1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
2    data. */
3 
4 /* By Rod Smith, initial coding January to February, 2009 */
5 
6 /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
7   under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8 
9 #define __STDC_LIMIT_MACROS
10 #define __STDC_CONSTANT_MACROS
11 
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <stdint.h>
15 #include <fcntl.h>
16 #include <string.h>
17 #include <math.h>
18 #include <time.h>
19 #include <sys/stat.h>
20 #include <errno.h>
21 #include <iostream>
22 #include <algorithm>
23 #include "crc32.h"
24 #include "gpt.h"
25 #include "bsd.h"
26 #include "support.h"
27 #include "parttypes.h"
28 #include "attributes.h"
29 #include "diskio.h"
30 
31 using namespace std;
32 
33 #ifdef __FreeBSD__
34 #define log2(x) (log(x) / M_LN2)
35 #endif // __FreeBSD__
36 
37 #ifdef _MSC_VER
38 #define log2(x) (log((double) x) / log(2.0))
39 #endif // Microsoft Visual C++
40 
41 #ifdef EFI
42 // in UEFI mode MMX registers are not yet available so using the
43 // x86_64 ABI to move "double" values around is not an option.
44 #ifdef log2
45 #undef log2
46 #endif
47 #define log2(x) log2_32( x )
log2_32(uint32_t v)48 static inline uint32_t log2_32(uint32_t v) {
49    int r = -1;
50    while (v >= 1) {
51       r++;
52       v >>= 1;
53    }
54    return r;
55 }
56 #endif
57 
58 /****************************************
59  *                                      *
60  * GPTData class and related structures *
61  *                                      *
62  ****************************************/
63 
64 // Default constructor
GPTData(void)65 GPTData::GPTData(void) {
66    blockSize = SECTOR_SIZE; // set a default
67    diskSize = 0;
68    partitions = NULL;
69    state = gpt_valid;
70    device = "";
71    justLooking = 0;
72    mainCrcOk = 0;
73    secondCrcOk = 0;
74    mainPartsCrcOk = 0;
75    secondPartsCrcOk = 0;
76    apmFound = 0;
77    bsdFound = 0;
78    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
79    beQuiet = 0;
80    whichWasUsed = use_new;
81    mainHeader.numParts = 0;
82    numParts = 0;
83    SetGPTSize(NUM_GPT_ENTRIES);
84    // Initialize CRC functions...
85    chksum_crc32gentab();
86 } // GPTData default constructor
87 
88 // The following constructor loads GPT data from a device file
GPTData(string filename)89 GPTData::GPTData(string filename) {
90    blockSize = SECTOR_SIZE; // set a default
91    diskSize = 0;
92    partitions = NULL;
93    state = gpt_invalid;
94    device = "";
95    justLooking = 0;
96    mainCrcOk = 0;
97    secondCrcOk = 0;
98    mainPartsCrcOk = 0;
99    secondPartsCrcOk = 0;
100    apmFound = 0;
101    bsdFound = 0;
102    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
103    beQuiet = 0;
104    whichWasUsed = use_new;
105    mainHeader.numParts = 0;
106    numParts = 0;
107    // Initialize CRC functions...
108    chksum_crc32gentab();
109    if (!LoadPartitions(filename))
110       exit(2);
111 } // GPTData(string filename) constructor
112 
113 // Destructor
~GPTData(void)114 GPTData::~GPTData(void) {
115    delete[] partitions;
116 } // GPTData destructor
117 
118 // Assignment operator
operator =(const GPTData & orig)119 GPTData & GPTData::operator=(const GPTData & orig) {
120    uint32_t i;
121 
122    mainHeader = orig.mainHeader;
123    numParts = orig.numParts;
124    secondHeader = orig.secondHeader;
125    protectiveMBR = orig.protectiveMBR;
126    device = orig.device;
127    blockSize = orig.blockSize;
128    diskSize = orig.diskSize;
129    state = orig.state;
130    justLooking = orig.justLooking;
131    mainCrcOk = orig.mainCrcOk;
132    secondCrcOk = orig.secondCrcOk;
133    mainPartsCrcOk = orig.mainPartsCrcOk;
134    secondPartsCrcOk = orig.secondPartsCrcOk;
135    apmFound = orig.apmFound;
136    bsdFound = orig.bsdFound;
137    sectorAlignment = orig.sectorAlignment;
138    beQuiet = orig.beQuiet;
139    whichWasUsed = orig.whichWasUsed;
140 
141    myDisk.OpenForRead(orig.myDisk.GetName());
142 
143    delete[] partitions;
144    partitions = new GPTPart [numParts];
145    if (partitions == NULL) {
146       cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
147            << "Terminating!\n";
148       exit(1);
149    } // if
150    for (i = 0; i < numParts; i++) {
151       partitions[i] = orig.partitions[i];
152    } // for
153 
154    return *this;
155 } // GPTData::operator=()
156 
157 /*********************************************************************
158  *                                                                   *
159  * Begin functions that verify data, or that adjust the verification *
160  * information (compute CRCs, rebuild headers)                       *
161  *                                                                   *
162  *********************************************************************/
163 
164 // Perform detailed verification, reporting on any problems found, but
165 // do *NOT* recover from these problems. Returns the total number of
166 // problems identified.
Verify(void)167 int GPTData::Verify(void) {
168    int problems = 0, alignProbs = 0;
169    uint32_t i, numSegments;
170    uint64_t totalFree, largestSegment;
171 
172    // First, check for CRC errors in the GPT data....
173    if (!mainCrcOk) {
174       problems++;
175       cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
176            << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
177            << "header ('b' on the recovery & transformation menu). This report may be a false\n"
178            << "alarm if you've already corrected other problems.\n";
179    } // if
180    if (!mainPartsCrcOk) {
181       problems++;
182       cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
183            << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
184            << "transformation menu). This report may be a false alarm if you've already\n"
185            << "corrected other problems.\n";
186    } // if
187    if (!secondCrcOk) {
188       problems++;
189       cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
190            << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
191            << "header ('d' on the recovery & transformation menu). This report may be a false\n"
192            << "alarm if you've already corrected other problems.\n";
193    } // if
194    if (!secondPartsCrcOk) {
195       problems++;
196       cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
197            << "be corrupt. This program will automatically create a new backup partition\n"
198            << "table when you save your partitions.\n";
199    } // if
200 
201    // Now check that the main and backup headers both point to themselves....
202    if (mainHeader.currentLBA != 1) {
203       problems++;
204       cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
205            << "is being automatically corrected, but it may be a symptom of more serious\n"
206            << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
207       mainHeader.currentLBA = 1;
208    } // if
209    if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
210       problems++;
211       cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
212            << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
213            << "option on the experts' menu to adjust the secondary header's and partition\n"
214            << "table's locations.\n";
215    } // if
216 
217    // Now check that critical main and backup GPT entries match each other
218    if (mainHeader.currentLBA != secondHeader.backupLBA) {
219       problems++;
220       cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
221            << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
222            << secondHeader.backupLBA << ").\n";
223    } // if
224    if (mainHeader.backupLBA != secondHeader.currentLBA) {
225       problems++;
226       cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
227            << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
228            << secondHeader.currentLBA << ").\n"
229            << "The 'e' option on the experts' menu may fix this problem.\n";
230    } // if
231    if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
232       problems++;
233       cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
234            << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
235            << secondHeader.firstUsableLBA << ")\n";
236    } // if
237    if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
238       problems++;
239       cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
240            << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
241            << secondHeader.lastUsableLBA << ")\n"
242            << "The 'e' option on the experts' menu can probably fix this problem.\n";
243    } // if
244    if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
245       problems++;
246       cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
247            << ") doesn't\nmatch the backup GPT header's disk GUID ("
248            << secondHeader.diskGUID << ")\n"
249            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
250            << "select one or the other header.\n";
251    } // if
252    if (mainHeader.numParts != secondHeader.numParts) {
253       problems++;
254       cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
255            << ") doesn't\nmatch the backup GPT header's number of partitions ("
256            << secondHeader.numParts << ")\n"
257            << "Resizing the partition table ('s' on the experts' menu) may help.\n";
258    } // if
259    if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
260       problems++;
261       cout << "\nProblem: main GPT header's size of partition entries ("
262            << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
263            << "match the backup GPT header's size of partition entries ("
264            << secondHeader.sizeOfPartitionEntries << ")\n"
265            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
266            << "select one or the other header.\n";
267    } // if
268 
269    // Now check for a few other miscellaneous problems...
270    // Check that the disk size will hold the data...
271    if (mainHeader.backupLBA >= diskSize) {
272       problems++;
273       cout << "\nProblem: Disk is too small to hold all the data!\n"
274            << "(Disk size is " << diskSize << " sectors, needs to be "
275            << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
276            << "The 'e' option on the experts' menu may fix this problem.\n";
277    } // if
278 
279    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
280       problems++;
281       cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
282            << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
283            << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
284            << "The 'e' option on the experts' menu will probably fix this problem\n";
285    }
286 
287    // Check for overlapping partitions....
288    problems += FindOverlaps();
289 
290    // Check for insane partitions (start after end, hugely big, etc.)
291    problems += FindInsanePartitions();
292 
293    // Check for mismatched MBR and GPT partitions...
294    problems += FindHybridMismatches();
295 
296    // Check for MBR-specific problems....
297    problems += VerifyMBR();
298 
299    // Check for a 0xEE protective partition that's marked as active....
300    if (protectiveMBR.IsEEActive()) {
301       cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
302            << "technically a violation of the GPT specification, and can cause some EFIs to\n"
303            << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
304            << "computers. You can clear this flag by creating a fresh protective MBR using\n"
305            << "the 'n' option on the experts' menu.\n";
306    }
307 
308    // Verify that partitions don't run into GPT data areas....
309    problems += CheckGPTSize();
310 
311    if (!protectiveMBR.DoTheyFit()) {
312       cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
313            << "fresh protective or hybrid MBR is recommended.\n";
314       problems++;
315    }
316 
317    // Check that partitions are aligned on proper boundaries (for WD Advanced
318    // Format and similar disks)....
319    for (i = 0; i < numParts; i++) {
320       if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) {
321          cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
322               << sectorAlignment << "-sector boundary. This may\nresult "
323               << "in degraded performance on some modern (2009 and later) hard disks.\n";
324          alignProbs++;
325       } // if
326    } // for
327    if (alignProbs > 0)
328       cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
329       << "for information on disk alignment.\n";
330 
331    // Now compute available space, but only if no problems found, since
332    // problems could affect the results
333    if (problems == 0) {
334       totalFree = FindFreeBlocks(&numSegments, &largestSegment);
335       cout << "\nNo problems found. " << totalFree << " free sectors ("
336            << BytesToIeee(totalFree, blockSize) << ") available in "
337            << numSegments << "\nsegments, the largest of which is "
338            << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
339            << ") in size.\n";
340    } else {
341       cout << "\nIdentified " << problems << " problems!\n";
342    } // if/else
343 
344    return (problems);
345 } // GPTData::Verify()
346 
347 // Checks to see if the GPT tables overrun existing partitions; if they
348 // do, issues a warning but takes no action. Returns number of problems
349 // detected (0 if OK, 1 to 2 if problems).
