1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
2 data. */
3
4 /* By Rod Smith, initial coding January to February, 2009 */
5
6 /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
7 under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8
9 #define __STDC_LIMIT_MACROS
10 #define __STDC_CONSTANT_MACROS
11
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <stdint.h>
15 #include <fcntl.h>
16 #include <string.h>
17 #include <math.h>
18 #include <time.h>
19 #include <sys/stat.h>
20 #include <errno.h>
21 #include <iostream>
22 #include <algorithm>
23 #include "crc32.h"
24 #include "gpt.h"
25 #include "bsd.h"
26 #include "support.h"
27 #include "parttypes.h"
28 #include "attributes.h"
29 #include "diskio.h"
30
31 using namespace std;
32
33 #ifdef __FreeBSD__
34 #define log2(x) (log(x) / M_LN2)
35 #endif // __FreeBSD__
36
37 #ifdef _MSC_VER
38 #define log2(x) (log((double) x) / log(2.0))
39 #endif // Microsoft Visual C++
40
41 #ifdef EFI
42 // in UEFI mode MMX registers are not yet available so using the
43 // x86_64 ABI to move "double" values around is not an option.
44 #ifdef log2
45 #undef log2
46 #endif
47 #define log2(x) log2_32( x )
log2_32(uint32_t v)48 static inline uint32_t log2_32(uint32_t v) {
49 int r = -1;
50 while (v >= 1) {
51 r++;
52 v >>= 1;
53 }
54 return r;
55 }
56 #endif
57
58 /****************************************
59 * *
60 * GPTData class and related structures *
61 * *
62 ****************************************/
63
64 // Default constructor
GPTData(void)65 GPTData::GPTData(void) {
66 blockSize = SECTOR_SIZE; // set a default
67 diskSize = 0;
68 partitions = NULL;
69 state = gpt_valid;
70 device = "";
71 justLooking = 0;
72 mainCrcOk = 0;
73 secondCrcOk = 0;
74 mainPartsCrcOk = 0;
75 secondPartsCrcOk = 0;
76 apmFound = 0;
77 bsdFound = 0;
78 sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
79 beQuiet = 0;
80 whichWasUsed = use_new;
81 mainHeader.numParts = 0;
82 numParts = 0;
83 SetGPTSize(NUM_GPT_ENTRIES);
84 // Initialize CRC functions...
85 chksum_crc32gentab();
86 } // GPTData default constructor
87
88 // The following constructor loads GPT data from a device file
GPTData(string filename)89 GPTData::GPTData(string filename) {
90 blockSize = SECTOR_SIZE; // set a default
91 diskSize = 0;
92 partitions = NULL;
93 state = gpt_invalid;
94 device = "";
95 justLooking = 0;
96 mainCrcOk = 0;
97 secondCrcOk = 0;
98 mainPartsCrcOk = 0;
99 secondPartsCrcOk = 0;
100 apmFound = 0;
101 bsdFound = 0;
102 sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
103 beQuiet = 0;
104 whichWasUsed = use_new;
105 mainHeader.numParts = 0;
106 numParts = 0;
107 // Initialize CRC functions...
108 chksum_crc32gentab();
109 if (!LoadPartitions(filename))
110 exit(2);
111 } // GPTData(string filename) constructor
112
113 // Destructor
~GPTData(void)114 GPTData::~GPTData(void) {
115 delete[] partitions;
116 } // GPTData destructor
117
118 // Assignment operator
operator =(const GPTData & orig)119 GPTData & GPTData::operator=(const GPTData & orig) {
120 uint32_t i;
121
122 mainHeader = orig.mainHeader;
123 numParts = orig.numParts;
124 secondHeader = orig.secondHeader;
125 protectiveMBR = orig.protectiveMBR;
126 device = orig.device;
127 blockSize = orig.blockSize;
128 diskSize = orig.diskSize;
129 state = orig.state;
130 justLooking = orig.justLooking;
131 mainCrcOk = orig.mainCrcOk;
132 secondCrcOk = orig.secondCrcOk;
133 mainPartsCrcOk = orig.mainPartsCrcOk;
134 secondPartsCrcOk = orig.secondPartsCrcOk;
135 apmFound = orig.apmFound;
136 bsdFound = orig.bsdFound;
137 sectorAlignment = orig.sectorAlignment;
138 beQuiet = orig.beQuiet;
139 whichWasUsed = orig.whichWasUsed;
140
141 myDisk.OpenForRead(orig.myDisk.GetName());
142
143 delete[] partitions;
144 partitions = new GPTPart [numParts];
145 if (partitions == NULL) {
146 cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
147 << "Terminating!\n";
148 exit(1);
149 } // if
150 for (i = 0; i < numParts; i++) {
151 partitions[i] = orig.partitions[i];
152 } // for
153
154 return *this;
155 } // GPTData::operator=()
156
157 /*********************************************************************
158 * *
159 * Begin functions that verify data, or that adjust the verification *
160 * information (compute CRCs, rebuild headers) *
161 * *
162 *********************************************************************/
163
164 // Perform detailed verification, reporting on any problems found, but
165 // do *NOT* recover from these problems. Returns the total number of
166 // problems identified.
