0, 0);
1059 }
1060
get_next_verify(struct thread_data * td,struct io_u * io_u)1061 int get_next_verify(struct thread_data *td, struct io_u *io_u)
1062 {
1063 struct io_piece *ipo = NULL;
1064
1065 /*
1066 * this io_u is from a requeue, we already filled the offsets
1067 */
1068 if (io_u->file)
1069 return 0;
1070
1071 if (!RB_EMPTY_ROOT(&td->io_hist_tree)) {
1072 struct rb_node *n = rb_first(&td->io_hist_tree);
1073
1074 ipo = rb_entry(n, struct io_piece, rb_node);
1075
1076 /*
1077 * Ensure that the associated IO has completed
1078 */
1079 read_barrier();
1080 if (ipo->flags & IP_F_IN_FLIGHT)
1081 goto nothing;
1082
1083 rb_erase(n, &td->io_hist_tree);
1084 assert(ipo->flags & IP_F_ONRB);
1085 ipo->flags &= ~IP_F_ONRB;
1086 } else if (!flist_empty(&td->io_hist_list)) {
1087 ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list);
1088
1089 /*
1090 * Ensure that the associated IO has completed
1091 */
1092 read_barrier();
1093 if (ipo->flags & IP_F_IN_FLIGHT)
1094 goto nothing;
1095
1096 flist_del(&ipo->list);
1097 assert(ipo->flags & IP_F_ONLIST);
1098 ipo->flags &= ~IP_F_ONLIST;
1099 }
1100
1101 if (ipo) {
1102 td->io_hist_len--;
1103
1104 io_u->offset = ipo->offset;
1105 io_u->buflen = ipo->len;
1106 io_u->numberio = ipo->numberio;
1107 io_u->file = ipo->file;
1108 io_u->flags |= IO_U_F_VER_LIST;
1109
1110 if (ipo->flags & IP_F_TRIMMED)
1111 io_u->flags |= IO_U_F_TRIMMED;
1112
1113 if (!fio_file_open(io_u->file)) {
1114 int r = td_io_open_file(td, io_u->file);
1115
1116 if (r) {
1117 dprint(FD_VERIFY, "failed file %s open\n",
1118 io_u->file->file_name);
1119 return 1;
1120 }
1121 }
1122
1123 get_file(ipo->file);
1124 assert(fio_file_open(io_u->file));
1125 io_u->ddir = DDIR_READ;
1126 io_u->xfer_buf = io_u->buf;
1127 io_u->xfer_buflen = io_u->buflen;
1128
1129 remove_trim_entry(td, ipo);
1130 free(ipo);
1131 dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u);
1132
1133 if (!td->o.verify_pattern_bytes) {
1134 io_u->rand_seed = __rand(&td->verify_state);
1135 if (sizeof(int) != sizeof(long *))
1136 io_u->rand_seed *= __rand(&td->verify_state);
1137 }
1138 return 0;
1139 }
1140
1141 nothing:
1142 dprint(FD_VERIFY, "get_next_verify: empty\n");
1143 return 1;
1144 }
1145
fio_verify_init(struct thread_data * td)1146 void fio_verify_init(struct thread_data *td)
1147 {
1148 if (td->o.verify == VERIFY_CRC32C_INTEL ||
1149 td->o.verify == VERIFY_CRC32C) {
1150 crc32c_intel_probe();
1151 }
1152 }
1153
verify_async_thread(void * data)1154 static void *verify_async_thread(void *data)
1155 {
1156 struct thread_data *td = data;
1157 struct io_u *io_u;
1158 int ret = 0;
1159
1160 if (fio_option_is_set(&td->o, verify_cpumask) &&
1161 fio_setaffinity(td->pid, td->o.verify_cpumask)) {
1162 log_err("fio: failed setting verify thread affinity\n");
1163 goto done;
1164 }
1165
1166 do {
1167 FLIST_HEAD(list);
1168
1169 read_barrier();
1170 if (td->verify_thread_exit)
1171 break;
1172
1173 pthread_mutex_lock(&td->io_u_lock);
1174
1175 while (flist_empty(&td->verify_list) &&
1176 !td->verify_thread_exit) {
1177 ret = pthread_cond_wait(&td->verify_cond,