CheckGPTSize(void)350 int GPTData::CheckGPTSize(void) {
351    uint64_t overlap, firstUsedBlock, lastUsedBlock;
352    uint32_t i;
353    int numProbs = 0;
354 
355    // first, locate the first & last used blocks
356    firstUsedBlock = UINT64_MAX;
357    lastUsedBlock = 0;
358    for (i = 0; i < numParts; i++) {
359       if (partitions[i].IsUsed()) {
360          if (partitions[i].GetFirstLBA() < firstUsedBlock)
361             firstUsedBlock = partitions[i].GetFirstLBA();
362          if (partitions[i].GetLastLBA() > lastUsedBlock) {
363             lastUsedBlock = partitions[i].GetLastLBA();
364          } // if
365       } // if
366    } // for
367 
368    // If the disk size is 0 (the default), then it means that various
369    // variables aren't yet set, so the below tests will be useless;
370    // therefore we should skip everything
371    if (diskSize != 0) {
372       if (mainHeader.firstUsableLBA > firstUsedBlock) {
373          overlap = mainHeader.firstUsableLBA - firstUsedBlock;
374          cout << "Warning! Main partition table overlaps the first partition by "
375               << overlap << " blocks!\n";
376          if (firstUsedBlock > 2) {
377             cout << "Try reducing the partition table size by " << overlap * 4
378                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
379          } else {
380             cout << "You will need to delete this partition or resize it in another utility.\n";
381          } // if/else
382          numProbs++;
383       } // Problem at start of disk
384       if (mainHeader.lastUsableLBA < lastUsedBlock) {
385          overlap = lastUsedBlock - mainHeader.lastUsableLBA;
386          cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
387               << overlap << " blocks!\n";
388          if (lastUsedBlock > (diskSize - 2)) {
389             cout << "You will need to delete this partition or resize it in another utility.\n";
390          } else {
391             cout << "Try reducing the partition table size by " << overlap * 4
392                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
393          } // if/else
394          numProbs++;
395       } // Problem at end of disk
396    } // if (diskSize != 0)
397    return numProbs;
398 } // GPTData::CheckGPTSize()
399 
400 // Check the validity of the GPT header. Returns 1 if the main header
401 // is valid, 2 if the backup header is valid, 3 if both are valid, and
402 // 0 if neither is valid. Note that this function checks the GPT signature,
403 // revision value, and CRCs in both headers.
CheckHeaderValidity(void)404 int GPTData::CheckHeaderValidity(void) {
405    int valid = 3;
406 
407    cout.setf(ios::uppercase);
408    cout.fill('0');
409 
410    // Note: failed GPT signature checks produce no error message because
411    // a message is displayed in the ReversePartitionBytes() function
412    if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
413       valid -= 1;
414    } else if ((mainHeader.revision != 0x00010000) && valid) {
415       valid -= 1;
416       cout << "Unsupported GPT version in main header; read 0x";
417       cout.width(8);
418       cout << hex << mainHeader.revision << ", should be\n0x";
419       cout.width(8);
420       cout << UINT32_C(0x00010000) << dec << "\n";
421    } // if/else/if
422 
423    if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
424       valid -= 2;
425    } else if ((secondHeader.revision != 0x00010000) && valid) {
426       valid -= 2;
427       cout << "Unsupported GPT version in backup header; read 0x";
428       cout.width(8);
429       cout << hex << secondHeader.revision << ", should be\n0x";
430       cout.width(8);
431       cout << UINT32_C(0x00010000) << dec << "\n";
432    } // if/else/if
433 
434    // Check for an Apple disk signature
435    if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
436         (mainHeader.signature << 32) == APM_SIGNATURE2) {
437       apmFound = 1; // Will display warning message later
438    } // if
439    cout.fill(' ');
440 
441    return valid;
442 } // GPTData::CheckHeaderValidity()
443 
444 // Check the header CRC to see if it's OK...
445 // Note: Must be called with header in platform-ordered byte order.
446 // Returns 1 if header's computed CRC matches the stored value, 0 if the
447 // computed and stored values don't match
CheckHeaderCRC(struct GPTHeader * header,int warn)448 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
449    uint32_t oldCRC, newCRC, hSize;
450    uint8_t *temp;
451 
452    // Back up old header CRC and then blank it, since it must be 0 for
453    // computation to be valid
454    oldCRC = header->headerCRC;
455    header->headerCRC = UINT32_C(0);
456 
457    hSize = header->headerSize;
458 
459    if (IsLittleEndian() == 0)
460       ReverseHeaderBytes(header);
461 
462    if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
463       if (warn) {
464          cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
465          cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
466       } // if
467       hSize = HEADER_SIZE;
468    } else if ((hSize > sizeof(GPTHeader)) && warn) {
469       cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
470       cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
471            << "which may result in a CRC false alarm.\n";
472    } // if/elseif
473    temp = new uint8_t[hSize];
474    if (temp != NULL) {
475       memset(temp, 0, hSize);
476       if (hSize < sizeof(GPTHeader))
477          memcpy(temp, header, hSize);
478       else
479          memcpy(temp, header, sizeof(GPTHeader));
480 
481       newCRC = chksum_crc32((unsigned char*) temp, hSize);
482       delete[] temp;
483    } else {
484       cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
485       exit(1);
486    }
487    if (IsLittleEndian() == 0)
488       ReverseHeaderBytes(header);
489    header->headerCRC = oldCRC;
490    return (oldCRC == newCRC);
491 } // GPTData::CheckHeaderCRC()
492 
493 // Recompute all the CRCs. Must be called before saving if any changes have
494 // been made. Must be called on platform-ordered data (this function reverses
495 // byte order and then undoes that reversal.)
RecomputeCRCs(void)496 void GPTData::RecomputeCRCs(void) {
497    uint32_t crc, hSize;
498    int littleEndian = 1;
499 
500    // If the header size is bigger than the GPT header data structure, reset it;
501    // otherwise, set both header sizes to whatever the main one is....
502    if (mainHeader.headerSize > sizeof(GPTHeader))
503       hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
504    else
505       hSize = secondHeader.headerSize = mainHeader.headerSize;
506 
507    if ((littleEndian = IsLittleEndian()) == 0) {
508       ReversePartitionBytes();
509       ReverseHeaderBytes(&mainHeader);
510       ReverseHeaderBytes(&secondHeader);
511    } // if
512 
513    // Compute CRC of partition tables & store in main and secondary headers
514    crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
515    mainHeader.partitionEntriesCRC = crc;
516    secondHeader.partitionEntriesCRC = crc;
517    if (littleEndian == 0) {
518       ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
519       ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
520    } // if
521 
522    // Zero out GPT headers' own CRCs (required for correct computation)
523    mainHeader.headerCRC = 0;
524    secondHeader.headerCRC = 0;
525 
526    crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
527    if (littleEndian == 0)
528       ReverseBytes(&crc, 4);
529    mainHeader.headerCRC = crc;
530    crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
531    if (littleEndian == 0)
532       ReverseBytes(&crc, 4);
533    secondHeader.headerCRC = crc;
534 
535    if (littleEndian == 0) {
536       ReverseHeaderBytes(&mainHeader);
537       ReverseHeaderBytes(&secondHeader);
538       ReversePartitionBytes();
539    } // if
540 } // GPTData::RecomputeCRCs()
541 
542 // Rebuild the main GPT header, using the secondary header as a model.
543 // Typically called when the main header has been found to be corrupt.
RebuildMainHeader(void)544 void GPTData::RebuildMainHeader(void) {
545    mainHeader.signature = GPT_SIGNATURE;
546    mainHeader.revision = secondHeader.revision;
547    mainHeader.headerSize = secondHeader.headerSize;
548    mainHeader.headerCRC = UINT32_C(0);
549    mainHeader.reserved = secondHeader.reserved;
550    mainHeader.currentLBA = secondHeader.backupLBA;
551    mainHeader.backupLBA = secondHeader.currentLBA;
552    mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
553    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
554    mainHeader.diskGUID = secondHeader.diskGUID;
555    mainHeader.partitionEntriesLBA = UINT64_C(2);
556    mainHeader.numParts = secondHeader.numParts;
557    mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
558    mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
559    memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
560    mainCrcOk = secondCrcOk;
561    SetGPTSize(mainHeader.numParts, 0);
562 } // GPTData::RebuildMainHeader()
563 
564 // Rebuild the secondary GPT header, using the main header as a model.
RebuildSecondHeader(void)565 void GPTData::RebuildSecondHeader(void) {
566    secondHeader.signature = GPT_SIGNATURE;
567    secondHeader.revision = mainHeader.revision;
568    secondHeader.headerSize = mainHeader.headerSize;
569    secondHeader.headerCRC = UINT32_C(0);
570    secondHeader.reserved = mainHeader.reserved;
571    secondHeader.currentLBA = mainHeader.backupLBA;
572    secondHeader.backupLBA = mainHeader.currentLBA;
573    secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
574    secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
575    secondHeader.diskGUID = mainHeader.diskGUID;
576    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
577    secondHeader.numParts = mainHeader.numParts;
578    secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
579    secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
580    memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
581    secondCrcOk = mainCrcOk;
582    SetGPTSize(secondHeader.numParts, 0);
583 } // GPTData::RebuildSecondHeader()
584 
585 // Search for hybrid MBR entries that have no corresponding GPT partition.
586 // Returns number of such mismatches found
FindHybridMismatches(void)587 int GPTData::FindHybridMismatches(void) {
588    int i, found, numFound = 0;
589    uint32_t j;
590    uint64_t mbrFirst, mbrLast;
591 
592    for (i = 0; i < 4; i++) {
593       if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
594          j = 0;
595          found = 0;
596          mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
597          mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
598          do {
599             if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
600                 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
601                found = 1;
602             j++;
603          } while ((!found) && (j < numParts));
604          if (!found) {
605             numFound++;
606             cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
607                  << i + 1 << ", of type 0x";
608             cout.fill('0');
609             cout.setf(ios::uppercase);
610             cout.width(2);
611             cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
612                  << "has no corresponding GPT partition! You may continue, but this condition\n"
613                  << "might cause data loss in the future!\a\n" << dec;
614             cout.fill(' ');
615          } // if
616       } // if
617    } // for
618    return numFound;
619 } // GPTData::FindHybridMismatches
620 
621 // Find overlapping partitions and warn user about them. Returns number of
622 // overlapping partitions.
623 // Returns number of overlapping segments found.
FindOverlaps(void)624 int GPTData::FindOverlaps(void) {
625    int problems = 0;
626    uint32_t i, j;
627 
628    for (i = 1; i < numParts; i++) {
629       for (j = 0; j < i; j++) {
630          if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
631              (partitions[i].DoTheyOverlap(partitions[j]))) {
632             problems++;
633             cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
634             cout << "  Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
635                  << " to " << partitions[i].GetLastLBA() << "\n";
636             cout << "  Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
637                  << " to " << partitions[j].GetLastLBA() << "\n";
638          } // if
639       } // for j...
640    } // for i...
641    return problems;
642 } // GPTData::FindOverlaps()
643 
644 // Find partitions that are insane -- they start after they end or are too
645 // big for the disk. (The latter should duplicate detection of overlaps
646 // with GPT backup data structures, but better to err on the side of
647 // redundant tests than to miss something....)
648 // Returns number of problems found.
