1 // -*- mode: C++ -*-
2 
3 // Copyright (c) 2010, Google Inc.
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions are
8 // met:
9 //
10 //     * Redistributions of source code must retain the above copyright
11 // notice, this list of conditions and the following disclaimer.
12 //     * Redistributions in binary form must reproduce the above
13 // copyright notice, this list of conditions and the following disclaimer
14 // in the documentation and/or other materials provided with the
15 // distribution.
16 //     * Neither the name of Google Inc. nor the names of its
17 // contributors may be used to endorse or promote products derived from
18 // this software without specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
33 
34 // test-assembler.h: interface to class for building complex binary streams.
35 
36 // To test the Breakpad symbol dumper and processor thoroughly, for
37 // all combinations of host system and minidump processor
38 // architecture, we need to be able to easily generate complex test
39 // data like debugging information and minidump files.
40 //
41 // For example, if we want our unit tests to provide full code
42 // coverage for stack walking, it may be difficult to persuade the
43 // compiler to generate every possible sort of stack walking
44 // information that we want to support; there are probably DWARF CFI
45 // opcodes that GCC never emits. Similarly, if we want to test our
46 // error handling, we will need to generate damaged minidumps or
47 // debugging information that (we hope) the client or compiler will
48 // never produce on its own.
49 //
50 // google_breakpad::TestAssembler provides a predictable and
51 // (relatively) simple way to generate complex formatted data streams
52 // like minidumps and CFI. Furthermore, because TestAssembler is
53 // portable, developers without access to (say) Visual Studio or a
54 // SPARC assembler can still work on test data for those targets.
55 
56 #ifndef PROCESSOR_TEST_ASSEMBLER_H_
57 #define PROCESSOR_TEST_ASSEMBLER_H_
58 
59 #include <list>
60 #include <vector>
61 #include <string>
62 
63 #include "common/using_std_string.h"
64 #include "google_breakpad/common/breakpad_types.h"
65 
66 namespace google_breakpad {
67 
68 using std::list;
69 using std::vector;
70 
71 namespace test_assembler {
72 
73 // A Label represents a value not yet known that we need to store in a
74 // section. As long as all the labels a section refers to are defined
75 // by the time we retrieve its contents as bytes, we can use undefined
76 // labels freely in that section's construction.
77 //
78 // A label can be in one of three states:
79 // - undefined,
80 // - defined as the sum of some other label and a constant, or
81 // - a constant.
82 //
83 // A label's value never changes, but it can accumulate constraints.
84 // Adding labels and integers is permitted, and yields a label.
85 // Subtracting a constant from a label is permitted, and also yields a
86 // label. Subtracting two labels that have some relationship to each
87 // other is permitted, and yields a constant.
88 //
89 // For example:
90 //
91 //   Label a;               // a's value is undefined
92 //   Label b;               // b's value is undefined
93 //   {
94 //     Label c = a + 4;     // okay, even though a's value is unknown
95 //     b = c + 4;           // also okay; b is now a+8
96 //   }
97 //   Label d = b - 2;       // okay; d == a+6, even though c is gone
98 //   d.Value();             // error: d's value is not yet known
99 //   d - a;                 // is 6, even though their values are not known
100 //   a = 12;                // now b == 20, and d == 18
101 //   d.Value();             // 18: no longer an error
102 //   b.Value();             // 20
103 //   d = 10;                // error: d is already defined.
104 //
105 // Label objects' lifetimes are unconstrained: notice that, in the
106 // above example, even though a and b are only related through c, and
107 // c goes out of scope, the assignment to a sets b's value as well. In
108 // particular, it's not necessary to ensure that a Label lives beyond
109 // Sections that refer to it.
110 class Label {
111  public:
112   Label();                      // An undefined label.
113   Label(uint64_t value);       // A label with a fixed value
114   Label(const Label &value);    // A label equal to another.
115   ~Label();
116 
117   // Return this label's value; it must be known.
118   //
119   // Providing this as a cast operator is nifty, but the conversions
120   // happen in unexpected places. In particular, ISO C++ says that
121   // Label + size_t becomes ambigious, because it can't decide whether
122   // to convert the Label to a uint64_t and then to a size_t, or use
123   // the overloaded operator that returns a new label, even though the
124   // former could fail if the label is not yet defined and the latter won't.
125   uint64_t Value() const;
126 
127   Label &operator=(uint64_t value);
128   Label &operator=(const Label &value);
129   Label operator+(uint64_t addend) const;
130   Label operator-(uint64_t subtrahend) const;
131   uint64_t operator-(const Label &subtrahend) const;
132 
133   // We could also provide == and != that work on undefined, but
134   // related, labels.
