1 // Copyright (c) 2010 Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // The ExceptionHandler object installs signal handlers for a number of
31 // signals. We rely on the signal handler running on the thread which crashed
32 // in order to identify it. This is true of the synchronous signals (SEGV etc),
33 // but not true of ABRT. Thus, if you send ABRT to yourself in a program which
34 // uses ExceptionHandler, you need to use tgkill to direct it to the current
35 // thread.
36 //
37 // The signal flow looks like this:
38 //
39 //   SignalHandler (uses a global stack of ExceptionHandler objects to find
40 //        |         one to handle the signal. If the first rejects it, try
41 //        |         the second etc...)
42 //        V
43 //   HandleSignal ----------------------------| (clones a new process which
44 //        |                                   |  shares an address space with
45 //   (wait for cloned                         |  the crashed process. This
46 //     process)                               |  allows us to ptrace the crashed
47 //        |                                   |  process)
48 //        V                                   V
49 //   (set signal handler to             ThreadEntry (static function to bounce
50 //    SIG_DFL and rethrow,                    |      back into the object)
51 //    killing the crashed                     |
52 //    process)                                V
53 //                                          DoDump  (writes minidump)
54 //                                            |
55 //                                            V
56 //                                         sys_exit
57 //
58 
59 // This code is a little fragmented. Different functions of the ExceptionHandler
60 // class run in a number of different contexts. Some of them run in a normal
61 // context and are easy to code, others run in a compromised context and the
62 // restrictions at the top of minidump_writer.cc apply: no libc and use the
63 // alternative malloc. Each function should have comment above it detailing the
64 // context which it runs in.
65 
66 #include "client/linux/handler/exception_handler.h"
67 
68 #include <errno.h>
69 #include <fcntl.h>
70 #include <linux/limits.h>
71 #include <pthread.h>
72 #include <sched.h>
73 #include <signal.h>
74 #include <stdio.h>
75 #include <sys/mman.h>
76 #include <sys/prctl.h>
77 #include <sys/syscall.h>
78 #include <sys/wait.h>
79 #include <unistd.h>
80 
81 #include <sys/signal.h>
82 #include <sys/ucontext.h>
83 #include <sys/user.h>
84 #include <ucontext.h>
85 
86 #include <algorithm>
87 #include <utility>
88 #include <vector>
89 
90 #include "common/basictypes.h"
91 #include "common/linux/linux_libc_support.h"
92 #include "common/memory.h"
93 #include "client/linux/log/log.h"
94 #include "client/linux/microdump_writer/microdump_writer.h"
95 #include "client/linux/minidump_writer/linux_dumper.h"
96 #include "client/linux/minidump_writer/minidump_writer.h"
97 #include "common/linux/eintr_wrapper.h"
98 #include "third_party/lss/linux_syscall_support.h"
99 
100 #if defined(__ANDROID__)
101 #include "linux/sched.h"
102 #endif
103 
104 #ifndef PR_SET_PTRACER
105 #define PR_SET_PTRACER 0x59616d61
106 #endif
107 
108 // A wrapper for the tgkill syscall: send a signal to a specific thread.
tgkill(pid_t tgid,pid_t tid,int sig)109 static int tgkill(pid_t tgid, pid_t tid, int sig) {
110   return syscall(__NR_tgkill, tgid, tid, sig);
111   return 0;
112 }
113 
114 namespace google_breakpad {
115 
116 namespace {
117 // The list of signals which we consider to be crashes. The default action for
118 // all these signals must be Core (see man 7 signal) because we rethrow the
119 // signal after handling it and expect that it'll be fatal.
120 const int kExceptionSignals[] = {
121   SIGSEGV, SIGABRT, SIGFPE, SIGILL, SIGBUS
122 };
123 const int kNumHandledSignals =
124     sizeof(kExceptionSignals) / sizeof(kExceptionSignals[0]);
125 struct sigaction old_handlers[kNumHandledSignals];
126 bool handlers_installed = false;
127 
128 // InstallAlternateStackLocked will store the newly installed stack in new_stack
129 // and (if it exists) the previously installed stack in old_stack.