FindInsanePartitions(void)649 int GPTData::FindInsanePartitions(void) {
650    uint32_t i;
651    int problems = 0;
652 
653    for (i = 0; i < numParts; i++) {
654       if (partitions[i].IsUsed()) {
655          if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
656             problems++;
657             cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
658          } // if
659          if (partitions[i].GetLastLBA() >= diskSize) {
660             problems++;
661          cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
662          } // if
663       } // if
664    } // for
665    return problems;
666 } // GPTData::FindInsanePartitions(void)
667 
668 
669 /******************************************************************
670  *                                                                *
671  * Begin functions that load data from disk or save data to disk. *
672  *                                                                *
673  ******************************************************************/
674 
675 // Change the filename associated with the GPT. Used for duplicating
676 // the partition table to a new disk and saving backups.
677 // Returns 1 on success, 0 on failure.
SetDisk(const string & deviceFilename)678 int GPTData::SetDisk(const string & deviceFilename) {
679    int err, allOK = 1;
680 
681    device = deviceFilename;
682    if (allOK && myDisk.OpenForRead(deviceFilename)) {
683       // store disk information....
684       diskSize = myDisk.DiskSize(&err);
685       blockSize = (uint32_t) myDisk.GetBlockSize();
686    } // if
687    protectiveMBR.SetDisk(&myDisk);
688    protectiveMBR.SetDiskSize(diskSize);
689    protectiveMBR.SetBlockSize(blockSize);
690    return allOK;
691 } // GPTData::SetDisk()
692 
693 // Scan for partition data. This function loads the MBR data (regular MBR or
694 // protective MBR) and loads BSD disklabel data (which is probably invalid).
695 // It also looks for APM data, forces a load of GPT data, and summarizes
696 // the results.
PartitionScan(void)697 void GPTData::PartitionScan(void) {
698    BSDData bsdDisklabel;
699 
700    // Read the MBR & check for BSD disklabel
701    protectiveMBR.ReadMBRData(&myDisk);
702    bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
703 
704    // Load the GPT data, whether or not it's valid
705    ForceLoadGPTData();
706 
707    // Some tools create a 0xEE partition that's too big. If this is detected,
708    // normalize it....
709    if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
710       if (!beQuiet) {
711          cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
712       } // if
713       protectiveMBR.MakeProtectiveMBR();
714    } // if
715 
716    if (!beQuiet) {
717       cout << "Partition table scan:\n";
718       protectiveMBR.ShowState();
719       bsdDisklabel.ShowState();
720       ShowAPMState(); // Show whether there's an Apple Partition Map present
721       ShowGPTState(); // Show GPT status
722       cout << "\n";
723    } // if
724 
725    if (apmFound) {
726       cout << "\n*******************************************************************\n"
727            << "This disk appears to contain an Apple-format (APM) partition table!\n";
728       if (!justLooking) {
729          cout << "It will be destroyed if you continue!\n";
730       } // if
731       cout << "*******************************************************************\n\n\a";
732    } // if
733 } // GPTData::PartitionScan()
734 
735 // Read GPT data from a disk.
LoadPartitions(const string & deviceFilename)736 int GPTData::LoadPartitions(const string & deviceFilename) {
737    BSDData bsdDisklabel;
738    int err, allOK = 1;
739    MBRValidity mbrState;
740 
741    if (myDisk.OpenForRead(deviceFilename)) {
742       err = myDisk.OpenForWrite(deviceFilename);
743       if ((err == 0) && (!justLooking)) {
744          cout << "\aNOTE: Write test failed with error number " << errno
745               << ". It will be impossible to save\nchanges to this disk's partition table!\n";
746 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
747          cout << "You may be able to enable writes by exiting this program, typing\n"
748               << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
749               << "program.\n";
750 #endif
751          cout << "\n";
752       } // if
753       myDisk.Close(); // Close and re-open read-only in case of bugs
754    } else allOK = 0; // if
755 
756    if (allOK && myDisk.OpenForRead(deviceFilename)) {
757       // store disk information....
758       diskSize = myDisk.DiskSize(&err);
759       blockSize = (uint32_t) myDisk.GetBlockSize();
760       device = deviceFilename;
761       PartitionScan(); // Check for partition types, load GPT, & print summary
762 
763       whichWasUsed = UseWhichPartitions();
764       switch (whichWasUsed) {
765          case use_mbr:
766             XFormPartitions();
767             break;
768          case use_bsd:
769             bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
770 //            bsdDisklabel.DisplayBSDData();
771             ClearGPTData();
772             protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
773             XFormDisklabel(&bsdDisklabel);
774             break;
775          case use_gpt:
776             mbrState = protectiveMBR.GetValidity();
777             if ((mbrState == invalid) || (mbrState == mbr))
778                protectiveMBR.MakeProtectiveMBR();
779             break;
780          case use_new:
781             ClearGPTData();
782             protectiveMBR.MakeProtectiveMBR();
783             break;
784          case use_abort:
785             allOK = 0;
786             cerr << "Invalid partition data!\n";
787             break;
788       } // switch
789 
790       if (allOK)
791          CheckGPTSize();
792       myDisk.Close();
793       ComputeAlignment();
794    } else {
795       allOK = 0;
796    } // if/else
797    return (allOK);
798 } // GPTData::LoadPartitions()
799 
800 // Loads the GPT, as much as possible. Returns 1 if this seems to have
801 // succeeded, 0 if there are obvious problems....
ForceLoadGPTData(void)802 int GPTData::ForceLoadGPTData(void) {
803    int allOK, validHeaders, loadedTable = 1;
804 
805    allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
806 
807    if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
808       allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
809    } else {
810       allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
811       if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
812          cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
813               << "secondary header from the last sector of the disk! You should use 'v' to\n"
814               << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
815               << "the disk.\n";
816    } // if/else
817    if (!allOK)
818       state = gpt_invalid;
819 
820    // Return valid headers code: 0 = both headers bad; 1 = main header
821    // good, backup bad; 2 = backup header good, main header bad;
822    // 3 = both headers good. Note these codes refer to valid GPT
823    // signatures, version numbers, and CRCs.
824    validHeaders = CheckHeaderValidity();
825 
826    // Read partitions (from primary array)
827    if (validHeaders > 0) { // if at least one header is OK....
828       // GPT appears to be valid....
829       state = gpt_valid;
830 
831       // We're calling the GPT valid, but there's a possibility that one
832       // of the two headers is corrupt. If so, use the one that seems to
833       // be in better shape to regenerate the bad one
834       if (validHeaders == 1) { // valid main header, invalid backup header
835          cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
836               << "backup header from main header.\n\n";
837          RebuildSecondHeader();
838          state = gpt_corrupt;
839          secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
840       } else if (validHeaders == 2) { // valid backup header, invalid main header
841          cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
842               << "from backup!\n\n";
843          RebuildMainHeader();
844          state = gpt_corrupt;
845          mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
846       } // if/else/if
847 
848       // Figure out which partition table to load....
849       // Load the main partition table, since either its header's CRC is OK or the
850       // backup header's CRC is not OK....
851       if (mainCrcOk || !secondCrcOk) {
852          if (LoadMainTable() == 0)
853             allOK = 0;
854       } else { // bad main header CRC and backup header CRC is OK
855          state = gpt_corrupt;
856          if (LoadSecondTableAsMain()) {
857             loadedTable = 2;
858             cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
859          } else { // backup table bad, bad main header CRC, but try main table in desperation....
860             if (LoadMainTable() == 0) {
861                allOK = 0;
862                loadedTable = 0;
863                cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
864             } // if
865          } // if/else (LoadSecondTableAsMain())
866       } // if/else (load partition table)
867 
868       if (loadedTable == 1)
869          secondPartsCrcOk = CheckTable(&secondHeader);
870       else if (loadedTable == 2)
871          mainPartsCrcOk = CheckTable(&mainHeader);
872       else
873          mainPartsCrcOk = secondPartsCrcOk = 0;
874 
875       // Problem with main partition table; if backup is OK, use it instead....
876       if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
877          state = gpt_corrupt;
878          allOK = allOK && LoadSecondTableAsMain();
879          mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
880          cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
881               << "partition table\ninstead of main partition table!\n\n";
882       } // if */
883 
884       // Check for valid CRCs and warn if there are problems
885       if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) ||
886            (secondPartsCrcOk == 0)) {
887          cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n";
888          state = gpt_corrupt;
889       } // if
890    } else {
891       state = gpt_invalid;
892    } // if/else
893    return allOK;
894 } // GPTData::ForceLoadGPTData()
895 
896 // Loads the partition table pointed to by the main GPT header. The
897 // main GPT header in memory MUST be valid for this call to do anything
898 // sensible!
899 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadMainTable(void)900 int GPTData::LoadMainTable(void) {
901    return LoadPartitionTable(mainHeader, myDisk);
902 } // GPTData::LoadMainTable()
903 
904 // Load the second (backup) partition table as the primary partition
905 // table. Used in repair functions, and when starting up if the main
906 // partition table is damaged.
907 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadSecondTableAsMain(void)908 int GPTData::LoadSecondTableAsMain(void) {
909    return LoadPartitionTable(secondHeader, myDisk);
910 } // GPTData::LoadSecondTableAsMain()
911 
912 // Load a single GPT header (main or backup) from the specified disk device and
913 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
914 // value appropriately.
915 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
916 // failure.
LoadHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector,int * crcOk)917 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
918    int allOK = 1;
919    GPTHeader tempHeader;
920 
921    disk.Seek(sector);
922    if (disk.Read(&tempHeader, 512) != 512) {
923       cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
924       allOK = 0;
925    } // if
926 
927    // Reverse byte order, if necessary
928    if (IsLittleEndian() == 0) {
929       ReverseHeaderBytes(&tempHeader);
930    } // if
931    *crcOk = CheckHeaderCRC(&tempHeader);
932 
933    if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
934       allOK = SetGPTSize(tempHeader.numParts, 0);
935    }
936 
937    *header = tempHeader;
938    return allOK;
939 } // GPTData::LoadHeader
940 
941 // Load a partition table (either main or secondary) from the specified disk,
942 // using header as a reference for what to load. If sector != 0 (the default
943 // is 0), loads from the specified sector; otherwise loads from the sector
944 // indicated in header.
945 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadPartitionTable(const struct GPTHeader & header,DiskIO & disk,uint64_t sector)946 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
947    uint32_t sizeOfParts, newCRC;
948    int retval;
949 
950    if (disk.OpenForRead()) {
951       if (sector == 0) {
952          retval = disk.Seek(header.partitionEntriesLBA);
953       } else {
954          retval = disk.Seek(sector);
955       } // if/else
956       if (retval == 1)
957          retval = SetGPTSize(header.numParts, 0);
958       if (retval == 1) {
959          sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
960          if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
961             cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
962             retval = 0;
963          } // if
964          newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
965          mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
966          if (IsLittleEndian() == 0)
967             ReversePartitionBytes();
968          if (!mainPartsCrcOk) {
969             cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
970          } // if
971       } else {
972          cerr << "Error! Couldn't seek to partition table!\n";
973       } // if/else
974    } else {
975       cerr << "Error! Couldn't open device " << device
976            << " when reading partition table!\n";
977       retval = 0;
978    } // if/else
979    return retval;
980 } // GPTData::LoadPartitionsTable()
981 
982 // Check the partition table pointed to by header, but don't keep it
983 // around.
984 // Returns 1 if the CRC is OK & this table matches the one already in memory,
985 // 0 if not or if there was a read error.