1178 &td->io_u_lock);
1179 if (ret) {
1180 pthread_mutex_unlock(&td->io_u_lock);
1181 break;
1182 }
1183 }
1184
1185 flist_splice_init(&td->verify_list, &list);
1186 pthread_mutex_unlock(&td->io_u_lock);
1187
1188 if (flist_empty(&list))
1189 continue;
1190
1191 while (!flist_empty(&list)) {
1192 io_u = flist_first_entry(&list, struct io_u, verify_list);
1193 flist_del_init(&io_u->verify_list);
1194
1195 io_u->flags |= IO_U_F_NO_FILE_PUT;
1196 ret = verify_io_u(td, &io_u);
1197
1198 put_io_u(td, io_u);
1199 if (!ret)
1200 continue;
1201 if (td_non_fatal_error(td, ERROR_TYPE_VERIFY_BIT, ret)) {
1202 update_error_count(td, ret);
1203 td_clear_error(td);
1204 ret = 0;
1205 }
1206 }
1207 } while (!ret);
1208
1209 if (ret) {
1210 td_verror(td, ret, "async_verify");
1211 if (td->o.verify_fatal)
1212 fio_mark_td_terminate(td);
1213 }
1214
1215 done:
1216 pthread_mutex_lock(&td->io_u_lock);
1217 td->nr_verify_threads--;
1218 pthread_mutex_unlock(&td->io_u_lock);
1219
1220 pthread_cond_signal(&td->free_cond);
1221 return NULL;
1222 }
1223
verify_async_init(struct thread_data * td)1224 int verify_async_init(struct thread_data *td)
1225 {
1226 int i, ret;
1227 pthread_attr_t attr;
1228
1229 pthread_attr_init(&attr);
1230 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1231
1232 td->verify_thread_exit = 0;
1233
1234 td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async);
1235 for (i = 0; i < td->o.verify_async; i++) {
1236 ret = pthread_create(&td->verify_threads[i], &attr,
1237 verify_async_thread, td);
1238 if (ret) {
1239 log_err("fio: async verify creation failed: %s\n",
1240 strerror(ret));
1241 break;
1242 }
1243 ret = pthread_detach(td->verify_threads[i]);
1244 if (ret) {
1245 log_err("fio: async verify thread detach failed: %s\n",
1246 strerror(ret));
1247 break;
1248 }
1249 td->nr_verify_threads++;
1250 }
1251
1252 pthread_attr_destroy(&attr);
1253
1254 if (i != td->o.verify_async) {
1255 log_err("fio: only %d verify threads started, exiting\n", i);
1256 td->verify_thread_exit = 1;
1257 write_barrier();
1258 pthread_cond_broadcast(&td->verify_cond);
1259 return 1;
1260 }
1261
1262 return 0;
1263 }
1264
verify_async_exit(struct thread_data * td)1265 void verify_async_exit(struct thread_data *td)
1266 {
1267 td->verify_thread_exit = 1;
1268 write_barrier();
1269 pthread_cond_broadcast(&td->verify_cond);
1270
1271 pthread_mutex_lock(&td->io_u_lock);
1272
1273 while (td->nr_verify_threads)
1274 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1275
1276 pthread_mutex_unlock(&td->io_u_lock);
1277 free(td->verify_threads);
1278 td->verify_threads = NULL;
1279 }
1280
get_all_io_list(int save_mask,size_t * sz)1281 struct all_io_list *get_all_io_list(int save_mask, size_t *sz)
1282 {
1283 struct all_io_list *rep;
1284 struct thread_data *td;
1285 size_t depth;
1286 void *next;
1287 int i, nr;
1288
1289 compiletime_assert(sizeof(struct all_io_list) == 8, "all_io_list");
1290
1291 /*
1292 * Calculate reply space needed. We need one 'io_state' per thread,
1293 * and the size will vary depending on depth.