130 stack_t old_stack;
131 stack_t new_stack;
132 bool stack_installed = false;
133 
134 // Create an alternative stack to run the signal handlers on. This is done since
135 // the signal might have been caused by a stack overflow.
136 // Runs before crashing: normal context.
InstallAlternateStackLocked()137 void InstallAlternateStackLocked() {
138   if (stack_installed)
139     return;
140 
141   memset(&old_stack, 0, sizeof(old_stack));
142   memset(&new_stack, 0, sizeof(new_stack));
143 
144   // SIGSTKSZ may be too small to prevent the signal handlers from overrunning
145   // the alternative stack. Ensure that the size of the alternative stack is
146   // large enough.
147   static const unsigned kSigStackSize = std::max(16384, SIGSTKSZ);
148 
149   // Only set an alternative stack if there isn't already one, or if the current
150   // one is too small.
151   if (sys_sigaltstack(NULL, &old_stack) == -1 || !old_stack.ss_sp ||
152       old_stack.ss_size < kSigStackSize) {
153     new_stack.ss_sp = calloc(1, kSigStackSize);
154     new_stack.ss_size = kSigStackSize;
155 
156     if (sys_sigaltstack(&new_stack, NULL) == -1) {
157       free(new_stack.ss_sp);
158       return;
159     }
160     stack_installed = true;
161   }
162 }
163 
164 // Runs before crashing: normal context.
RestoreAlternateStackLocked()165 void RestoreAlternateStackLocked() {
166   if (!stack_installed)
167     return;
168 
169   stack_t current_stack;
170   if (sys_sigaltstack(NULL, &current_stack) == -1)
171     return;
172 
173   // Only restore the old_stack if the current alternative stack is the one
174   // installed by the call to InstallAlternateStackLocked.
175   if (current_stack.ss_sp == new_stack.ss_sp) {
176     if (old_stack.ss_sp) {
177       if (sys_sigaltstack(&old_stack, NULL) == -1)
178         return;
179     } else {
180       stack_t disable_stack;
181       disable_stack.ss_flags = SS_DISABLE;
182       if (sys_sigaltstack(&disable_stack, NULL) == -1)
183         return;
184     }
185   }
186 
187   free(new_stack.ss_sp);
188   stack_installed = false;
189 }
190 
InstallDefaultHandler(int sig)191 void InstallDefaultHandler(int sig) {
192 #if defined(__ANDROID__)
193   // Android L+ expose signal and sigaction symbols that override the system
194   // ones. There is a bug in these functions where a request to set the handler
195   // to SIG_DFL is ignored. In that case, an infinite loop is entered as the
196   // signal is repeatedly sent to breakpad's signal handler.
197   // To work around this, directly call the system's sigaction.
198   struct sigaction sa;
199   memset(&sa, 0, sizeof(sa));
200   sigemptyset(&sa.sa_mask);
201   sa.sa_handler = SIG_DFL;
202   sa.sa_flags = SA_RESTART;
203   syscall(__NR_rt_sigaction, sig, &sa, NULL);
204 #else
205   signal(sig, SIG_DFL);
206 #endif
207 }
208 
209 // The global exception handler stack. This is needed because there may exist
210 // multiple ExceptionHandler instances in a process. Each will have itself
211 // registered in this stack.
212 std::vector<ExceptionHandler*>* g_handler_stack_ = NULL;
213 pthread_mutex_t g_handler_stack_mutex_ = PTHREAD_MUTEX_INITIALIZER;
214 
215 }  // namespace
216 
217 // Runs before crashing: normal context.