CheckTable(struct GPTHeader * header)986 int GPTData::CheckTable(struct GPTHeader *header) {
987    uint32_t sizeOfParts, newCRC;
988    GPTPart *partsToCheck;
989    GPTHeader *otherHeader;
990    int allOK = 0;
991 
992    // Load partition table into temporary storage to check
993    // its CRC and store the results, then discard this temporary
994    // storage, since we don't use it in any but recovery operations
995    if (myDisk.Seek(header->partitionEntriesLBA)) {
996       partsToCheck = new GPTPart[header->numParts];
997       sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
998       if (partsToCheck == NULL) {
999          cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
1000          exit(1);
1001       } // if
1002       if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
1003          cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
1004       } else {
1005          newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
1006          allOK = (newCRC == header->partitionEntriesCRC);
1007          if (header == &mainHeader)
1008             otherHeader = &secondHeader;
1009          else
1010             otherHeader = &mainHeader;
1011          if (newCRC != otherHeader->partitionEntriesCRC) {
1012             cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
1013                  << "on the recovery & transformation menu to examine the two tables.\n\n";
1014             allOK = 0;
1015          } // if
1016       } // if/else
1017       delete[] partsToCheck;
1018    } // if
1019    return allOK;
1020 } // GPTData::CheckTable()
1021 
1022 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
1023 // header later on the disk without asking for permission, if necessary, and
1024 // doesn't confirm the operation before writing. If quiet==0, asks permission
1025 // before moving the second header and asks for final confirmation of any
1026 // write.
1027 // Returns 1 on successful write, 0 if there was a problem.
SaveGPTData(int quiet)1028 int GPTData::SaveGPTData(int quiet) {
1029    int allOK = 1, syncIt = 1;
1030    char answer;
1031 
1032    // First do some final sanity checks....
1033 
1034    // This test should only fail on read-only disks....
1035    if (justLooking) {
1036       cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
1037       allOK = 0;
1038    } // if
1039 
1040    // Check that disk is really big enough to handle the second header...
1041    if (mainHeader.backupLBA >= diskSize) {
1042       cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
1043            << "header, but other problems may occur!\n";
1044       MoveSecondHeaderToEnd();
1045    } // if
1046 
1047    // Is there enough space to hold the GPT headers and partition tables,
1048    // given the partition sizes?
1049    if (CheckGPTSize() > 0) {
1050       allOK = 0;
1051    } // if
1052 
1053    // Check that second header is properly placed. Warn and ask if this should
1054    // be corrected if the test fails....
1055    if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
1056       if (quiet == 0) {
1057          cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
1058               << "correct this problem? ";
1059          if (GetYN() == 'Y') {
1060             MoveSecondHeaderToEnd();
1061             cout << "Have moved second header and partition table to correct location.\n";
1062          } else {
1063             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1064          } // if correction requested
1065       } else { // Go ahead and do correction automatically
1066          MoveSecondHeaderToEnd();
1067       } // if/else quiet
1068    } // if
1069 
1070    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
1071       if (quiet == 0) {
1072          cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
1073               << "this problem? ";
1074          if (GetYN() == 'Y') {
1075             MoveSecondHeaderToEnd();
1076             cout << "Have adjusted the second header and last usable sector value.\n";
1077          } else {
1078             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1079          } // if correction requested
1080       } else { // go ahead and do correction automatically
1081          MoveSecondHeaderToEnd();
1082       } // if/else quiet
1083    } // if
1084 
1085    // Check for overlapping or insane partitions....
1086    if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
1087       allOK = 0;
1088       cerr << "Aborting write operation!\n";
1089    } // if
1090 
1091    // Check that protective MBR fits, and warn if it doesn't....
1092    if (!protectiveMBR.DoTheyFit()) {
1093       cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
1094            << "fresh protective or hybrid MBR is recommended.\n";
1095    }
1096 
1097    // Check for mismatched MBR and GPT data, but let it pass if found
1098    // (function displays warning message)
1099    FindHybridMismatches();
1100 
1101    RecomputeCRCs();
1102 
1103    if ((allOK) && (!quiet)) {
1104       cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
1105            << "PARTITIONS!!\n\nDo you want to proceed? ";
1106       answer = GetYN();
1107       if (answer == 'Y') {
1108          cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
1109       } else {
1110          allOK = 0;
1111       } // if/else
1112    } // if
1113 
1114    // Do it!
1115    if (allOK) {
1116       if (myDisk.OpenForWrite()) {
1117          // As per UEFI specs, write the secondary table and GPT first....
1118          allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
1119          if (!allOK) {
1120             cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
1121                  << "menu will resolve this problem.\n";
1122             syncIt = 0;
1123          } // if
1124 
1125          // Now write the secondary GPT header...
1126          allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
1127 
1128          // Now write the main partition tables...
1129          allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
1130 
1131          // Now write the main GPT header...
1132          allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
1133 
1134          // To top it off, write the protective MBR...
1135          allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
1136 
1137          // re-read the partition table
1138          // Note: Done even if some write operations failed, but not if all of them failed.
1139          // Done this way because I've received one problem report from a user one whose
1140          // system the MBR write failed but everything else was OK (on a GPT disk under
1141          // Windows), and the failure to sync therefore caused Windows to restore the
1142          // original partition table from its cache. OTOH, such restoration might be
1143          // desirable if the error occurs later; but that seems unlikely unless the initial
1144          // write fails....
1145          if (syncIt)
1146             myDisk.DiskSync();
1147 
1148          if (allOK) { // writes completed OK
1149             cout << "The operation has completed successfully.\n";
1150          } else {
1151             cerr << "Warning! An error was reported when writing the partition table! This error\n"
1152                  << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
1153          } // if/else
1154 
1155          myDisk.Close();
1156       } else {
1157          cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
1158               << errno << "! Aborting write!\n";
1159          allOK = 0;
1160       } // if/else
1161    } else {
1162       cout << "Aborting write of new partition table.\n";
1163    } // if
1164 
1165    return (allOK);
1166 } // GPTData::SaveGPTData()
1167 
1168 // Save GPT data to a backup file. This function does much less error
1169 // checking than SaveGPTData(). It can therefore preserve many types of
1170 // corruption for later analysis; however, it preserves only the MBR,
1171 // the main GPT header, the backup GPT header, and the main partition
1172 // table; it discards the backup partition table, since it should be
1173 // identical to the main partition table on healthy disks.
SaveGPTBackup(const string & filename)1174 int GPTData::SaveGPTBackup(const string & filename) {
1175    int allOK = 1;
1176    DiskIO backupFile;
1177 
1178    if (backupFile.OpenForWrite(filename)) {
1179       // Recomputing the CRCs is likely to alter them, which could be bad
1180       // if the intent is to save a potentially bad GPT for later analysis;
1181       // but if we don't do this, we get bogus errors when we load the
1182       // backup. I'm favoring misses over false alarms....
1183       RecomputeCRCs();
1184 
1185       protectiveMBR.WriteMBRData(&backupFile);
1186       protectiveMBR.SetDisk(&myDisk);
1187 
1188       if (allOK) {
1189          // MBR write closed disk, so re-open and seek to end....
1190          backupFile.OpenForWrite();
1191          allOK = SaveHeader(&mainHeader, backupFile, 1);
1192       } // if (allOK)
1193 
1194       if (allOK)
1195          allOK = SaveHeader(&secondHeader, backupFile, 2);
1196 
1197       if (allOK)
1198          allOK = SavePartitionTable(backupFile, 3);
1199 
1200       if (allOK) { // writes completed OK
1201          cout << "The operation has completed successfully.\n";
1202       } else {
1203          cerr << "Warning! An error was reported when writing the backup file.\n"
1204               << "It may not be usable!\n";
1205       } // if/else
1206       backupFile.Close();
1207    } else {
1208       cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
1209       allOK = 0;
1210    } // if/else
1211    return allOK;
1212 } // GPTData::SaveGPTBackup()
1213 
1214 // Write a GPT header (main or backup) to the specified sector. Used by both
1215 // the SaveGPTData() and SaveGPTBackup() functions.
1216 // Should be passed an architecture-appropriate header (DO NOT call
1217 // ReverseHeaderBytes() on the header before calling this function)
1218 // Returns 1 on success, 0 on failure
SaveHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector)1219 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
1220    int littleEndian, allOK = 1;
1221 
1222    littleEndian = IsLittleEndian();
1223    if (!littleEndian)
1224       ReverseHeaderBytes(header);
1225    if (disk.Seek(sector)) {
1226       if (disk.Write(header, 512) == -1)
1227          allOK = 0;
1228    } else allOK = 0; // if (disk.Seek()...)
1229    if (!littleEndian)
1230       ReverseHeaderBytes(header);
1231    return allOK;
1232 } // GPTData::SaveHeader()
1233 
1234 // Save the partitions to the specified sector. Used by both the SaveGPTData()
1235 // and SaveGPTBackup() functions.
1236 // Should be passed an architecture-appropriate header (DO NOT call
1237 // ReverseHeaderBytes() on the header before calling this function)
1238 // Returns 1 on success, 0 on failure
SavePartitionTable(DiskIO & disk,uint64_t sector)1239 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
1240    int littleEndian, allOK = 1;
1241 
1242    littleEndian = IsLittleEndian();
1243    if (disk.Seek(sector)) {
1244       if (!littleEndian)
1245          ReversePartitionBytes();
1246       if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
1247          allOK = 0;
1248       if (!littleEndian)
1249          ReversePartitionBytes();
1250    } else allOK = 0; // if (myDisk.Seek()...)
1251    return allOK;
1252 } // GPTData::SavePartitionTable()
1253 
1254 // Load GPT data from a backup file created by SaveGPTBackup(). This function
1255 // does minimal error checking. It returns 1 if it completed successfully,
1256 // 0 if there was a problem. In the latter case, it creates a new empty
1257 // set of partitions.
LoadGPTBackup(const string & filename)1258 int GPTData::LoadGPTBackup(const string & filename) {
1259    int allOK = 1, val, err;
1260    int shortBackup = 0;
1261    DiskIO backupFile;
1262 
1263    if (backupFile.OpenForRead(filename)) {
1264       // Let the MBRData class load the saved MBR...
1265       protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
1266       protectiveMBR.SetDisk(&myDisk);
1267 
1268       LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
1269 
1270       // Check backup file size and rebuild second header if file is right
1271       // size to be direct dd copy of MBR, main header, and main partition
1272       // table; if other size, treat it like a GPT fdisk-generated backup
1273       // file
1274       shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
1275                      (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
1276       if (shortBackup) {
1277          RebuildSecondHeader();
1278          secondCrcOk = mainCrcOk;
1279       } else {
1280          LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
1281       } // if/else
1282 
1283       // Return valid headers code: 0 = both headers bad; 1 = main header
1284       // good, backup bad; 2 = backup header good, main header bad;
1285       // 3 = both headers good. Note these codes refer to valid GPT
1286       // signatures and version numbers; more subtle problems will elude
1287       // this check!