135 
136   // Return true if this label's value is known. If VALUE_P is given,
137   // set *VALUE_P to the known value if returning true.
138   bool IsKnownConstant(uint64_t *value_p = NULL) const;
139 
140   // Return true if the offset from LABEL to this label is known. If
141   // OFFSET_P is given, set *OFFSET_P to the offset when returning true.
142   //
143   // You can think of l.KnownOffsetFrom(m, &d) as being like 'd = l-m',
144   // except that it also returns a value indicating whether the
145   // subtraction is possible given what we currently know of l and m.
146   // It can be possible even if we don't know l and m's values. For
147   // example:
148   //
149   //   Label l, m;
150   //   m = l + 10;
151   //   l.IsKnownConstant();             // false
152   //   m.IsKnownConstant();             // false
153   //   uint64_t d;
154   //   l.IsKnownOffsetFrom(m, &d);      // true, and sets d to -10.
155   //   l-m                              // -10
156   //   m-l                              // 10
157   //   m.Value()                        // error: m's value is not known
158   bool IsKnownOffsetFrom(const Label &label, uint64_t *offset_p = NULL) const;
159 
160  private:
161   // A label's value, or if that is not yet known, how the value is
162   // related to other labels' values. A binding may be:
163   // - a known constant,
164   // - constrained to be equal to some other binding plus a constant, or
165   // - unconstrained, and free to take on any value.
166   //
167   // Many labels may point to a single binding, and each binding may
168   // refer to another, so bindings and labels form trees whose leaves
169   // are labels, whose interior nodes (and roots) are bindings, and
170   // where links point from children to parents. Bindings are
171   // reference counted, allowing labels to be lightweight, copyable,
172   // assignable, placed in containers, and so on.
173   class Binding {
174    public:
175     Binding();
176     Binding(uint64_t addend);
177     ~Binding();
178 
179     // Increment our reference count.
Acquire()180     void Acquire() { reference_count_++; };
181     // Decrement our reference count, and return true if it is zero.
Release()182     bool Release() { return --reference_count_ == 0; }
183 
184     // Set this binding to be equal to BINDING + ADDEND. If BINDING is
185     // NULL, then set this binding to the known constant ADDEND.
186     // Update every binding on this binding's chain to point directly
187     // to BINDING, or to be a constant, with addends adjusted
188     // appropriately.
189     void Set(Binding *binding, uint64_t value);
190 
191     // Return what we know about the value of this binding.
192     // - If this binding's value is a known constant, set BASE to
193     //   NULL, and set ADDEND to its value.
194     // - If this binding is not a known constant but related to other
195     //   bindings, set BASE to the binding at the end of the relation
196     //   chain (which will always be unconstrained), and set ADDEND to the
197     //   value to add to that binding's value to get this binding's
198     //   value.
199     // - If this binding is unconstrained, set BASE to this, and leave
200     //   ADDEND unchanged.
201     void Get(Binding **base, uint64_t *addend);
202 
203    private:
204     // There are three cases:
205     //
206     // - A binding representing a known constant value has base_ NULL,
207     //   and addend_ equal to the value.
208     //
209     // - A binding representing a completely unconstrained value has
210     //   base_ pointing to this; addend_ is unused.
211     //
212     // - A binding whose value is related to some other binding's
213     //   value has base_ pointing to that other binding, and addend_
214     //   set to the amount to add to that binding's value to get this
215     //   binding's value. We only represent relationships of the form
216     //   x = y+c.
217     //
218     // Thus, the bind_ links form a chain terminating in either a
219     // known constant value or a completely unconstrained value. Most
220     // operations on bindings do path compression: they change every
221     // binding on the chain to point directly to the final value,
222     // adjusting addends as appropriate.
223     Binding *base_;
224     uint64_t addend_;
225 
226     // The number of Labels and Bindings pointing to this binding.
227     // (When a binding points to itself, indicating a completely
228     // unconstrained binding, that doesn't count as a reference.)
229     int reference_count_;
230   };
231 
232   // This label's value.
233   Binding *value_;
234 };
235 
236 inline Label operator+(uint64_t a, const Label &l) { return l + a; }
237 // Note that int-Label isn't defined, as negating a Label is not an
238 // operation we support.
239 
240 // Conventions for representing larger numbers as sequences of bytes.
241 enum Endianness {
242   kBigEndian,        // Big-endian: the most significant byte comes first.
243   kLittleEndian,     // Little-endian: the least significant byte comes first.
244   kUnsetEndian,      // used internally
245 };
246 
247 // A section is a sequence of bytes, constructed by appending bytes
248 // to the end. Sections have a convenient and flexible set of member
249 // functions for appending data in various formats: big-endian and
250 // little-endian signed and unsigned values of different sizes;
251 // LEB128 and ULEB128 values (see below), and raw blocks of bytes.