Verify(void)167 int GPTData::Verify(void) {
168 int problems = 0, alignProbs = 0;
169 uint32_t i, numSegments;
170 uint64_t totalFree, largestSegment;
171
172 // First, check for CRC errors in the GPT data....
173 if (!mainCrcOk) {
174 problems++;
175 cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
176 << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
177 << "header ('b' on the recovery & transformation menu). This report may be a false\n"
178 << "alarm if you've already corrected other problems.\n";
179 } // if
180 if (!mainPartsCrcOk) {
181 problems++;
182 cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
183 << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
184 << "transformation menu). This report may be a false alarm if you've already\n"
185 << "corrected other problems.\n";
186 } // if
187 if (!secondCrcOk) {
188 problems++;
189 cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
190 << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
191 << "header ('d' on the recovery & transformation menu). This report may be a false\n"
192 << "alarm if you've already corrected other problems.\n";
193 } // if
194 if (!secondPartsCrcOk) {
195 problems++;
196 cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
197 << "be corrupt. This program will automatically create a new backup partition\n"
198 << "table when you save your partitions.\n";
199 } // if
200
201 // Now check that the main and backup headers both point to themselves....
202 if (mainHeader.currentLBA != 1) {
203 problems++;
204 cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
205 << "is being automatically corrected, but it may be a symptom of more serious\n"
206 << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
207 mainHeader.currentLBA = 1;
208 } // if
209 if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
210 problems++;
211 cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
212 << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
213 << "option on the experts' menu to adjust the secondary header's and partition\n"
214 << "table's locations.\n";
215 } // if
216
217 // Now check that critical main and backup GPT entries match each other
218 if (mainHeader.currentLBA != secondHeader.backupLBA) {
219 problems++;
220 cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
221 << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
222 << secondHeader.backupLBA << ").\n";
223 } // if
224 if (mainHeader.backupLBA != secondHeader.currentLBA) {
225 problems++;
226 cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
227 << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
228 << secondHeader.currentLBA << ").\n"
229 << "The 'e' option on the experts' menu may fix this problem.\n";
230 } // if
231 if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
232 problems++;
233 cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
234 << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
235 << secondHeader.firstUsableLBA << ")\n";
236 } // if
237 if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
238 problems++;
239 cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
240 << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
241 << secondHeader.lastUsableLBA << ")\n"
242 << "The 'e' option on the experts' menu can probably fix this problem.\n";
243 } // if
244 if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
245 problems++;
246 cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
247 << ") doesn't\nmatch the backup GPT header's disk GUID ("
248 << secondHeader.diskGUID << ")\n"
249 << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
250 << "select one or the other header.\n";
251 } // if
252 if (mainHeader.numParts != secondHeader.numParts) {
253 problems++;
254 cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
255 << ") doesn't\nmatch the backup GPT header's number of partitions ("
256 << secondHeader.numParts << ")\n"
257 << "Resizing the partition table ('s' on the experts' menu) may help.\n";
258 } // if
259 if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
260 problems++;
261 cout << "\nProblem: main GPT header's size of partition entries ("
262 << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
263 << "match the backup GPT header's size of partition entries ("
264 << secondHeader.sizeOfPartitionEntries << ")\n"
265 << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
266 << "select one or the other header.\n";
267 } // if
268
269 // Now check for a few other miscellaneous problems...
270 // Check that the disk size will hold the data...
271 if (mainHeader.backupLBA >= diskSize) {
272 problems++;
273 cout << "\nProblem: Disk is too small to hold all the data!\n"
274 << "(Disk size is " << diskSize << " sectors, needs to be "
275 << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
276 << "The 'e' option on the experts' menu may fix this problem.\n";
277 } // if
278
279 if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
280 problems++;
281 cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
282 << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
283 << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
284 << "The 'e' option on the experts' menu will probably fix this problem\n";
285 }
286
287 // Check for overlapping partitions....