1288       if ((val = CheckHeaderValidity()) > 0) {
1289          if (val == 2) { // only backup header seems to be good
1290             SetGPTSize(secondHeader.numParts, 0);
1291          } else { // main header is OK
1292             SetGPTSize(mainHeader.numParts, 0);
1293          } // if/else
1294 
1295          if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
1296             cout << "Warning! Current disk size doesn't match that of the backup!\n"
1297                  << "Adjusting sizes to match, but subsequent problems are possible!\n";
1298             MoveSecondHeaderToEnd();
1299          } // if
1300 
1301          if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
1302             cerr << "Warning! Read error " << errno
1303                  << " loading partition table; strange behavior now likely!\n";
1304       } else {
1305          allOK = 0;
1306       } // if/else
1307       // Something went badly wrong, so blank out partitions
1308       if (allOK == 0) {
1309          cerr << "Improper backup file! Clearing all partition data!\n";
1310          ClearGPTData();
1311          protectiveMBR.MakeProtectiveMBR();
1312       } // if
1313    } else {
1314       allOK = 0;
1315       cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
1316    } // if/else
1317 
1318    return allOK;
1319 } // GPTData::LoadGPTBackup()
1320 
SaveMBR(void)1321 int GPTData::SaveMBR(void) {
1322    return protectiveMBR.WriteMBRData(&myDisk);
1323 } // GPTData::SaveMBR()
1324 
1325 // This function destroys the on-disk GPT structures, but NOT the on-disk
1326 // MBR.
1327 // Returns 1 if the operation succeeds, 0 if not.
DestroyGPT(void)1328 int GPTData::DestroyGPT(void) {
1329    int sum, tableSize, allOK = 1;
1330    uint8_t blankSector[512];
1331    uint8_t* emptyTable;
1332 
1333    memset(blankSector, 0, sizeof(blankSector));
1334    ClearGPTData();
1335 
1336    if (myDisk.OpenForWrite()) {
1337       if (!myDisk.Seek(mainHeader.currentLBA))
1338          allOK = 0;
1339       if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1340          cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
1341          allOK = 0;
1342       } // if
1343       if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
1344          allOK = 0;
1345       tableSize = numParts * mainHeader.sizeOfPartitionEntries;
1346       emptyTable = new uint8_t[tableSize];
1347       if (emptyTable == NULL) {
1348          cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
1349          exit(1);
1350       } // if
1351       memset(emptyTable, 0, tableSize);
1352       if (allOK) {
1353          sum = myDisk.Write(emptyTable, tableSize);
1354          if (sum != tableSize) {
1355             cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
1356             allOK = 0;
1357          } // if write failed
1358       } // if
1359       if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
1360          allOK = 0;
1361       if (allOK) {
1362          sum = myDisk.Write(emptyTable, tableSize);
1363          if (sum != tableSize) {
1364             cerr << "Warning! GPT backup partition table not overwritten! Error is "
1365                  << errno << "\n";
1366             allOK = 0;
1367          } // if wrong size written
1368       } // if
1369       if (!myDisk.Seek(secondHeader.currentLBA))
1370          allOK = 0;
1371       if (allOK) {
1372          if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1373             cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
1374             allOK = 0;
1375          } // if
1376       } // if
1377       myDisk.DiskSync();
1378       myDisk.Close();
1379       cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
1380            << "other utilities.\n";
1381       delete[] emptyTable;
1382    } else {
1383       cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
1384    } // if/else (fd != -1)
1385    return (allOK);
1386 } // GPTDataTextUI::DestroyGPT()
1387 
1388 // Wipe MBR data from the disk (zero it out completely)
1389 // Returns 1 on success, 0 on failure.
DestroyMBR(void)1390 int GPTData::DestroyMBR(void) {
1391    int allOK;
1392    uint8_t blankSector[512];
1393 
1394    memset(blankSector, 0, sizeof(blankSector));
1395 
1396    allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
1397 
1398    if (!allOK)
1399       cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
1400    return allOK;
1401 } // GPTData::DestroyMBR(void)
1402 
1403 // Tell user whether Apple Partition Map (APM) was discovered....
ShowAPMState(void)1404 void GPTData::ShowAPMState(void) {
1405    if (apmFound)
1406       cout << "  APM: present\n";
1407    else
1408       cout << "  APM: not present\n";
1409 } // GPTData::ShowAPMState()
1410 
1411 // Tell user about the state of the GPT data....
ShowGPTState(void)1412 void GPTData::ShowGPTState(void) {
1413    switch (state) {
1414       case gpt_invalid:
1415          cout << "  GPT: not present\n";
1416          break;
1417       case gpt_valid:
1418          cout << "  GPT: present\n";
1419          break;
1420       case gpt_corrupt:
1421          cout << "  GPT: damaged\n";
1422          break;
1423       default:
1424          cout << "\a  GPT: unknown -- bug!\n";
1425          break;
1426    } // switch
1427 } // GPTData::ShowGPTState()
1428 
1429 // Display the basic GPT data
DisplayGPTData(void)1430 void GPTData::DisplayGPTData(void) {
1431    uint32_t i;
1432    uint64_t temp, totalFree;
1433 
1434    cout << "Disk " << device << ": " << diskSize << " sectors, "
1435         << BytesToIeee(diskSize, blockSize) << "\n";
1436    cout << "Logical sector size: " << blockSize << " bytes\n";
1437    cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
1438    cout << "Partition table holds up to " << numParts << " entries\n";
1439    cout << "First usable sector is " << mainHeader.firstUsableLBA
1440         << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
1441    totalFree = FindFreeBlocks(&i, &temp);
1442    cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
1443    cout << "Total free space is " << totalFree << " sectors ("
1444         << BytesToIeee(totalFree, blockSize) << ")\n";
1445    cout << "\nNumber  Start (sector)    End (sector)  Size       Code  Name\n";
1446    for (i = 0; i < numParts; i++) {
1447       partitions[i].ShowSummary(i, blockSize);
1448    } // for
1449 } // GPTData::DisplayGPTData()
1450 
1451 // Show detailed information on the specified partition
ShowPartDetails(uint32_t partNum)1452 void GPTData::ShowPartDetails(uint32_t partNum) {
1453    if ((partNum < numParts) && !IsFreePartNum(partNum)) {
1454       partitions[partNum].ShowDetails(blockSize);
1455    } else {
1456       cout << "Partition #" << partNum + 1 << " does not exist.\n";
1457    } // if
1458 } // GPTData::ShowPartDetails()
1459 
1460 /**************************************************************************
1461  *                                                                        *
1462  * Partition table transformation functions (MBR or BSD disklabel to GPT) *
1463  * (some of these functions may require user interaction)                 *
1464  *                                                                        *
1465  **************************************************************************/
1466 
1467 // Examines the MBR & GPT data to determine which set of data to use: the
1468 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
1469 // a new set of partitions (use_new). A return value of use_abort indicates
1470 // that this function couldn't determine what to do. Overriding functions
1471 // in derived classes may ask users questions in such cases.
UseWhichPartitions(void)1472 WhichToUse GPTData::UseWhichPartitions(void) {
1473    WhichToUse which = use_new;
1474    MBRValidity mbrState;
1475 
1476    mbrState = protectiveMBR.GetValidity();
1477 
1478    if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
1479       cout << "\n***************************************************************\n"
1480            << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
1481            << "in memory. ";
1482       if (!justLooking) {
1483          cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
1484               << "typing 'q' if you don't want to convert your MBR partitions\n"
1485               << "to GPT format!";
1486       } // if
1487       cout << "\n***************************************************************\n\n";
1488       which = use_mbr;
1489    } // if
1490 
1491    if ((state == gpt_invalid) && bsdFound) {
1492       cout << "\n**********************************************************************\n"
1493            << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
1494            << "to GPT format.";
1495       if ((!justLooking) && (!beQuiet)) {
1496       cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
1497            << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
1498            << "want to convert your BSD partitions to GPT format!";
1499       } // if
1500       cout << "\n**********************************************************************\n\n";
1501       which = use_bsd;
1502    } // if
1503 
1504    if ((state == gpt_valid) && (mbrState == gpt)) {
1505       which = use_gpt;
1506       if (!beQuiet)
1507          cout << "Found valid GPT with protective MBR; using GPT.\n";
1508    } // if
1509    if ((state == gpt_valid) && (mbrState == hybrid)) {
1510       which = use_gpt;
1511       if (!beQuiet)
1512          cout << "Found valid GPT with hybrid MBR; using GPT.\n";
1513    } // if
1514    if ((state == gpt_valid) && (mbrState == invalid)) {
1515       cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
1516            << "protective MBR on save.\n";
1517       which = use_gpt;
1518    } // if
1519    if ((state == gpt_valid) && (mbrState == mbr)) {
1520       which = use_abort;
1521    } // if
1522 
1523    if (state == gpt_corrupt) {
1524       if (mbrState == gpt) {
1525          cout << "\a\a****************************************************************************\n"
1526               << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
1527               << "verification and recovery are STRONGLY recommended.\n"
1528               << "****************************************************************************\n";
1529          which = use_gpt;
1530       } else {
1531          which = use_abort;
1532       } // if/else MBR says disk is GPT
1533    } // if GPT corrupt
1534 
1535    if (which == use_new)
1536       cout << "Creating new GPT entries.\n";
1537 
1538    return which;
1539 } // UseWhichPartitions()
1540 
1541 // Convert MBR partition table into GPT form.
XFormPartitions(void)1542 void GPTData::XFormPartitions(void) {
1543    int i, numToConvert;
1544    uint8_t origType;
1545 
1546    // Clear out old data & prepare basics....
1547    ClearGPTData();
1548 
1549    // Convert the smaller of the # of GPT or MBR partitions
1550    if (numParts > MAX_MBR_PARTS)
1551       numToConvert = MAX_MBR_PARTS;
1552    else
1553       numToConvert = numParts;
1554 
1555    for (i = 0; i < numToConvert; i++) {
1556       origType = protectiveMBR.GetType(i);
1557       // don't waste CPU time trying to convert extended, hybrid protective, or
1558       // null (non-existent) partitions
1559       if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
1560           (origType != 0x00) && (origType != 0xEE))
1561          partitions[i] = protectiveMBR.AsGPT(i);
1562    } // for
1563 
1564    // Convert MBR into protective MBR
1565    protectiveMBR.MakeProtectiveMBR();
1566 
1567    // Record that all original CRCs were OK so as not to raise flags
1568    // when doing a disk verification
1569    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1570 } // GPTData::XFormPartitions()
1571 
1572 // Transforms BSD disklabel on the specified partition (numbered from 0).
1573 // If an invalid partition number is given, the program does nothing.
1574 // Returns the number of new partitions created.
XFormDisklabel(uint32_t partNum)1575 int GPTData::XFormDisklabel(uint32_t partNum) {
1576    uint32_t low, high;
1577    int goOn = 1, numDone = 0;
1578    BSDData disklabel;
1579 
1580    if (GetPartRange(&low, &high) == 0) {
1581       goOn = 0;
1582       cout << "No partitions!\n";
1583    } // if
1584    if (partNum > high) {
1585       goOn = 0;
1586       cout << "Specified partition is invalid!\n";
1587    } // if
1588 
1589    // If all is OK, read the disklabel and convert it.
1590    if (goOn) {
1591       goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
1592                                    partitions[partNum].GetLastLBA());
1593       if ((goOn) && (disklabel.IsDisklabel())) {
1594          numDone = XFormDisklabel(&disklabel);
1595          if (numDone == 1)
1596             cout << "Converted 1 BSD partition.\n";
1597          else
1598             cout << "Converted " << numDone << " BSD partitions.\n";
1599       } else {
1600          cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
1601       } // if/else
1602    } // if
1603    if (numDone > 0) { // converted partitions; delete carrier
1604       partitions[partNum].BlankPartition();
1605    } // if
1606    return numDone;
1607 } // GPTData::XFormDisklabel(uint32_t i)
1608 
1609 // Transform the partitions on an already-loaded BSD disklabel...