252 //
253 // If you need to append a value to a section that is not convenient
254 // to compute immediately, you can create a label, append the
255 // label's value to the section, and then set the label's value
256 // later, when it's convenient to do so. Once a label's value is
257 // known, the section class takes care of updating all previously
258 // appended references to it.
259 //
260 // Once all the labels to which a section refers have had their
261 // values determined, you can get a copy of the section's contents
262 // as a string.
263 //
264 // Note that there is no specified "start of section" label. This is
265 // because there are typically several different meanings for "the
266 // start of a section": the offset of the section within an object
267 // file, the address in memory at which the section's content appear,
268 // and so on. It's up to the code that uses the Section class to
269 // keep track of these explicitly, as they depend on the application.
270 class Section {
271  public:
272   Section(Endianness endianness = kUnsetEndian)
endianness_(endianness)273       : endianness_(endianness) { };
274 
275   // A base class destructor should be either public and virtual,
276   // or protected and nonvirtual.
~Section()277   virtual ~Section() { };
278 
279   // Set the default endianness of this section to ENDIANNESS. This
280   // sets the behavior of the D<N> appending functions. If the
281   // assembler's default endianness was set, this is the
set_endianness(Endianness endianness)282   void set_endianness(Endianness endianness) {
283     endianness_ = endianness;
284   }
285 
286   // Return the default endianness of this section.
endianness()287   Endianness endianness() const { return endianness_; }
288 
289   // Append the SIZE bytes at DATA or the contents of STRING to the
290   // end of this section. Return a reference to this section.
Append(const uint8_t * data,size_t size)291   Section &Append(const uint8_t *data, size_t size) {
292     contents_.append(reinterpret_cast<const char *>(data), size);
293     return *this;
294   };
Append(const string & data)295   Section &Append(const string &data) {
296     contents_.append(data);
297     return *this;
298   };
299 
300   // Append SIZE copies of BYTE to the end of this section. Return a
301   // reference to this section.
Append(size_t size,uint8_t byte)302   Section &Append(size_t size, uint8_t byte) {
303     contents_.append(size, (char) byte);
304     return *this;
305   }
306 
307   // Append NUMBER to this section. ENDIANNESS is the endianness to
308   // use to write the number. SIZE is the length of the number in
309   // bytes. Return a reference to this section.
310   Section &Append(Endianness endianness, size_t size, uint64_t number);
311   Section &Append(Endianness endianness, size_t size, const Label &label);
312 
313   // Append SECTION to the end of this section. The labels SECTION
314   // refers to need not be defined yet.
315   //
316   // Note that this has no effect on any Labels' values, or on
317   // SECTION. If placing SECTION within 'this' provides new
318   // constraints on existing labels' values, then it's up to the
319   // caller to fiddle with those labels as needed.
320   Section &Append(const Section &section);
321 
322   // Append the contents of DATA as a series of bytes terminated by
323   // a NULL character.
AppendCString(const string & data)324   Section &AppendCString(const string &data) {
325     Append(data);
326     contents_ += '\0';
327     return *this;
328   }
329 
330   // Append at most SIZE bytes from DATA; if DATA is less than SIZE bytes
331   // long, pad with '\0' characters.
AppendCString(const string & data,size_t size)332   Section &AppendCString(const string &data, size_t size) {
333     contents_.append(data, 0, size);
334     if (data.size() < size)
335       Append(size - data.size(), 0);
336     return *this;
337   }
338 
339   // Append VALUE or LABEL to this section, with the given bit width and
340   // endianness. Return a reference to this section.
341   //
342   // The names of these functions have the form <ENDIANNESS><BITWIDTH>:
343   // <ENDIANNESS> is either 'L' (little-endian, least significant byte first),
344   //                        'B' (big-endian, most significant byte first), or
345   //                        'D' (default, the section's default endianness)
346   // <BITWIDTH> is 8, 16, 32, or 64.
347   //
348   // Since endianness doesn't matter for a single byte, all the
349   // <BITWIDTH>=8 functions are equivalent.
350   //
351   // These can be used to write both signed and unsigned values, as
352   // the compiler will properly sign-extend a signed value before
353   // passing it to the function, at which point the function's
354   // behavior is the same either way.