ExceptionHandler(const MinidumpDescriptor & descriptor,FilterCallback filter,MinidumpCallback callback,void * callback_context,bool install_handler,const int server_fd)218 ExceptionHandler::ExceptionHandler(const MinidumpDescriptor& descriptor,
219                                    FilterCallback filter,
220                                    MinidumpCallback callback,
221                                    void* callback_context,
222                                    bool install_handler,
223                                    const int server_fd)
224     : filter_(filter),
225       callback_(callback),
226       callback_context_(callback_context),
227       minidump_descriptor_(descriptor),
228       crash_handler_(NULL) {
229   if (server_fd >= 0)
230     crash_generation_client_.reset(CrashGenerationClient::TryCreate(server_fd));
231 
232   if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
233       !minidump_descriptor_.IsMicrodumpOnConsole())
234     minidump_descriptor_.UpdatePath();
235 
236   pthread_mutex_lock(&g_handler_stack_mutex_);
237   if (!g_handler_stack_)
238     g_handler_stack_ = new std::vector<ExceptionHandler*>;
239   if (install_handler) {
240     InstallAlternateStackLocked();
241     InstallHandlersLocked();
242   }
243   g_handler_stack_->push_back(this);
244   pthread_mutex_unlock(&g_handler_stack_mutex_);
245 }
246 
247 // Runs before crashing: normal context.
~ExceptionHandler()248 ExceptionHandler::~ExceptionHandler() {
249   pthread_mutex_lock(&g_handler_stack_mutex_);
250   std::vector<ExceptionHandler*>::iterator handler =
251       std::find(g_handler_stack_->begin(), g_handler_stack_->end(), this);
252   g_handler_stack_->erase(handler);
253   if (g_handler_stack_->empty()) {
254     delete g_handler_stack_;
255     g_handler_stack_ = NULL;
256     RestoreAlternateStackLocked();
257     RestoreHandlersLocked();
258   }
259   pthread_mutex_unlock(&g_handler_stack_mutex_);
260 }
261 
262 // Runs before crashing: normal context.
263 // static
InstallHandlersLocked()264 bool ExceptionHandler::InstallHandlersLocked() {
265   if (handlers_installed)
266     return false;
267 
268   // Fail if unable to store all the old handlers.
269   for (int i = 0; i < kNumHandledSignals; ++i) {
270     if (sigaction(kExceptionSignals[i], NULL, &old_handlers[i]) == -1)
271       return false;
272   }
273 
274   struct sigaction sa;
275   memset(&sa, 0, sizeof(sa));
276   sigemptyset(&sa.sa_mask);
277 
278   // Mask all exception signals when we're handling one of them.
279   for (int i = 0; i < kNumHandledSignals; ++i)
280     sigaddset(&sa.sa_mask, kExceptionSignals[i]);
281 
282   sa.sa_sigaction = SignalHandler;
283   sa.sa_flags = SA_ONSTACK | SA_SIGINFO;
284 
285   for (int i = 0; i < kNumHandledSignals; ++i) {
286     if (sigaction(kExceptionSignals[i], &sa, NULL) == -1) {
287       // At this point it is impractical to back out changes, and so failure to
288       // install a signal is intentionally ignored.
289     }
290   }
291   handlers_installed = true;
292   return true;
293 }
294 
295 // This function runs in a compromised context: see the top of the file.
296 // Runs on the crashing thread.
297 // static
RestoreHandlersLocked()298 void ExceptionHandler::RestoreHandlersLocked() {
299   if (!handlers_installed)
300     return;
301 
302   for (int i = 0; i < kNumHandledSignals; ++i) {
303     if (sigaction(kExceptionSignals[i], &old_handlers[i], NULL) == -1) {
304       InstallDefaultHandler(kExceptionSignals[i]);
305     }
306   }
307   handlers_installed = false;
308 }
309 
310 // void ExceptionHandler::set_crash_handler(HandlerCallback callback) {
311 //   crash_handler_ = callback;
312 // }
313 
314 // This function runs in a compromised context: see the top of the file.
315 // Runs on the crashing thread.