288 problems += FindOverlaps();
289
290 // Check for insane partitions (start after end, hugely big, etc.)
291 problems += FindInsanePartitions();
292
293 // Check for mismatched MBR and GPT partitions...
294 problems += FindHybridMismatches();
295
296 // Check for MBR-specific problems....
297 problems += VerifyMBR();
298
299 // Check for a 0xEE protective partition that's marked as active....
300 if (protectiveMBR.IsEEActive()) {
301 cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
302 << "technically a violation of the GPT specification, and can cause some EFIs to\n"
303 << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
304 << "computers. You can clear this flag by creating a fresh protective MBR using\n"
305 << "the 'n' option on the experts' menu.\n";
306 }
307
308 // Verify that partitions don't run into GPT data areas....
309 problems += CheckGPTSize();
310
311 if (!protectiveMBR.DoTheyFit()) {
312 cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
313 << "fresh protective or hybrid MBR is recommended.\n";
314 problems++;
315 }
316
317 // Check that partitions are aligned on proper boundaries (for WD Advanced
318 // Format and similar disks)....
319 for (i = 0; i < numParts; i++) {
320 if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) {
321 cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
322 << sectorAlignment << "-sector boundary. This may\nresult "
323 << "in degraded performance on some modern (2009 and later) hard disks.\n";
324 alignProbs++;
325 } // if
326 } // for
327 if (alignProbs > 0)
328 cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
329 << "for information on disk alignment.\n";
330
331 // Now compute available space, but only if no problems found, since
332 // problems could affect the results
333 if (problems == 0) {
334 totalFree = FindFreeBlocks(&numSegments, &largestSegment);
335 cout << "\nNo problems found. " << totalFree << " free sectors ("
336 << BytesToIeee(totalFree, blockSize) << ") available in "
337 << numSegments << "\nsegments, the largest of which is "
338 << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
339 << ") in size.\n";
340 } else {
341 cout << "\nIdentified " << problems << " problems!\n";
342 } // if/else
343
344 return (problems);
345 } // GPTData::Verify()
346
347 // Checks to see if the GPT tables overrun existing partitions; if they
348 // do, issues a warning but takes no action. Returns number of problems
349 // detected (0 if OK, 1 to 2 if problems).
CheckGPTSize(void)350 int GPTData::CheckGPTSize(void) {
351 uint64_t overlap, firstUsedBlock, lastUsedBlock;
352 uint32_t i;
353 int numProbs = 0;
354
355 // first, locate the first & last used blocks
356 firstUsedBlock = UINT64_MAX;
357 lastUsedBlock = 0;
358 for (i = 0; i < numParts; i++) {
359 if (partitions[i].IsUsed()) {
360 if (partitions[i].GetFirstLBA() < firstUsedBlock)
361 firstUsedBlock = partitions[i].GetFirstLBA();
362 if (partitions[i].GetLastLBA() > lastUsedBlock) {
363 lastUsedBlock = partitions[i].GetLastLBA();
364 } // if
365 } // if
366 } // for
367
368 // If the disk size is 0 (the default), then it means that various
369 // variables aren't yet set, so the below tests will be useless;
370 // therefore we should skip everything
371 if (diskSize != 0) {
372 if (mainHeader.firstUsableLBA > firstUsedBlock) {
373 overlap = mainHeader.firstUsableLBA - firstUsedBlock;
374 cout << "Warning! Main partition table overlaps the first partition by "
375 << overlap << " blocks!\n";
376 if (firstUsedBlock > 2) {
377 cout << "Try reducing the partition table size by " << overlap * 4
378 << " entries.\n(Use the 's' item on the experts' menu.)\n";
379 } else {
380 cout << "You will need to delete this partition or resize it in another utility.\n";
381 } // if/else
382 numProbs++;
383 } // Problem at start of disk
384 if (mainHeader.lastUsableLBA < lastUsedBlock) {
385 overlap = lastUsedBlock - mainHeader.lastUsableLBA;
386 cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
387 << overlap << " blocks!\n";
388 if (lastUsedBlock > (diskSize - 2)) {
389 cout << "You will need to delete this partition or resize it in another utility.\n";
390 } else {
391 cout << "Try reducing the partition table size by " << overlap * 4
392 << " entries.\n(Use the 's' item on the experts' menu.)\n";
393 } // if/else
394 numProbs++;
395 } // Problem at end of disk
396 } // if (diskSize != 0)
397 return numProbs;
398 } // GPTData::CheckGPTSize()
399
400 // Check the validity of the GPT header. Returns 1 if the main header
401 // is valid, 2 if the backup header is valid, 3 if both are valid, and
402 // 0 if neither is valid. Note that this function checks the GPT signature,
403 // revision value, and CRCs in both headers.