XFormDisklabel(BSDData * disklabel)1610 int GPTData::XFormDisklabel(BSDData* disklabel) {
1611    int i, partNum = 0, numDone = 0;
1612 
1613    if (disklabel->IsDisklabel()) {
1614       for (i = 0; i < disklabel->GetNumParts(); i++) {
1615          partNum = FindFirstFreePart();
1616          if (partNum >= 0) {
1617             partitions[partNum] = disklabel->AsGPT(i);
1618             if (partitions[partNum].IsUsed())
1619                numDone++;
1620          } // if
1621       } // for
1622       if (partNum == -1)
1623          cerr << "Warning! Too many partitions to convert!\n";
1624    } // if
1625 
1626    // Record that all original CRCs were OK so as not to raise flags
1627    // when doing a disk verification
1628    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1629 
1630    return numDone;
1631 } // GPTData::XFormDisklabel(BSDData* disklabel)
1632 
1633 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
1634 // partition has the active/bootable flag UNset and uses the GPT fdisk
1635 // type code divided by 0x0100 as the MBR type code.
1636 // Returns 1 if operation was 100% successful, 0 if there were ANY
1637 // problems.
OnePartToMBR(uint32_t gptPart,int mbrPart)1638 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
1639    int allOK = 1;
1640 
1641    if ((mbrPart < 0) || (mbrPart > 3)) {
1642       cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
1643       allOK = 0;
1644    } // if
1645    if (gptPart >= numParts) {
1646       cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
1647       allOK = 0;
1648    } // if
1649    if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
1650       cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
1651       allOK = 0;
1652    } // if
1653    if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
1654        (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
1655       if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
1656          cout << "Caution: Partition end point past 32-bit pointer boundary;"
1657               << " some OSes may\nreact strangely.\n";
1658       } // if
1659       protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
1660                              (uint32_t) partitions[gptPart].GetLengthLBA(),
1661                              partitions[gptPart].GetHexType() / 256, 0);
1662    } else { // partition out of range
1663       if (allOK) // Display only if "else" triggered by out-of-bounds condition
1664          cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
1665               << "partitions, or is\n too big; omitting it.\n";
1666       allOK = 0;
1667    } // if/else
1668    return allOK;
1669 } // GPTData::OnePartToMBR()
1670 
1671 
1672 /**********************************************************************
1673  *                                                                    *
1674  * Functions that adjust GPT data structures WITHOUT user interaction *
1675  * (they may display information for the user's benefit, though)      *
1676  *                                                                    *
1677  **********************************************************************/
1678 
1679 // Resizes GPT to specified number of entries. Creates a new table if
1680 // necessary, copies data if it already exists. If fillGPTSectors is 1
1681 // (the default), rounds numEntries to fill all the sectors necessary to
1682 // hold the GPT.
1683 // Returns 1 if all goes well, 0 if an error is encountered.
SetGPTSize(uint32_t numEntries,int fillGPTSectors)1684 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
1685    GPTPart* newParts;
1686    uint32_t i, high, copyNum, entriesPerSector;
1687    int allOK = 1;
1688 
1689    // First, adjust numEntries upward, if necessary, to get a number
1690    // that fills the allocated sectors
1691    entriesPerSector = blockSize / GPT_SIZE;
1692    if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
1693       cout << "Adjusting GPT size from " << numEntries << " to ";
1694       numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
1695       cout << numEntries << " to fill the sector\n";
1696    } // if
1697 
1698    // Do the work only if the # of partitions is changing. Along with being
1699    // efficient, this prevents mucking with the location of the secondary
1700    // partition table, which causes problems when loading data from a RAID
1701    // array that's been expanded because this function is called when loading
1702    // data.
1703    if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
1704       newParts = new GPTPart [numEntries];
1705       if (newParts != NULL) {
1706          if (partitions != NULL) { // existing partitions; copy them over
1707             GetPartRange(&i, &high);
1708             if (numEntries < (high + 1)) { // Highest entry too high for new #
1709                cout << "The highest-numbered partition is " << high + 1
1710                     << ", which is greater than the requested\n"
1711                     << "partition table size of " << numEntries
1712                     << "; cannot resize. Perhaps sorting will help.\n";
1713                allOK = 0;
1714                delete[] newParts;
1715             } else { // go ahead with copy
1716                if (numEntries < numParts)
1717                   copyNum = numEntries;
1718                else
1719                   copyNum = numParts;
1720                for (i = 0; i < copyNum; i++) {
1721                   newParts[i] = partitions[i];
1722                } // for
1723                delete[] partitions;
1724                partitions = newParts;
1725             } // if
1726          } else { // No existing partition table; just create it
1727             partitions = newParts;
1728          } // if/else existing partitions
1729          numParts = numEntries;
1730          mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ;
1731          secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
1732          MoveSecondHeaderToEnd();
1733          if (diskSize > 0)
1734             CheckGPTSize();
1735       } else { // Bad memory allocation
1736          cerr << "Error allocating memory for partition table! Size is unchanged!\n";
1737          allOK = 0;
1738       } // if/else
1739    } // if/else
1740    mainHeader.numParts = numParts;
1741    secondHeader.numParts = numParts;
1742    return (allOK);
1743 } // GPTData::SetGPTSize()
1744 
1745 // Blank the partition array
BlankPartitions(void)1746 void GPTData::BlankPartitions(void) {
1747    uint32_t i;
1748 
1749    for (i = 0; i < numParts; i++) {
1750       partitions[i].BlankPartition();
1751    } // for
1752 } // GPTData::BlankPartitions()
1753 
1754 // Delete a partition by number. Returns 1 if successful,
1755 // 0 if there was a problem. Returns 1 if partition was in
1756 // range, 0 if it was out of range.
DeletePartition(uint32_t partNum)1757 int GPTData::DeletePartition(uint32_t partNum) {
1758    uint64_t startSector, length;
1759    uint32_t low, high, numUsedParts, retval = 1;;
1760 
1761    numUsedParts = GetPartRange(&low, &high);
1762    if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
1763       // In case there's a protective MBR, look for & delete matching
1764       // MBR partition....
1765       startSector = partitions[partNum].GetFirstLBA();
1766       length = partitions[partNum].GetLengthLBA();
1767       protectiveMBR.DeleteByLocation(startSector, length);
1768 
1769       // Now delete the GPT partition
1770       partitions[partNum].BlankPartition();
1771    } else {
1772       cerr << "Partition number " << partNum + 1 << " out of range!\n";
1773       retval = 0;
1774    } // if/else
1775    return retval;
1776 } // GPTData::DeletePartition(uint32_t partNum)
1777 
1778 // Non-interactively create a partition.
1779 // Returns 1 if the operation was successful, 0 if a problem was discovered.
CreatePartition(uint32_t partNum,uint64_t startSector,uint64_t endSector)1780 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
1781    int retval = 1; // assume there'll be no problems
1782    uint64_t origSector = startSector;
1783 
1784    if (IsFreePartNum(partNum)) {
1785       if (Align(&startSector)) {
1786          cout << "Information: Moved requested sector from " << origSector << " to "
1787               << startSector << " in\norder to align on " << sectorAlignment
1788               << "-sector boundaries.\n";
1789       } // if
1790       if (IsFree(startSector) && (startSector <= endSector)) {
1791          if (FindLastInFree(startSector) >= endSector) {
1792             partitions[partNum].SetFirstLBA(startSector);
1793             partitions[partNum].SetLastLBA(endSector);
1794             partitions[partNum].SetType(DEFAULT_GPT_TYPE);
1795             partitions[partNum].RandomizeUniqueGUID();
1796          } else retval = 0; // if free space until endSector
1797       } else retval = 0; // if startSector is free
1798    } else retval = 0; // if legal partition number
1799    return retval;
1800 } // GPTData::CreatePartition(partNum, startSector, endSector)
1801 
1802 // Sort the GPT entries, eliminating gaps and making for a logical
1803 // ordering.
SortGPT(void)1804 void GPTData::SortGPT(void) {
1805    if (numParts > 0)
1806       sort(partitions, partitions + numParts);
1807 } // GPTData::SortGPT()
1808 
1809 // Swap the contents of two partitions.
1810 // Returns 1 if successful, 0 if either partition is out of range
1811 // (that is, not a legal number; either or both can be empty).
1812 // Note that if partNum1 = partNum2 and this number is in range,
1813 // it will be considered successful.
SwapPartitions(uint32_t partNum1,uint32_t partNum2)1814 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
1815    GPTPart temp;
1816    int allOK = 1;
1817 
1818    if ((partNum1 < numParts) && (partNum2 < numParts)) {
1819       if (partNum1 != partNum2) {
1820          temp = partitions[partNum1];
1821          partitions[partNum1] = partitions[partNum2];
1822          partitions[partNum2] = temp;
1823       } // if
1824    } else allOK = 0; // partition numbers are valid
1825    return allOK;
1826 } // GPTData::SwapPartitions()
1827 
1828 // Set up data structures for entirely new set of partitions on the
1829 // specified device. Returns 1 if OK, 0 if there were problems.
1830 // Note that this function does NOT clear the protectiveMBR data
1831 // structure, since it may hold the original MBR partitions if the
1832 // program was launched on an MBR disk, and those may need to be
1833 // converted to GPT format.
ClearGPTData(void)1834 int GPTData::ClearGPTData(void) {
1835    int goOn = 1, i;
1836 
1837    // Set up the partition table....
1838    delete[] partitions;
1839    partitions = NULL;
1840    SetGPTSize(NUM_GPT_ENTRIES);
1841 
1842    // Now initialize a bunch of stuff that's static....
1843    mainHeader.signature = GPT_SIGNATURE;
1844    mainHeader.revision = 0x00010000;
1845    mainHeader.headerSize = HEADER_SIZE;
1846    mainHeader.reserved = 0;
1847    mainHeader.currentLBA = UINT64_C(1);
1848    mainHeader.partitionEntriesLBA = (uint64_t) 2;
1849    mainHeader.sizeOfPartitionEntries = GPT_SIZE;
1850    for (i = 0; i < GPT_RESERVED; i++) {
1851       mainHeader.reserved2[i] = '\0';
1852    } // for
1853    if (blockSize > 0)
1854       sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
1855    else
1856       sectorAlignment = DEFAULT_ALIGNMENT;
1857 
1858    // Now some semi-static items (computed based on end of disk)
1859    mainHeader.backupLBA = diskSize - UINT64_C(1);
1860    mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1861 
1862    // Set a unique GUID for the disk, based on random numbers
1863    mainHeader.diskGUID.Randomize();
1864 
1865    // Copy main header to backup header
1866    RebuildSecondHeader();
1867 
1868    // Blank out the partitions array....
1869    BlankPartitions();
1870 
1871    // Flag all CRCs as being OK....
1872    mainCrcOk = 1;
1873    secondCrcOk = 1;
1874    mainPartsCrcOk = 1;
1875    secondPartsCrcOk = 1;
1876 
1877    return (goOn);
1878 } // GPTData::ClearGPTData()
1879 
1880 // Set the location of the second GPT header data to the end of the disk.
1881 // If the disk size has actually changed, this also adjusts the protective
1882 // entry in the MBR, since it's probably no longer correct.
1883 // Used internally and called by the 'e' option on the recovery &
1884 // transformation menu, to help users of RAID arrays who add disk space
1885 // to their arrays or to adjust data structures in restore operations
1886 // involving unequal-sized disks.