316 // static
SignalHandler(int sig,siginfo_t * info,void * uc)317 void ExceptionHandler::SignalHandler(int sig, siginfo_t* info, void* uc) {
318   // All the exception signals are blocked at this point.
319   pthread_mutex_lock(&g_handler_stack_mutex_);
320 
321   // Sometimes, Breakpad runs inside a process where some other buggy code
322   // saves and restores signal handlers temporarily with 'signal'
323   // instead of 'sigaction'. This loses the SA_SIGINFO flag associated
324   // with this function. As a consequence, the values of 'info' and 'uc'
325   // become totally bogus, generally inducing a crash.
326   //
327   // The following code tries to detect this case. When it does, it
328   // resets the signal handlers with sigaction + SA_SIGINFO and returns.
329   // This forces the signal to be thrown again, but this time the kernel
330   // will call the function with the right arguments.
331   struct sigaction cur_handler;
332   if (sigaction(sig, NULL, &cur_handler) == 0 &&
333       (cur_handler.sa_flags & SA_SIGINFO) == 0) {
334     // Reset signal handler with the right flags.
335     sigemptyset(&cur_handler.sa_mask);
336     sigaddset(&cur_handler.sa_mask, sig);
337 
338     cur_handler.sa_sigaction = SignalHandler;
339     cur_handler.sa_flags = SA_ONSTACK | SA_SIGINFO;
340 
341     if (sigaction(sig, &cur_handler, NULL) == -1) {
342       // When resetting the handler fails, try to reset the
343       // default one to avoid an infinite loop here.
344       InstallDefaultHandler(sig);
345     }
346     pthread_mutex_unlock(&g_handler_stack_mutex_);
347     return;
348   }
349 
350   bool handled = false;
351   for (int i = g_handler_stack_->size() - 1; !handled && i >= 0; --i) {
352     handled = (*g_handler_stack_)[i]->HandleSignal(sig, info, uc);
353   }
354 
355   // Upon returning from this signal handler, sig will become unmasked and then
356   // it will be retriggered. If one of the ExceptionHandlers handled it
357   // successfully, restore the default handler. Otherwise, restore the
358   // previously installed handler. Then, when the signal is retriggered, it will
359   // be delivered to the appropriate handler.
360   if (handled) {
361     InstallDefaultHandler(sig);
362   } else {
363     RestoreHandlersLocked();
364   }
365 
366   pthread_mutex_unlock(&g_handler_stack_mutex_);
367 
368   if (info->si_pid || sig == SIGABRT) {
369     // This signal was triggered by somebody sending us the signal with kill().
370     // In order to retrigger it, we have to queue a new signal by calling
371     // kill() ourselves.  The special case (si_pid == 0 && sig == SIGABRT) is
372     // due to the kernel sending a SIGABRT from a user request via SysRQ.
373     if (tgkill(getpid(), syscall(__NR_gettid), sig) < 0) {
374       // If we failed to kill ourselves (e.g. because a sandbox disallows us
375       // to do so), we instead resort to terminating our process. This will
376       // result in an incorrect exit code.
377       _exit(1);
378     }
379   } else {
380     // This was a synchronous signal triggered by a hard fault (e.g. SIGSEGV).
381     // No need to reissue the signal. It will automatically trigger again,
382     // when we return from the signal handler.
383   }
384 }
385 
386 struct ThreadArgument {
387   pid_t pid;  // the crashing process
388   const MinidumpDescriptor* minidump_descriptor;
389   ExceptionHandler* handler;
390   const void* context;  // a CrashContext structure
391   size_t context_size;
392 };
393 
394 // This is the entry function for the cloned process. We are in a compromised
395 // context here: see the top of the file.