CheckHeaderValidity(void)404 int GPTData::CheckHeaderValidity(void) {
405 int valid = 3;
406
407 cout.setf(ios::uppercase);
408 cout.fill('0');
409
410 // Note: failed GPT signature checks produce no error message because
411 // a message is displayed in the ReversePartitionBytes() function
412 if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
413 valid -= 1;
414 } else if ((mainHeader.revision != 0x00010000) && valid) {
415 valid -= 1;
416 cout << "Unsupported GPT version in main header; read 0x";
417 cout.width(8);
418 cout << hex << mainHeader.revision << ", should be\n0x";
419 cout.width(8);
420 cout << UINT32_C(0x00010000) << dec << "\n";
421 } // if/else/if
422
423 if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
424 valid -= 2;
425 } else if ((secondHeader.revision != 0x00010000) && valid) {
426 valid -= 2;
427 cout << "Unsupported GPT version in backup header; read 0x";
428 cout.width(8);
429 cout << hex << secondHeader.revision << ", should be\n0x";
430 cout.width(8);
431 cout << UINT32_C(0x00010000) << dec << "\n";
432 } // if/else/if
433
434 // Check for an Apple disk signature
435 if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
436 (mainHeader.signature << 32) == APM_SIGNATURE2) {
437 apmFound = 1; // Will display warning message later
438 } // if
439 cout.fill(' ');
440
441 return valid;
442 } // GPTData::CheckHeaderValidity()
443
444 // Check the header CRC to see if it's OK...
445 // Note: Must be called with header in platform-ordered byte order.
446 // Returns 1 if header's computed CRC matches the stored value, 0 if the
447 // computed and stored values don't match
CheckHeaderCRC(struct GPTHeader * header,int warn)448 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
449 uint32_t oldCRC, newCRC, hSize;
450 uint8_t *temp;
451
452 // Back up old header CRC and then blank it, since it must be 0 for
453 // computation to be valid
454 oldCRC = header->headerCRC;
455 header->headerCRC = UINT32_C(0);
456
457 hSize = header->headerSize;
458
459 if (IsLittleEndian() == 0)
460 ReverseHeaderBytes(header);
461
462 if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
463 if (warn) {
464 cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
465 cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
466 } // if
467 hSize = HEADER_SIZE;
468 } else if ((hSize > sizeof(GPTHeader)) && warn) {
469 cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
470 cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
471 << "which may result in a CRC false alarm.\n";
472 } // if/elseif
473 temp = new uint8_t[hSize];
474 if (temp != NULL) {
475 memset(temp, 0, hSize);
476 if (hSize < sizeof(GPTHeader))
477 memcpy(temp, header, hSize);
478 else
479 memcpy(temp, header, sizeof(GPTHeader));
480
481 newCRC = chksum_crc32((unsigned char*) temp, hSize);
482 delete[] temp;
483 } else {
484 cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
485 exit(1);
486 }
487 if (IsLittleEndian() == 0)
488 ReverseHeaderBytes(header);
489 header->headerCRC = oldCRC;
490 return (oldCRC == newCRC);
491 } // GPTData::CheckHeaderCRC()
492
493 // Recompute all the CRCs. Must be called before saving if any changes have
494 // been made. Must be called on platform-ordered data (this function reverses
495 // byte order and then undoes that reversal.)
RecomputeCRCs(void)496 void GPTData::RecomputeCRCs(void) {
497 uint32_t crc, hSize;
498 int littleEndian = 1;
499
500 // If the header size is bigger than the GPT header data structure, reset it;
501 // otherwise, set both header sizes to whatever the main one is....
502 if (mainHeader.headerSize > sizeof(GPTHeader))
503 hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
504 else
505 hSize = secondHeader.headerSize = mainHeader.headerSize;
506
507 if ((littleEndian = IsLittleEndian()) == 0) {
508 ReversePartitionBytes();
509 ReverseHeaderBytes(&mainHeader);
510 ReverseHeaderBytes(&secondHeader);
511 } // if
512
513 // Compute CRC of partition tables & store in main and secondary headers
514 crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
515 mainHeader.partitionEntriesCRC = crc;
516 secondHeader.partitionEntriesCRC = crc;
517 if (littleEndian == 0) {
518 ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
519 ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
520 } // if
521
522 // Zero out GPT headers' own CRCs (required for correct computation)
523 mainHeader.headerCRC = 0;
524 secondHeader.headerCRC = 0;
525
526 crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
527 if (littleEndian == 0)
528 ReverseBytes(&crc, 4);
529 mainHeader.headerCRC = crc;
530 crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
531 if (littleEndian == 0)
532 ReverseBytes(&crc, 4);
533 secondHeader.headerCRC = crc;
534
535 if (littleEndian == 0) {
536 ReverseHeaderBytes(&mainHeader);
537 ReverseHeaderBytes(&secondHeader);
538 ReversePartitionBytes();
539 } // if
540 } // GPTData::RecomputeCRCs()
541
542 // Rebuild the main GPT header, using the secondary header as a model.
