1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // unpack_neon.h: optimized NEON specializations of the templates in unpack.h.
16 
17 #ifndef GEMMLOWP_INTERNAL_UNPACK_NEON_H_
18 #define GEMMLOWP_INTERNAL_UNPACK_NEON_H_
19 
20 #include "output_neon.h"
21 #include "unpack.h"
22 
23 #include <arm_neon.h>
24 
25 namespace gemmlowp {
26 
27 template <std::uint32_t numerator, std::uint32_t denominator>
RoundingMultiplyByConstantFraction(int32x4_t x)28 int32x4_t RoundingMultiplyByConstantFraction(int32x4_t x) {
29   static_assert(numerator > 0 && denominator > 0,
30                 "only supporting positive num/denom");
31 
32   if (numerator == denominator) {
33     return x;
34   }
35 
36   static const std::int32_t int_quotient =
37       (numerator + denominator / 2) / denominator;
38   static const std::int32_t remaining_numerator =
39       numerator - int_quotient * denominator;
40   static const std::int32_t scaled_remaining_numerator =
41       static_cast<std::int32_t>(
42           (static_cast<std::int64_t>(remaining_numerator) * (1ll << 31)) /
43           denominator);
44   // Note: vqrdmulh instruction is rounding doubling multiply high.
45   const int32x4_t remaining_product =
46       vqrdmulhq_n_s32(x, scaled_remaining_numerator);
47 
48   return vmlaq_n_s32(remaining_product, x, int_quotient);
49 }
50 
51 template <typename tScalar, VectorShape tShape>
get_int32x4_t_and_inc(ConstIterator<VectorMap<tScalar,tShape>> * iterator)52 int32x4_t get_int32x4_t_and_inc(
53     ConstIterator<VectorMap<tScalar, tShape>>* iterator) {
54   const int32x4_t result = vld1q_s32(iterator->get());
55   *iterator += 4;
56   return result;
57 }
58 
59 template <typename tScalar, VectorShape tShape>
get_int32x4_t_and_inc(ConstIterator<VectorDup<tScalar,tShape>> * iterator)60 int32x4_t get_int32x4_t_and_inc(
61     ConstIterator<VectorDup<tScalar, tShape>>* iterator) {
62   const int32x4_t result = vdupq_n_s32(**iterator);
63   // Increment really does nothing for VectorDup.
64   *iterator += 4;
65   return result;
66 }
67 
68 template <typename BitDepthParams, typename PackedResultType,
69           typename OutputScalar, typename LhsOffset, typename RhsOffset,
70           typename OutputPipelineType>
71 struct UnpackResultImpl<BitDepthParams,
72                         MatrixMap<OutputScalar, MapOrder::ColMajor>,
73                         PackedResultType, LhsOffset, RhsOffset,
74                         OutputPipelineType> {
75   typedef MatrixMap<OutputScalar, MapOrder::ColMajor> ResultBlockType;
76   static void Unpack(ResultBlockType* dst, const PackedResultType& src,
77                      int depth, const std::int32_t* lhs_sums_of_each_slice,
78                      const std::int32_t* rhs_sums_of_each_slice,
79                      const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
80                      const OutputPipelineType& output_pipeline) {
81     ScopedProfilingLabel label("optimized path (NEON)");
82     const int kLhsBits = BitDepthParams::LhsBitDepth::kBits;
83     const int kRhsBits = BitDepthParams::RhsBitDepth::kBits;
84     const std::int32_t kLhsMax = (1 << kLhsBits) - 1;
85     const std::int32_t kRhsMax = (1 << kRhsBits) - 1;
86     auto src_map = src.Map();
87     OutputPipelineExecutor<OutputPipelineType, FragmentInt32x1x1>
88         output_pipeline_executor_int32x1x1(output_pipeline);
89     OutputPipelineExecutor<OutputPipelineType, NEONFragmentInt32x4x1>
90         output_pipeline_executor_int32x4x1(output_pipeline);
91     OutputPipelineExecutor<OutputPipelineType, NEONFragmentInt32x16x1>
92         output_pipeline_executor_int32x16x1(output_pipeline);
93 
94     for (int c = 0; c < dst->cols(); c++) {
95       const std::int32_t* src_ptr = src_map.data(0, c);
96       const std::int32_t* sums_of_each_slice_ptr = lhs_sums_of_each_slice;
97       auto lhs_offset_iter = const_iterator(lhs_offset);
98       const std::int32_t rhs_offset_c = rhs_offset(c);
99       const std::int32_t rhs_sums_of_each_slice_c = rhs_sums_of_each_slice[c];
100 
101       // Handle 16 values at once for higher performance
102       int dst_rows_aligned16 = RoundDown<16>(dst->rows());
103       for (int r = 0; r < dst_rows_aligned16; r += 16) {
104         // Compute the sum of the 4 terms,
105         //   q = term_xx + term_x1 + term_1x_plus_term_11
106         // Refer to the generic code in unpack.h.