396 // static
ThreadEntry(void * arg)397 int ExceptionHandler::ThreadEntry(void *arg) {
398   const ThreadArgument *thread_arg = reinterpret_cast<ThreadArgument*>(arg);
399 
400   // Block here until the crashing process unblocks us when
401   // we're allowed to use ptrace
402   thread_arg->handler->WaitForContinueSignal();
403 
404   return thread_arg->handler->DoDump(thread_arg->pid, thread_arg->context,
405                                      thread_arg->context_size) == false;
406 }
407 
408 // This function runs in a compromised context: see the top of the file.
409 // Runs on the crashing thread.
HandleSignal(int sig,siginfo_t * info,void * uc)410 bool ExceptionHandler::HandleSignal(int sig, siginfo_t* info, void* uc) {
411   if (filter_ && !filter_(callback_context_))
412     return false;
413 
414   // Allow ourselves to be dumped if the signal is trusted.
415   bool signal_trusted = info->si_code > 0;
416   bool signal_pid_trusted = info->si_code == SI_USER ||
417       info->si_code == SI_TKILL;
418   if (signal_trusted || (signal_pid_trusted && info->si_pid == getpid())) {
419     sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
420   }
421   CrashContext context;
422   // Fill in all the holes in the struct to make Valgrind happy.
423   memset(&context, 0, sizeof(context));
424   memcpy(&context.siginfo, info, sizeof(siginfo_t));
425   memcpy(&context.context, uc, sizeof(struct ucontext));
426 #if defined(__aarch64__)
427   struct ucontext *uc_ptr = (struct ucontext*)uc;
428   struct fpsimd_context *fp_ptr =
429       (struct fpsimd_context*)&uc_ptr->uc_mcontext.__reserved;
430   if (fp_ptr->head.magic == FPSIMD_MAGIC) {
431     memcpy(&context.float_state, fp_ptr, sizeof(context.float_state));
432   }
433 #elif !defined(__ARM_EABI__)  && !defined(__mips__)
434   // FP state is not part of user ABI on ARM Linux.
435   // In case of MIPS Linux FP state is already part of struct ucontext
436   // and 'float_state' is not a member of CrashContext.
437   struct ucontext *uc_ptr = (struct ucontext*)uc;
438   if (uc_ptr->uc_mcontext.fpregs) {
439     memcpy(&context.float_state,
440            uc_ptr->uc_mcontext.fpregs,
441            sizeof(context.float_state));
442   }
443 #endif
444   context.tid = syscall(__NR_gettid);
445   if (crash_handler_ != NULL) {
446     if (crash_handler_(&context, sizeof(context), callback_context_)) {
447       return true;
448     }
449   }
450   return GenerateDump(&context);
451 }
452 
453 // This is a public interface to HandleSignal that allows the client to
454 // generate a crash dump. This function may run in a compromised context.
SimulateSignalDelivery(int sig)455 bool ExceptionHandler::SimulateSignalDelivery(int sig) {
456   siginfo_t siginfo = {};
457   // Mimic a trusted signal to allow tracing the process (see
458   // ExceptionHandler::HandleSignal().
459   siginfo.si_code = SI_USER;
460   siginfo.si_pid = getpid();
461   struct ucontext context;
462   getcontext(&context);
463   return HandleSignal(sig, &siginfo, &context);
464 }
465 
466 // This function may run in a compromised context: see the top of the file.
GenerateDump(CrashContext * context)467 bool ExceptionHandler::GenerateDump(CrashContext *context) {
468   if (IsOutOfProcess())
469     return crash_generation_client_->RequestDump(context, sizeof(*context));
470 
471   // Allocating too much stack isn't a problem, and better to err on the side
472   // of caution than smash it into random locations.