1294 */
1295 depth = 0;
1296 nr = 0;
1297 for_each_td(td, i) {
1298 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
1299 continue;
1300 td->stop_io = 1;
1301 td->flags |= TD_F_VSTATE_SAVED;
1302 depth += td->o.iodepth;
1303 nr++;
1304 }
1305
1306 if (!nr)
1307 return NULL;
1308
1309 *sz = sizeof(*rep);
1310 *sz += nr * sizeof(struct thread_io_list);
1311 *sz += depth * sizeof(uint64_t);
1312 rep = malloc(*sz);
1313
1314 rep->threads = cpu_to_le64((uint64_t) nr);
1315
1316 next = &rep->state[0];
1317 for_each_td(td, i) {
1318 struct thread_io_list *s = next;
1319 unsigned int comps;
1320
1321 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
1322 continue;
1323
1324 if (td->last_write_comp) {
1325 int j, k;
1326
1327 if (td->io_blocks[DDIR_WRITE] < td->o.iodepth)
1328 comps = td->io_blocks[DDIR_WRITE];
1329 else
1330 comps = td->o.iodepth;
1331
1332 k = td->last_write_idx - 1;
1333 for (j = 0; j < comps; j++) {
1334 if (k == -1)
1335 k = td->o.iodepth - 1;
1336 s->offsets[j] = cpu_to_le64(td->last_write_comp[k]);
1337 k--;
1338 }
1339 } else
1340 comps = 0;
1341
1342 s->no_comps = cpu_to_le64((uint64_t) comps);
1343 s->depth = cpu_to_le64((uint64_t) td->o.iodepth);
1344 s->numberio = cpu_to_le64((uint64_t) td->io_issues[DDIR_WRITE]);
1345 s->index = cpu_to_le64((uint64_t) i);
1346 s->rand.s[0] = cpu_to_le32(td->random_state.s1);
1347 s->rand.s[1] = cpu_to_le32(td->random_state.s2);
1348 s->rand.s[2] = cpu_to_le32(td->random_state.s3);
1349 s->rand.s[3] = 0;
1350 s->name[sizeof(s->name) - 1] = '\0';
1351 strncpy((char *) s->name, td->o.name, sizeof(s->name) - 1);
1352 next = io_list_next(s);
1353 }
1354
1355 return rep;
1356 }
1357
open_state_file(const char * name,const char * prefix,int num,int for_write)1358 static int open_state_file(const char *name, const char *prefix, int num,
1359 int for_write)
1360 {
1361 char out[64];
1362 int flags;
1363 int fd;
1364
1365 if (for_write)
1366 flags = O_CREAT | O_TRUNC | O_WRONLY | O_SYNC;
1367 else
1368 flags = O_RDONLY;
1369
1370 verify_state_gen_name(out, sizeof(out), name, prefix, num);
1371
1372 fd = open(out, flags, 0644);
1373 if (fd == -1) {
1374 perror("fio: open state file");
1375 return -1;
1376 }
1377
1378 return fd;
1379 }
1380
write_thread_list_state(struct thread_io_list * s,const char * prefix)1381 static int write_thread_list_state(struct thread_io_list *s,
1382 const char *prefix)
1383 {
1384 struct verify_state_hdr hdr;
1385 uint64_t crc;
1386 ssize_t ret;
1387 int fd;
1388
1389 fd = open_state_file((const char *) s->name, prefix, s->index, 1);
1390 if (fd == -1)
1391 return 1;
1392
1393 crc = fio_crc32c((void *)s, thread_io_list_sz(s));
1394
1395 hdr.version = cpu_to_le64((uint64_t) VSTATE_HDR_VERSION);
1396 hdr.size = cpu_to_le64((uint64_t) thread_io_list_sz(s));
1397 hdr.crc = cpu_to_le64(crc);
1398 ret = write(fd, &hdr, sizeof(hdr));
1399 if (ret != sizeof(hdr))
1400 goto write_fail;
1401
1402 ret = write(fd, s, thread_io_list_sz(s));
1403 if (ret != thread_io_list_sz(s)) {
1404 write_fail:
1405 if (ret < 0)
1406 perror("fio: write state file");
1407 log_err("fio: failed to write state file\n");
1408 ret = 1;
1409 } else
1410 ret = 0;
1411
1412 close(fd);
1413 return ret;
1414 }
1415
__verify_save_state(struct all_io_list * state,const char * prefix)1416 void __verify_save_state(struct all_io_list *state, const char *prefix)
1417 {
1418 struct thread_io_list *s = &state->state[0];
1419 unsigned int i;
1420
1421 for (i = 0; i < le64_to_cpu(state->threads); i++) {
1422 write_thread_list_state(s, prefix);
1423 s = io_list_next(s);
1424 }
1425 }
1426
verify_save_state(void)1427 void verify_save_state(void)
1428 {
1429 struct all_io_list *state;
1430 size_t sz;
1431