MoveSecondHeaderToEnd()1887 void GPTData::MoveSecondHeaderToEnd() {
1888    mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
1889    if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
1890       if (protectiveMBR.GetValidity() == hybrid) {
1891          protectiveMBR.OptimizeEESize();
1892          RecomputeCHS();
1893       } // if
1894       if (protectiveMBR.GetValidity() == gpt)
1895          MakeProtectiveMBR();
1896    } // if
1897    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1898    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
1899 } // GPTData::FixSecondHeaderLocation()
1900 
1901 // Sets the partition's name to the specified UnicodeString without
1902 // user interaction.
1903 // Returns 1 on success, 0 on failure (invalid partition number).
SetName(uint32_t partNum,const UnicodeString & theName)1904 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
1905    int retval = 1;
1906 
1907    if (IsUsedPartNum(partNum))
1908       partitions[partNum].SetName(theName);
1909    else
1910       retval = 0;
1911 
1912    return retval;
1913 } // GPTData::SetName
1914 
1915 // Set the disk GUID to the specified value. Note that the header CRCs must
1916 // be recomputed after calling this function.
SetDiskGUID(GUIDData newGUID)1917 void GPTData::SetDiskGUID(GUIDData newGUID) {
1918    mainHeader.diskGUID = newGUID;
1919    secondHeader.diskGUID = newGUID;
1920 } // SetDiskGUID()
1921 
1922 // Set the unique GUID of the specified partition. Returns 1 on
1923 // successful completion, 0 if there were problems (invalid
1924 // partition number).
SetPartitionGUID(uint32_t pn,GUIDData theGUID)1925 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
1926    int retval = 0;
1927 
1928    if (pn < numParts) {
1929       if (partitions[pn].IsUsed()) {
1930          partitions[pn].SetUniqueGUID(theGUID);
1931          retval = 1;
1932       } // if
1933    } // if
1934    return retval;
1935 } // GPTData::SetPartitionGUID()
1936 
1937 // Set new random GUIDs for the disk and all partitions. Intended to be used
1938 // after disk cloning or similar operations that don't randomize the GUIDs.
RandomizeGUIDs(void)1939 void GPTData::RandomizeGUIDs(void) {
1940    uint32_t i;
1941 
1942    mainHeader.diskGUID.Randomize();
1943    secondHeader.diskGUID = mainHeader.diskGUID;
1944    for (i = 0; i < numParts; i++)
1945       if (partitions[i].IsUsed())
1946          partitions[i].RandomizeUniqueGUID();
1947 } // GPTData::RandomizeGUIDs()
1948 
1949 // Change partition type code non-interactively. Returns 1 if
1950 // successful, 0 if not....
ChangePartType(uint32_t partNum,PartType theGUID)1951 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
1952    int retval = 1;
1953 
1954    if (!IsFreePartNum(partNum)) {
1955       partitions[partNum].SetType(theGUID);
1956    } else retval = 0;
1957    return retval;
1958 } // GPTData::ChangePartType()
1959 
1960 // Recompute the CHS values of all the MBR partitions. Used to reset
1961 // CHS values that some BIOSes require, despite the fact that the
1962 // resulting CHS values violate the GPT standard.
RecomputeCHS(void)1963 void GPTData::RecomputeCHS(void) {
1964    int i;
1965 
1966    for (i = 0; i < 4; i++)
1967       protectiveMBR.RecomputeCHS(i);
1968 } // GPTData::RecomputeCHS()
1969 
1970 // Adjust sector number so that it falls on a sector boundary that's a
1971 // multiple of sectorAlignment. This is done to improve the performance
1972 // of Western Digital Advanced Format disks and disks with similar
1973 // technology from other companies, which use 4096-byte sectors
1974 // internally although they translate to 512-byte sectors for the
1975 // benefit of the OS. If partitions aren't properly aligned on these
1976 // disks, some filesystem data structures can span multiple physical
1977 // sectors, degrading performance. This function should be called
1978 // only on the FIRST sector of the partition, not the last!
1979 // This function returns 1 if the alignment was altered, 0 if it
1980 // was unchanged.
Align(uint64_t * sector)1981 int GPTData::Align(uint64_t* sector) {
1982    int retval = 0, sectorOK = 0;
1983    uint64_t earlier, later, testSector;
1984 
1985    if ((*sector % sectorAlignment) != 0) {
1986       earlier = (*sector / sectorAlignment) * sectorAlignment;
1987       later = earlier + (uint64_t) sectorAlignment;
1988 
1989       // Check to see that every sector between the earlier one and the
1990       // requested one is clear, and that it's not too early....
1991       if (earlier >= mainHeader.firstUsableLBA) {
1992          sectorOK = 1;
1993          testSector = earlier;
1994          do {
1995             sectorOK = IsFree(testSector++);
1996          } while ((sectorOK == 1) && (testSector < *sector));
1997          if (sectorOK == 1) {
1998             *sector = earlier;
1999             retval = 1;
2000          } // if
2001       } // if firstUsableLBA check
2002 
2003       // If couldn't move the sector earlier, try to move it later instead....
2004       if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
2005          sectorOK = 1;
2006          testSector = later;
2007          do {
2008             sectorOK = IsFree(testSector--);
2009          } while ((sectorOK == 1) && (testSector > *sector));
2010          if (sectorOK == 1) {
2011             *sector = later;
2012             retval = 1;
2013          } // if
2014       } // if
2015    } // if
2016    return retval;
2017 } // GPTData::Align()
2018 
2019 /********************************************************
2020  *                                                      *
2021  * Functions that return data about GPT data structures *
2022  * (most of these are inline in gpt.h)                  *
2023  *                                                      *
2024  ********************************************************/
2025 
2026 // Find the low and high used partition numbers (numbered from 0).
2027 // Return value is the number of partitions found. Note that the
2028 // *low and *high values are both set to 0 when no partitions
2029 // are found, as well as when a single partition in the first
2030 // position exists. Thus, the return value is the only way to
2031 // tell when no partitions exist.
GetPartRange(uint32_t * low,uint32_t * high)2032 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
2033    uint32_t i;
2034    int numFound = 0;
2035 
2036    *low = numParts + 1; // code for "not found"
2037    *high = 0;
2038    for (i = 0; i < numParts; i++) {
2039       if (partitions[i].IsUsed()) { // it exists
2040          *high = i; // since we're counting up, set the high value
2041          // Set the low value only if it's not yet found...
2042          if (*low == (numParts + 1)) *low = i;
2043             numFound++;
2044       } // if
2045    } // for
2046 
2047    // Above will leave *low pointing to its "not found" value if no partitions
2048    // are defined, so reset to 0 if this is the case....
2049    if (*low == (numParts + 1))
2050       *low = 0;
2051    return numFound;
2052 } // GPTData::GetPartRange()
2053 
2054 // Returns the value of the first free partition, or -1 if none is
2055 // unused.
FindFirstFreePart(void)2056 int GPTData::FindFirstFreePart(void) {
2057    int i = 0;
2058 
2059    if (partitions != NULL) {
2060       while ((i < (int) numParts) && (partitions[i].IsUsed()))
2061          i++;
2062       if (i >= (int) numParts)
2063          i = -1;
2064    } else i = -1;
2065    return i;
2066 } // GPTData::FindFirstFreePart()
2067 
2068 // Returns the number of defined partitions.
CountParts(void)2069 uint32_t GPTData::CountParts(void) {
2070    uint32_t i, counted = 0;
2071 
2072    for (i = 0; i < numParts; i++) {
2073       if (partitions[i].IsUsed())
2074          counted++;
2075    } // for
2076    return counted;
2077 } // GPTData::CountParts()
2078 
2079 /****************************************************
2080  *                                                  *
2081  * Functions that return data about disk free space *
2082  *                                                  *
2083  ****************************************************/
2084 
2085 // Find the first available block after the starting point; returns 0 if
2086 // there are no available blocks left
FindFirstAvailable(uint64_t start)2087 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
2088    uint64_t first;
2089    uint32_t i;
2090    int firstMoved = 0;
2091 
2092    // Begin from the specified starting point or from the first usable
2093    // LBA, whichever is greater...
2094    if (start < mainHeader.firstUsableLBA)
2095       first = mainHeader.firstUsableLBA;
2096    else
2097       first = start;
2098 
2099    // ...now search through all partitions; if first is within an
2100    // existing partition, move it to the next sector after that
2101    // partition and repeat. If first was moved, set firstMoved
2102    // flag; repeat until firstMoved is not set, so as to catch
2103    // cases where partitions are out of sequential order....
2104    do {
2105       firstMoved = 0;
2106       for (i = 0; i < numParts; i++) {
2107          if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
2108              (first <= partitions[i].GetLastLBA())) { // in existing part.
2109             first = partitions[i].GetLastLBA() + 1;
2110             firstMoved = 1;
2111          } // if
2112       } // for
2113    } while (firstMoved == 1);
2114    if (first > mainHeader.lastUsableLBA)
2115       first = 0;
2116    return (first);
2117 } // GPTData::FindFirstAvailable()
2118 
2119 // Finds the first available sector in the largest block of unallocated
2120 // space on the disk. Returns 0 if there are no available blocks left
FindFirstInLargest(void)2121 uint64_t GPTData::FindFirstInLargest(void) {
2122    uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
2123 
2124    start = 0;
2125    do {
2126       firstBlock = FindFirstAvailable(start);
2127       if (firstBlock != UINT32_C(0)) { // something's free...
2128          lastBlock = FindLastInFree(firstBlock);
2129          segmentSize = lastBlock - firstBlock + UINT32_C(1);
2130          if (segmentSize > selectedSize) {
2131             selectedSize = segmentSize;
2132             selectedSegment = firstBlock;
2133          } // if
2134          start = lastBlock + 1;
2135       } // if
2136    } while (firstBlock != 0);
2137    return selectedSegment;
2138 } // GPTData::FindFirstInLargest()
2139 
2140 // Find the last available block on the disk.
2141 // Returns 0 if there are no available sectors
FindLastAvailable(void)2142 uint64_t GPTData::FindLastAvailable(void) {
2143    uint64_t last;
2144    uint32_t i;
2145    int lastMoved = 0;
2146 
2147    // Start by assuming the last usable LBA is available....
2148    last = mainHeader.lastUsableLBA;
2149 
2150    // ...now, similar to algorithm in FindFirstAvailable(), search
2151    // through all partitions, moving last when it's in an existing
2152    // partition. Set the lastMoved flag so we repeat to catch cases
2153    // where partitions are out of logical order.
2154    do {
2155       lastMoved = 0;
2156       for (i = 0; i < numParts; i++) {
2157          if ((last >= partitions[i].GetFirstLBA()) &&
2158              (last <= partitions[i].GetLastLBA())) { // in existing part.
2159             last = partitions[i].GetFirstLBA() - 1;
2160             lastMoved = 1;
2161          } // if
2162       } // for
2163    } while (lastMoved == 1);
2164    if (last < mainHeader.firstUsableLBA)
2165       last = 0;
2166    return (last);
2167 } // GPTData::FindLastAvailable()
2168 
2169 // Find the last available block in the free space pointed to by start.