473   static const unsigned kChildStackSize = 16000;
474   PageAllocator allocator;
475   uint8_t* stack = reinterpret_cast<uint8_t*>(allocator.Alloc(kChildStackSize));
476   if (!stack)
477     return false;
478   // clone() needs the top-most address. (scrub just to be safe)
479   stack += kChildStackSize;
480   my_memset(stack - 16, 0, 16);
481 
482   ThreadArgument thread_arg;
483   thread_arg.handler = this;
484   thread_arg.minidump_descriptor = &minidump_descriptor_;
485   thread_arg.pid = getpid();
486   thread_arg.context = context;
487   thread_arg.context_size = sizeof(*context);
488 
489   // We need to explicitly enable ptrace of parent processes on some
490   // kernels, but we need to know the PID of the cloned process before we
491   // can do this. Create a pipe here which we can use to block the
492   // cloned process after creating it, until we have explicitly enabled ptrace
493   if (sys_pipe(fdes) == -1) {
494     // Creating the pipe failed. We'll log an error but carry on anyway,
495     // as we'll probably still get a useful crash report. All that will happen
496     // is the write() and read() calls will fail with EBADF
497     static const char no_pipe_msg[] = "ExceptionHandler::GenerateDump "
498                                       "sys_pipe failed:";
499     logger::write(no_pipe_msg, sizeof(no_pipe_msg) - 1);
500     logger::write(strerror(errno), strlen(strerror(errno)));
501     logger::write("\n", 1);
502 
503     // Ensure fdes[0] and fdes[1] are invalid file descriptors.
504     fdes[0] = fdes[1] = -1;
505   }
506 
507   const pid_t child = sys_clone(
508       ThreadEntry, stack, CLONE_FILES | CLONE_FS | CLONE_UNTRACED,
509       &thread_arg, NULL, NULL, NULL);
510   if (child == -1) {
511     sys_close(fdes[0]);
512     sys_close(fdes[1]);
513     return false;
514   }
515 
516   // Allow the child to ptrace us
517   sys_prctl(PR_SET_PTRACER, child, 0, 0, 0);
518   SendContinueSignalToChild();
519   int status;
520   const int r = HANDLE_EINTR(sys_waitpid(child, &status, __WALL));
521 
522   sys_close(fdes[0]);
523   sys_close(fdes[1]);
524 
525   if (r == -1) {
526     static const char msg[] = "ExceptionHandler::GenerateDump waitpid failed:";
527     logger::write(msg, sizeof(msg) - 1);
528     logger::write(strerror(errno), strlen(strerror(errno)));
529     logger::write("\n", 1);
530   }
531 
532   bool success = r != -1 && WIFEXITED(status) && WEXITSTATUS(status) == 0;
533   if (callback_)
534     success = callback_(minidump_descriptor_, callback_context_, success);
535   return success;
536 }
537 
538 // This function runs in a compromised context: see the top of the file.
SendContinueSignalToChild()539 void ExceptionHandler::SendContinueSignalToChild() {
540   static const char okToContinueMessage = 'a';
541   int r;
542   r = HANDLE_EINTR(sys_write(fdes[1], &okToContinueMessage, sizeof(char)));
543   if (r == -1) {
544     static const char msg[] = "ExceptionHandler::SendContinueSignalToChild "
545                               "sys_write failed:";
546     logger::write(msg, sizeof(msg) - 1);
547     logger::write(strerror(errno), strlen(strerror(errno)));
548     logger::write("\n", 1);
549   }
550 }
551 
552 // This function runs in a compromised context: see the top of the file.
553 // Runs on the cloned process.
WaitForContinueSignal()554 void ExceptionHandler::WaitForContinueSignal() {
555   int r;
556   char receivedMessage;
557   r = HANDLE_EINTR(sys_read(fdes[0], &receivedMessage, sizeof(char)));
558   if (r == -1) {
559     static const char msg[] = "ExceptionHandler::WaitForContinueSignal "
560                               "sys_read failed:";
561     logger::write(msg, sizeof(msg) - 1);
562     logger::write(strerror(errno), strlen(strerror(errno)));
563     logger::write("\n", 1);
564   }
565 }
566 
567 // This function runs in a compromised context: see the top of the file.
568 // Runs on the cloned process.