1432 state = get_all_io_list(IO_LIST_ALL, &sz);
1433 if (state) {
1434 __verify_save_state(state, "local");
1435 free(state);
1436 }
1437 }
1438
verify_free_state(struct thread_data * td)1439 void verify_free_state(struct thread_data *td)
1440 {
1441 if (td->vstate)
1442 free(td->vstate);
1443 }
1444
verify_convert_assign_state(struct thread_data * td,struct thread_io_list * s)1445 void verify_convert_assign_state(struct thread_data *td,
1446 struct thread_io_list *s)
1447 {
1448 int i;
1449
1450 s->no_comps = le64_to_cpu(s->no_comps);
1451 s->depth = le64_to_cpu(s->depth);
1452 s->numberio = le64_to_cpu(s->numberio);
1453 for (i = 0; i < 4; i++)
1454 s->rand.s[i] = le32_to_cpu(s->rand.s[i]);
1455 for (i = 0; i < s->no_comps; i++)
1456 s->offsets[i] = le64_to_cpu(s->offsets[i]);
1457
1458 td->vstate = s;
1459 }
1460
verify_state_hdr(struct verify_state_hdr * hdr,struct thread_io_list * s)1461 int verify_state_hdr(struct verify_state_hdr *hdr, struct thread_io_list *s)
1462 {
1463 uint64_t crc;
1464
1465 hdr->version = le64_to_cpu(hdr->version);
1466 hdr->size = le64_to_cpu(hdr->size);
1467 hdr->crc = le64_to_cpu(hdr->crc);
1468
1469 if (hdr->version != VSTATE_HDR_VERSION)
1470 return 1;
1471
1472 crc = fio_crc32c((void *)s, hdr->size);
1473 if (crc != hdr->crc)
1474 return 1;
1475
1476 return 0;
1477 }
1478
verify_load_state(struct thread_data * td,const char * prefix)1479 int verify_load_state(struct thread_data *td, const char *prefix)
1480 {
1481 struct thread_io_list *s = NULL;
1482 struct verify_state_hdr hdr;
1483 uint64_t crc;
1484 ssize_t ret;
1485 int fd;
1486
1487 if (!td->o.verify_state)
1488 return 0;
1489
1490 fd = open_state_file(td->o.name, prefix, td->thread_number - 1, 0);
1491 if (fd == -1)
1492 return 1;
1493
1494 ret = read(fd, &hdr, sizeof(hdr));
1495 if (ret != sizeof(hdr)) {
1496 if (ret < 0)
1497 td_verror(td, errno, "read verify state hdr");
1498 log_err("fio: failed reading verify state header\n");
1499 goto err;
1500 }
1501
1502 hdr.version = le64_to_cpu(hdr.version);
1503 hdr.size = le64_to_cpu(hdr.size);
1504 hdr.crc = le64_to_cpu(hdr.crc);
1505
1506 if (hdr.version != VSTATE_HDR_VERSION) {
1507 log_err("fio: bad version in verify state header\n");
1508 goto err;
1509 }
1510
1511 s = malloc(hdr.size);
1512 ret = read(fd, s, hdr.size);
1513 if (ret != hdr.size) {
1514 if (ret < 0)
1515 td_verror(td, errno, "read verify state");
1516 log_err("fio: failed reading verity state\n");
1517 goto err;
1518 }
1519
1520 crc = fio_crc32c((void *)s, hdr.size);
1521 if (crc != hdr.crc) {
1522 log_err("fio: verify state is corrupt\n");
1523 goto err;
1524 }
1525
1526 close(fd);
1527
1528 verify_convert_assign_state(td, s);
1529 return 0;
1530 err:
1531 if (s)
1532 free(s);
1533 close(fd);
1534 return 1;
1535 }
1536
1537 /*
1538 * Use the loaded verify state to know when to stop doing verification
1539 */
verify_state_should_stop(struct thread_data * td,struct io_u * io_u)1540 int verify_state_should_stop(struct thread_data *td, struct io_u *io_u)
1541 {
1542 struct thread_io_list *s = td->vstate;
1543 int i;
1544
1545 if (!s)
1546 return 0;
1547
1548 /*
1549 * If we're not into the window of issues - depth yet, continue. If
1550 * issue is shorter than depth, do check.
1551 */
1552 if ((td->io_blocks[DDIR_READ] < s->depth ||
1553 s->numberio - td->io_blocks[DDIR_READ] > s->depth) &&
1554 s->numberio > s->depth)
1555 return 0;
1556
1557 /*
1558 * We're in the window of having to check if this io was
1559 * completed or not. If the IO was seen as completed, then
1560 * lets verify it.
1561 */
1562 for (i = 0; i < s->no_comps; i++)
1563 if (io_u->offset == s->offsets[i])
1564 return 0;
1565
1566 /*
1567 * Not found, we have to stop
1568 */
1569 return 1;
1570 }
1571