L8(uint8_t value)355   Section &L8(uint8_t value) { contents_ += value; return *this; }
B8(uint8_t value)356   Section &B8(uint8_t value) { contents_ += value; return *this; }
D8(uint8_t value)357   Section &D8(uint8_t value) { contents_ += value; return *this; }
358   Section &L16(uint16_t), &L32(uint32_t), &L64(uint64_t),
359           &B16(uint16_t), &B32(uint32_t), &B64(uint64_t),
360           &D16(uint16_t), &D32(uint32_t), &D64(uint64_t);
361   Section &L8(const Label &label),  &L16(const Label &label),
362           &L32(const Label &label), &L64(const Label &label),
363           &B8(const Label &label),  &B16(const Label &label),
364           &B32(const Label &label), &B64(const Label &label),
365           &D8(const Label &label),  &D16(const Label &label),
366           &D32(const Label &label), &D64(const Label &label);
367 
368   // Append VALUE in a signed LEB128 (Little-Endian Base 128) form.
369   //
370   // The signed LEB128 representation of an integer N is a variable
371   // number of bytes:
372   //
373   // - If N is between -0x40 and 0x3f, then its signed LEB128
374   //   representation is a single byte whose value is N.
375   //
376   // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
377   //   0x80, followed by the signed LEB128 representation of N / 128,
378   //   rounded towards negative infinity.
379   //
380   // In other words, we break VALUE into groups of seven bits, put
381   // them in little-endian order, and then write them as eight-bit
382   // bytes with the high bit on all but the last.
383   //
384   // Note that VALUE cannot be a Label (we would have to implement
385   // relaxation).
386   Section &LEB128(long long value);
387 
388   // Append VALUE in unsigned LEB128 (Little-Endian Base 128) form.
389   //
390   // The unsigned LEB128 representation of an integer N is a variable
391   // number of bytes:
392   //
393   // - If N is between 0 and 0x7f, then its unsigned LEB128
394   //   representation is a single byte whose value is N.
395   //
396   // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
397   //   0x80, followed by the unsigned LEB128 representation of N /
398   //   128, rounded towards negative infinity.
399   //
400   // Note that VALUE cannot be a Label (we would have to implement
401   // relaxation).
402   Section &ULEB128(uint64_t value);
403 
404   // Jump to the next location aligned on an ALIGNMENT-byte boundary,
405   // relative to the start of the section. Fill the gap with PAD_BYTE.
406   // ALIGNMENT must be a power of two. Return a reference to this
407   // section.
408   Section &Align(size_t alignment, uint8_t pad_byte = 0);
409 
410   // Clear the contents of this section.
411   void Clear();
412 
413   // Return the current size of the section.
Size()414   size_t Size() const { return contents_.size(); }
415 
416   // Return a label representing the start of the section.
417   //
418   // It is up to the user whether this label represents the section's
419   // position in an object file, the section's address in memory, or
420   // what have you; some applications may need both, in which case
421   // this simple-minded interface won't be enough. This class only
422   // provides a single start label, for use with the Here and Mark
423   // member functions.
424   //
425   // Ideally, we'd provide this in a subclass that actually knows more
426   // about the application at hand and can provide an appropriate
427   // collection of start labels. But then the appending member
428   // functions like Append and D32 would return a reference to the
429   // base class, not the derived class, and the chaining won't work.
430   // Since the only value here is in pretty notation, that's a fatal
431   // flaw.
start()432   Label start() const { return start_; }
433 
434   // Return a label representing the point at which the next Appended
435   // item will appear in the section, relative to start().
Here()436   Label Here() const { return start_ + Size(); }
437 
438   // Set *LABEL to Here, and return a reference to this section.
Mark(Label * label)439   Section &Mark(Label *label) { *label = Here(); return *this; }
440 
441   // If there are no undefined label references left in this
442   // section, set CONTENTS to the contents of this section, as a
443   // string, and clear this section. Return true on success, or false
444   // if there were still undefined labels.
445   bool GetContents(string *contents);
446 
447  private:
448   // Used internally. A reference to a label's value.
449   struct Reference {
ReferenceReference450     Reference(size_t set_offset, Endianness set_endianness,  size_t set_size,
451               const Label &set_label)
452         : offset(set_offset), endianness(set_endianness), size(set_size),
453           label(set_label) { }
454 
455     // The offset of the reference within the section.
456     size_t offset;
457 
458     // The endianness of the reference.
459     Endianness endianness;
460 
461     // The size of the reference.
462     size_t size;
463 
464     // The label to which this is a reference.
465     Label label;
466   };
467 
468   // The default endianness of this section.
469   Endianness endianness_;
470 
471   // The contents of the section.
472   string contents_;
473 
474   // References to labels within those contents.
475   vector<Reference> references_;
476 
477   // A label referring to the beginning of the section.
478   Label start_;
479 };
480 
481 }  // namespace test_assembler
482 }  // namespace google_breakpad
483 
484 #endif  // PROCESSOR_TEST_ASSEMBLER_H_
485