DoDump(pid_t crashing_process,const void * context,size_t context_size)569 bool ExceptionHandler::DoDump(pid_t crashing_process, const void* context,
570                               size_t context_size) {
571   if (minidump_descriptor_.IsMicrodumpOnConsole()) {
572     return google_breakpad::WriteMicrodump(crashing_process,
573                                            context,
574                                            context_size,
575                                            mapping_list_);
576   }
577   if (minidump_descriptor_.IsFD()) {
578     return google_breakpad::WriteMinidump(minidump_descriptor_.fd(),
579                                           minidump_descriptor_.size_limit(),
580                                           crashing_process,
581                                           context,
582                                           context_size,
583                                           mapping_list_,
584                                           app_memory_list_);
585   }
586   return google_breakpad::WriteMinidump(minidump_descriptor_.path(),
587                                         minidump_descriptor_.size_limit(),
588                                         crashing_process,
589                                         context,
590                                         context_size,
591                                         mapping_list_,
592                                         app_memory_list_);
593 }
594 
595 // static
WriteMinidump(const string & dump_path,MinidumpCallback callback,void * callback_context)596 bool ExceptionHandler::WriteMinidump(const string& dump_path,
597                                      MinidumpCallback callback,
598                                      void* callback_context) {
599   MinidumpDescriptor descriptor(dump_path);
600   ExceptionHandler eh(descriptor, NULL, callback, callback_context, false, -1);
601   return eh.WriteMinidump();
602 }
603 
604 // In order to making using EBP to calculate the desired value for ESP
605 // a valid operation, ensure that this function is compiled with a
606 // frame pointer using the following attribute. This attribute
607 // is supported on GCC but not on clang.
608 #if defined(__i386__) && defined(__GNUC__) && !defined(__clang__)
609 __attribute__((optimize("no-omit-frame-pointer")))
610 #endif
WriteMinidump()611 bool ExceptionHandler::WriteMinidump() {
612   if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
613       !minidump_descriptor_.IsMicrodumpOnConsole()) {
614     // Update the path of the minidump so that this can be called multiple times
615     // and new files are created for each minidump.  This is done before the
616     // generation happens, as clients may want to access the MinidumpDescriptor
617     // after this call to find the exact path to the minidump file.
618     minidump_descriptor_.UpdatePath();
619   } else if (minidump_descriptor_.IsFD()) {
620     // Reposition the FD to its beginning and resize it to get rid of the
621     // previous minidump info.
622     lseek(minidump_descriptor_.fd(), 0, SEEK_SET);
623     ignore_result(ftruncate(minidump_descriptor_.fd(), 0));
624   }
625 
626   // Allow this process to be dumped.
627   sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
628 
629   CrashContext context;
630   int getcontext_result = getcontext(&context.context);
631   if (getcontext_result)
632     return false;
633 
634 #if defined(__i386__)
635   // In CPUFillFromUContext in minidumpwriter.cc the stack pointer is retrieved
636   // from REG_UESP instead of from REG_ESP. REG_UESP is the user stack pointer
637   // and it only makes sense when running in kernel mode with a different stack
638   // pointer. When WriteMiniDump is called during normal processing REG_UESP is
639   // zero which leads to bad minidump files.
640   if (!context.context.uc_mcontext.gregs[REG_UESP]) {
641     // If REG_UESP is set to REG_ESP then that includes the stack space for the
642     // CrashContext object in this function, which is about 128 KB. Since the
643     // Linux dumper only records 32 KB of stack this would mean that nothing
644     // useful would be recorded. A better option is to set REG_UESP to REG_EBP,
645     // perhaps with a small negative offset in case there is any code that
646     // objects to them being equal.
647     context.context.uc_mcontext.gregs[REG_UESP] =
648       context.context.uc_mcontext.gregs[REG_EBP] - 16;
649     // The stack saving is based off of REG_ESP so it must be set to match the
650     // new REG_UESP.