FindLastInFree(uint64_t start)2170 uint64_t GPTData::FindLastInFree(uint64_t start) {
2171    uint64_t nearestStart;
2172    uint32_t i;
2173 
2174    nearestStart = mainHeader.lastUsableLBA;
2175    for (i = 0; i < numParts; i++) {
2176       if ((nearestStart > partitions[i].GetFirstLBA()) &&
2177           (partitions[i].GetFirstLBA() > start)) {
2178          nearestStart = partitions[i].GetFirstLBA() - 1;
2179       } // if
2180    } // for
2181    return (nearestStart);
2182 } // GPTData::FindLastInFree()
2183 
2184 // Finds the total number of free blocks, the number of segments in which
2185 // they reside, and the size of the largest of those segments
FindFreeBlocks(uint32_t * numSegments,uint64_t * largestSegment)2186 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
2187    uint64_t start = UINT64_C(0); // starting point for each search
2188    uint64_t totalFound = UINT64_C(0); // running total
2189    uint64_t firstBlock; // first block in a segment
2190    uint64_t lastBlock; // last block in a segment
2191    uint64_t segmentSize; // size of segment in blocks
2192    uint32_t num = 0;
2193 
2194    *largestSegment = UINT64_C(0);
2195    if (diskSize > 0) {
2196       do {
2197          firstBlock = FindFirstAvailable(start);
2198          if (firstBlock != UINT64_C(0)) { // something's free...
2199             lastBlock = FindLastInFree(firstBlock);
2200             segmentSize = lastBlock - firstBlock + UINT64_C(1);
2201             if (segmentSize > *largestSegment) {
2202                *largestSegment = segmentSize;
2203             } // if
2204             totalFound += segmentSize;
2205             num++;
2206             start = lastBlock + 1;
2207          } // if
2208       } while (firstBlock != 0);
2209    } // if
2210    *numSegments = num;
2211    return totalFound;
2212 } // GPTData::FindFreeBlocks()
2213 
2214 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
2215 // If it's allocated, return the partition number to which it's allocated
2216 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
2217 // returned in partNum if the sector is in use by basic GPT data structures.)
IsFree(uint64_t sector,uint32_t * partNum)2218 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
2219    int isFree = 1;
2220    uint32_t i;
2221 
2222    for (i = 0; i < numParts; i++) {
2223       if ((sector >= partitions[i].GetFirstLBA()) &&
2224            (sector <= partitions[i].GetLastLBA())) {
2225          isFree = 0;
2226          if (partNum != NULL)
2227             *partNum = i;
2228       } // if
2229    } // for
2230    if ((sector < mainHeader.firstUsableLBA) ||
2231         (sector > mainHeader.lastUsableLBA)) {
2232       isFree = 0;
2233       if (partNum != NULL)
2234          *partNum = UINT32_MAX;
2235    } // if
2236    return (isFree);
2237 } // GPTData::IsFree()
2238 
2239 // Returns 1 if partNum is unused AND if it's a legal value.
IsFreePartNum(uint32_t partNum)2240 int GPTData::IsFreePartNum(uint32_t partNum) {
2241    return ((partNum < numParts) && (partitions != NULL) &&
2242            (!partitions[partNum].IsUsed()));
2243 } // GPTData::IsFreePartNum()
2244 
2245 // Returns 1 if partNum is in use.
IsUsedPartNum(uint32_t partNum)2246 int GPTData::IsUsedPartNum(uint32_t partNum) {
2247    return ((partNum < numParts) && (partitions != NULL) &&
2248            (partitions[partNum].IsUsed()));
2249 } // GPTData::IsUsedPartNum()
2250 
2251 /***********************************************************
2252  *                                                         *
2253  * Change how functions work or return information on them *
2254  *                                                         *
2255  ***********************************************************/
2256 
2257 // Set partition alignment value; partitions will begin on multiples of
2258 // the specified value
SetAlignment(uint32_t n)2259 void GPTData::SetAlignment(uint32_t n) {
2260    if (n > 0)
2261       sectorAlignment = n;
2262    else
2263       cerr << "Attempt to set partition alignment to 0!\n";
2264 } // GPTData::SetAlignment()
2265 
2266 // Compute sector alignment based on the current partitions (if any). Each
2267 // partition's starting LBA is examined, and if it's divisible by a power-of-2
2268 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
2269 // sector size), but not by the previously-located alignment value, then the
2270 // alignment value is adjusted down. If the computed alignment is less than 8
2271 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
2272 // is a safety measure for Advanced Format drives. If no partitions are
2273 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
2274 // adjustment of that based on the current sector size). The result is that new
2275 // drives are aligned to 2048-sector multiples but the program won't complain
2276 // about other alignments on existing disks unless a smaller-than-8 alignment
2277 // is used on big disks (as safety for Advanced Format drives).
2278 // Returns the computed alignment value.
ComputeAlignment(void)2279 uint32_t GPTData::ComputeAlignment(void) {
2280    uint32_t i = 0, found, exponent = 31;
2281    uint32_t align = DEFAULT_ALIGNMENT;
2282 
2283    if (blockSize > 0)
2284       align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2285    exponent = (uint32_t) log2(align);
2286    for (i = 0; i < numParts; i++) {
2287       if (partitions[i].IsUsed()) {
2288          found = 0;
2289          while (!found) {
2290             align = UINT64_C(1) << exponent;
2291             if ((partitions[i].GetFirstLBA() % align) == 0) {
2292                found = 1;
2293             } else {
2294                exponent--;
2295             } // if/else
2296          } // while
2297       } // if
2298    } // for
2299    if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
2300       align = MIN_AF_ALIGNMENT;
2301    sectorAlignment = align;
2302    return align;
2303 } // GPTData::ComputeAlignment()
2304 
2305 /********************************
2306  *                              *
2307  * Endianness support functions *
2308  *                              *
2309  ********************************/
2310 
ReverseHeaderBytes(struct GPTHeader * header)2311 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
2312    ReverseBytes(&header->signature, 8);
2313    ReverseBytes(&header->revision, 4);
2314    ReverseBytes(&header->headerSize, 4);
2315    ReverseBytes(&header->headerCRC, 4);
2316    ReverseBytes(&header->reserved, 4);
2317    ReverseBytes(&header->currentLBA, 8);
2318    ReverseBytes(&header->backupLBA, 8);
2319    ReverseBytes(&header->firstUsableLBA, 8);
2320    ReverseBytes(&header->lastUsableLBA, 8);
2321    ReverseBytes(&header->partitionEntriesLBA, 8);
2322    ReverseBytes(&header->numParts, 4);
2323    ReverseBytes(&header->sizeOfPartitionEntries, 4);
2324    ReverseBytes(&header->partitionEntriesCRC, 4);
2325    ReverseBytes(header->reserved2, GPT_RESERVED);
2326 } // GPTData::ReverseHeaderBytes()
2327 
2328 // Reverse byte order for all partitions.
ReversePartitionBytes()2329 void GPTData::ReversePartitionBytes() {
2330    uint32_t i;
2331 
2332    for (i = 0; i < numParts; i++) {
2333       partitions[i].ReversePartBytes();
2334    } // for
2335 } // GPTData::ReversePartitionBytes()
2336 
2337 // Validate partition number
ValidPartNum(const uint32_t partNum)2338 bool GPTData::ValidPartNum (const uint32_t partNum) {
2339    if (partNum >= numParts) {
2340       cerr << "Partition number out of range: " << partNum << "\n";
2341       return false;
2342    } // if
2343    return true;
2344 } // GPTData::ValidPartNum
2345 
2346 // Return a single partition for inspection (not modification!) by other
2347 // functions.
operator [](uint32_t partNum) const2348 const GPTPart & GPTData::operator[](uint32_t partNum) const {
2349    if (partNum >= numParts) {
2350       cerr << "Partition number out of range (" << partNum << " requested, but only "
2351            << numParts << " available)\n";
2352       exit(1);
2353    } // if
2354    if (partitions == NULL) {
2355       cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
2356       exit(1);
2357    } // if
2358    return partitions[partNum];
2359 } // operator[]
2360 
2361 // Return (not for modification!) the disk's GUID value
GetDiskGUID(void) const2362 const GUIDData & GPTData::GetDiskGUID(void) const {
2363    return mainHeader.diskGUID;
2364 } // GPTData::GetDiskGUID()
2365 
2366 // Manage attributes for a partition, based on commands passed to this function.
2367 // (Function is non-interactive.)
2368 // Returns 1 if a modification command succeeded, 0 if the command should not have
2369 // modified data, and -1 if a modification command failed.
ManageAttributes(int partNum,const string & command,const string & bits)2370 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
2371    int retval = 0;
2372    Attributes theAttr;
2373 
2374    if (partNum >= (int) numParts) {
2375       cerr << "Invalid partition number (" << partNum + 1 << ")\n";
2376       retval = -1;
2377    } else {
2378       if (command == "show") {
2379          ShowAttributes(partNum);
2380       } else if (command == "get") {
2381          GetAttribute(partNum, bits);
2382       } else {
2383          theAttr = partitions[partNum].GetAttributes();
2384          if (theAttr.OperateOnAttributes(partNum, command, bits)) {
2385             partitions[partNum].SetAttributes(theAttr.GetAttributes());
2386             retval = 1;
2387          } else {
2388             retval = -1;
2389          } // if/else
2390       } // if/elseif/else
2391    } // if/else invalid partition #
2392 
2393    return retval;
2394 } // GPTData::ManageAttributes()
2395 
2396 // Show all attributes for a specified partition....
ShowAttributes(const uint32_t partNum)2397 void GPTData::ShowAttributes(const uint32_t partNum) {
2398    if ((partNum < numParts) && partitions[partNum].IsUsed())
2399       partitions[partNum].ShowAttributes(partNum);
2400 } // GPTData::ShowAttributes
2401 
2402 // Show whether a single attribute bit is set (terse output)...
GetAttribute(const uint32_t partNum,const string & attributeBits)2403 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
2404    if (partNum < numParts)
2405       partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
2406 } // GPTData::GetAttribute
2407 
2408 
2409 /******************************************
2410  *                                        *
2411  * Additional non-class support functions *
2412  *                                        *
2413  ******************************************/
2414 
2415 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
2416 // never fail these tests, but the struct types may fail depending on compile options.
2417 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
2418 // sizes.
SizesOK(void)2419 int SizesOK(void) {
2420    int allOK = 1;
2421 
2422    if (sizeof(uint8_t) != 1) {
2423       cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
2424       allOK = 0;
2425    } // if
2426    if (sizeof(uint16_t) != 2) {
2427       cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
2428       allOK = 0;
2429    } // if
2430    if (sizeof(uint32_t) != 4) {
2431       cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
2432       allOK = 0;
2433    } // if
2434    if (sizeof(uint64_t) != 8) {
2435       cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
2436       allOK = 0;
2437    } // if
2438    if (sizeof(struct MBRRecord) != 16) {
2439       cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
2440       allOK = 0;
2441    } // if
2442    if (sizeof(struct TempMBR) != 512) {
2443       cerr << "TempMBR is " <<  sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
2444       allOK = 0;
2445    } // if
2446    if (sizeof(struct GPTHeader) != 512) {
2447       cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
2448       allOK = 0;
2449    } // if
2450    if (sizeof(GPTPart) != 128) {
2451       cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
2452       allOK = 0;
2453    } // if
2454    if (sizeof(GUIDData) != 16) {
2455       cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
2456       allOK = 0;
2457    } // if
2458    if (sizeof(PartType) != 16) {
2459       cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
2460       allOK = 0;
2461    } // if
2462    return (allOK);
2463 } // SizesOK()
2464 
2465