107         int32x4_t raw_xx[4];
108         for (int i = 0; i < 4; i++) {
109           raw_xx[i] = vld1q_s32(src_ptr);
110           src_ptr += 4;
111         }
112         int32x4_t raw_x1[4];
113         for (int i = 0; i < 4; i++) {
114           const int32x4_t sum_x1 = vld1q_s32(sums_of_each_slice_ptr);
115           raw_x1[i] = vmulq_n_s32(sum_x1, rhs_offset_c);
116           sums_of_each_slice_ptr += 4;
117         }
118         int32x4_t raw_1x[4];
119         int32x4_t term_11[4];
120         for (int i = 0; i < 4; i++) {
121           const int32x4_t lhs_offsets = get_int32x4_t_and_inc(&lhs_offset_iter);
122           raw_1x[i] = vmulq_n_s32(lhs_offsets, rhs_sums_of_each_slice_c);
123           term_11[i] = vmulq_n_s32(lhs_offsets, rhs_offset_c * depth);
124         }
125         int32x4_t term_xx[4];
126         for (int i = 0; i < 4; i++) {
127           term_xx[i] =
128               RoundingMultiplyByConstantFraction<255 * 255, kLhsMax * kRhsMax>(
129                   raw_xx[i]);
130         }
131         int32x4_t term_x1[4];
132         for (int i = 0; i < 4; i++) {
133           term_x1[i] =
134               RoundingMultiplyByConstantFraction<255, kLhsMax>(raw_x1[i]);
135         }
136         int32x4_t term_1x[4];
137         for (int i = 0; i < 4; i++) {
138           term_1x[i] =
139               RoundingMultiplyByConstantFraction<255, kRhsMax>(raw_1x[i]);
140         }
141         int32x4x4_t q;
142         for (int i = 0; i < 4; i++) {
143           q.val[i] = vaddq_s32(vaddq_s32(term_xx[i], term_x1[i]),
144                                vaddq_s32(term_1x[i], term_11[i]));
145         }
146         NEONFragmentInt32x16x1 f(q);
147         output_pipeline_executor_int32x16x1.Execute(f, dst, r, c);
148       }
149       // We have finished handling groups of 16 entries at once; now
150       // try to handle 4 entries at once.
151       int dst_rows_aligned4 = RoundDown<4>(dst->rows());
152       for (int r = dst_rows_aligned16; r < dst_rows_aligned4; r += 4) {
153         // Compute the sum of the 4 terms,
154         //   q = term_xx + term_x1 + term_1x_plus_term_11
155         // Refer to the generic code in unpack.h.
156         const int32x4_t raw_xx = vld1q_s32(src_ptr);
157         src_ptr += 4;
158         const int32x4_t term_xx =
159             RoundingMultiplyByConstantFraction<255 * 255, kLhsMax * kRhsMax>(
160                 raw_xx);
161         const int32x4_t sum_x1 = vld1q_s32(sums_of_each_slice_ptr);
162         const int32x4_t raw_x1 = vmulq_n_s32(sum_x1, rhs_offset_c);
163         sums_of_each_slice_ptr += 4;
164         const int32x4_t term_x1 =
165             RoundingMultiplyByConstantFraction<255, kLhsMax>(raw_x1);
166         const int32x4_t lhs_offsets = get_int32x4_t_and_inc(&lhs_offset_iter);
167         const int32x4_t raw_1x =
168             vmulq_n_s32(lhs_offsets, rhs_sums_of_each_slice_c);
169         const int32x4_t term_1x =
170             RoundingMultiplyByConstantFraction<255, kRhsMax>(raw_1x);
171         const int32x4_t term_11 =
172             vmulq_n_s32(lhs_offsets, rhs_offset_c * depth);
173         int32x4_t q = vaddq_s32(vaddq_s32(term_xx, term_x1),
174                                 vaddq_s32(term_1x, term_11));
175         NEONFragmentInt32x4x1 f(q);
176         output_pipeline_executor_int32x4x1.Execute(f, dst, r, c);
177       }
178       // We have finished handling 4 entries at once; now handle
179       // remaining entries one by one. This scalar code is similar
180       // to the code in unpack.h, see comments there.
181       for (int r = dst_rows_aligned4; r < dst->rows(); r++) {
182         const std::int32_t raw_xx = src_map(r, c);
183         const std::int32_t raw_x1 = lhs_sums_of_each_slice[r] * rhs_offset_c;
184         const std::int32_t raw_1x = rhs_sums_of_each_slice_c * lhs_offset(r);
185         const std::int32_t term_xx =
186             RoundingMultiplyByConstantFraction<255 * 255, kLhsMax * kRhsMax>(
187                 raw_xx);
188         const std::int32_t term_x1 =
189             RoundingMultiplyByConstantFraction<255, kLhsMax>(raw_x1);
190         const std::int32_t term_1x =
191             RoundingMultiplyByConstantFraction<255, kRhsMax>(raw_1x);
192         const std::int32_t term_11 = lhs_offset(r) * rhs_offset(c) * depth;
193         FragmentInt32x1x1 sum = term_xx + term_x1 + term_1x + term_11;
194         output_pipeline_executor_int32x1x1.Execute(sum, dst, r, c);
195       }
196     }
197   }
198 };
199 
200 }  // namespace gemmlowp
201 
202 #endif  // GEMMLOWP_INTERNAL_UNPACK_NEON_H_
203