651     context.context.uc_mcontext.gregs[REG_ESP] =
652       context.context.uc_mcontext.gregs[REG_UESP];
653   }
654 #endif
655 
656 #if !defined(__ARM_EABI__) && !defined(__aarch64__) && !defined(__mips__)
657   // FPU state is not part of ARM EABI ucontext_t.
658   memcpy(&context.float_state, context.context.uc_mcontext.fpregs,
659          sizeof(context.float_state));
660 #endif
661   context.tid = sys_gettid();
662 
663   // Add an exception stream to the minidump for better reporting.
664   memset(&context.siginfo, 0, sizeof(context.siginfo));
665   context.siginfo.si_signo = MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED;
666 #if defined(__i386__)
667   context.siginfo.si_addr =
668       reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_EIP]);
669 #elif defined(__x86_64__)
670   context.siginfo.si_addr =
671       reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_RIP]);
672 #elif defined(__arm__)
673   context.siginfo.si_addr =
674       reinterpret_cast<void*>(context.context.uc_mcontext.arm_pc);
675 #elif defined(__aarch64__)
676   context.siginfo.si_addr =
677       reinterpret_cast<void*>(context.context.uc_mcontext.pc);
678 #elif defined(__mips__)
679   context.siginfo.si_addr =
680       reinterpret_cast<void*>(context.context.uc_mcontext.pc);
681 #else
682 #error "This code has not been ported to your platform yet."
683 #endif
684 
685   return GenerateDump(&context);
686 }
687 
AddMappingInfo(const string & name,const uint8_t identifier[sizeof (MDGUID)],uintptr_t start_address,size_t mapping_size,size_t file_offset)688 void ExceptionHandler::AddMappingInfo(const string& name,
689                                       const uint8_t identifier[sizeof(MDGUID)],
690                                       uintptr_t start_address,
691                                       size_t mapping_size,
692                                       size_t file_offset) {
693   MappingInfo info;
694   info.start_addr = start_address;
695   info.size = mapping_size;
696   info.offset = file_offset;
697   strncpy(info.name, name.c_str(), sizeof(info.name) - 1);
698   info.name[sizeof(info.name) - 1] = '\0';
699 
700   MappingEntry mapping;
701   mapping.first = info;
702   memcpy(mapping.second, identifier, sizeof(MDGUID));
703   mapping_list_.push_back(mapping);
704 }
705 
RegisterAppMemory(void * ptr,size_t length)706 void ExceptionHandler::RegisterAppMemory(void* ptr, size_t length) {
707   AppMemoryList::iterator iter =
708     std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
709   if (iter != app_memory_list_.end()) {
710     // Don't allow registering the same pointer twice.
711     return;
712   }
713 
714   AppMemory app_memory;
715   app_memory.ptr = ptr;
716   app_memory.length = length;
717   app_memory_list_.push_back(app_memory);
718 }
719 
UnregisterAppMemory(void * ptr)720 void ExceptionHandler::UnregisterAppMemory(void* ptr) {
721   AppMemoryList::iterator iter =
722     std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
723   if (iter != app_memory_list_.end()) {
724     app_memory_list_.erase(iter);
725   }
726 }
727 
728 // static
WriteMinidumpForChild(pid_t child,pid_t child_blamed_thread,const string & dump_path,MinidumpCallback callback,void * callback_context)729 bool ExceptionHandler::WriteMinidumpForChild(pid_t child,
730                                              pid_t child_blamed_thread,
731                                              const string& dump_path,
732                                              MinidumpCallback callback,
733                                              void* callback_context) {
734   // This function is not run in a compromised context.
735   MinidumpDescriptor descriptor(dump_path);
736   descriptor.UpdatePath();
737   if (!google_breakpad::WriteMinidump(descriptor.path(),
738                                       child,
739                                       child_blamed_thread))
740       return false;
741 
742   return callback ? callback(descriptor, callback_context, true) : true;
743 }
744 
745 }  // namespace google_breakpad
746