543 // Typically called when the main header has been found to be corrupt.
RebuildMainHeader(void)544 void GPTData::RebuildMainHeader(void) {
545 mainHeader.signature = GPT_SIGNATURE;
546 mainHeader.revision = secondHeader.revision;
547 mainHeader.headerSize = secondHeader.headerSize;
548 mainHeader.headerCRC = UINT32_C(0);
549 mainHeader.reserved = secondHeader.reserved;
550 mainHeader.currentLBA = secondHeader.backupLBA;
551 mainHeader.backupLBA = secondHeader.currentLBA;
552 mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
553 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
554 mainHeader.diskGUID = secondHeader.diskGUID;
555 mainHeader.partitionEntriesLBA = UINT64_C(2);
556 mainHeader.numParts = secondHeader.numParts;
557 mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
558 mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
559 memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
560 mainCrcOk = secondCrcOk;
561 SetGPTSize(mainHeader.numParts, 0);
562 } // GPTData::RebuildMainHeader()
563
564 // Rebuild the secondary GPT header, using the main header as a model.
RebuildSecondHeader(void)565 void GPTData::RebuildSecondHeader(void) {
566 secondHeader.signature = GPT_SIGNATURE;
567 secondHeader.revision = mainHeader.revision;
568 secondHeader.headerSize = mainHeader.headerSize;
569 secondHeader.headerCRC = UINT32_C(0);
570 secondHeader.reserved = mainHeader.reserved;
571 secondHeader.currentLBA = mainHeader.backupLBA;
572 secondHeader.backupLBA = mainHeader.currentLBA;
573 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
574 secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
575 secondHeader.diskGUID = mainHeader.diskGUID;
576 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
577 secondHeader.numParts = mainHeader.numParts;
578 secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
579 secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
580 memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
581 secondCrcOk = mainCrcOk;
582 SetGPTSize(secondHeader.numParts, 0);
583 } // GPTData::RebuildSecondHeader()
584
585 // Search for hybrid MBR entries that have no corresponding GPT partition.
586 // Returns number of such mismatches found
FindHybridMismatches(void)587 int GPTData::FindHybridMismatches(void) {
588 int i, found, numFound = 0;
589 uint32_t j;
590 uint64_t mbrFirst, mbrLast;
591
592 for (i = 0; i < 4; i++) {
593 if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
594 j = 0;
595 found = 0;
596 mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
597 mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
598 do {
599 if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
600 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
601 found = 1;
602 j++;
603 } while ((!found) && (j < numParts));
604 if (!found) {
605 numFound++;
606 cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
607 << i + 1 << ", of type 0x";
608 cout.fill('0');
609 cout.setf(ios::uppercase);
610 cout.width(2);
611 cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
612 << "has no corresponding GPT partition! You may continue, but this condition\n"
613 << "might cause data loss in the future!\a\n" << dec;
614 cout.fill(' ');
615 } // if
616 } // if
617 } // for
618 return numFound;
619 } // GPTData::FindHybridMismatches
620
621 // Find overlapping partitions and warn user about them. Returns number of
622 // overlapping partitions.
623 // Returns number of overlapping segments found.
FindOverlaps(void)624 int GPTData::FindOverlaps(void) {
625 int problems = 0;
626 uint32_t i, j;
627
628 for (i = 1; i < numParts; i++) {
629 for (j = 0; j < i; j++) {
630 if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
631 (partitions[i].DoTheyOverlap(partitions[j]))) {
632 problems++;
633 cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
634 cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
635 << " to " << partitions[i].GetLastLBA() << "\n";
636 cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
637 << " to " << partitions[j].GetLastLBA() << "\n";
638 } // if
639 } // for j...
640 } // for i...
641 return problems;
642 } // GPTData::FindOverlaps()
643
644 // Find partitions that are insane -- they start after they end or are too
645 // big for the disk. (The latter should duplicate detection of overlaps
646 // with GPT backup data structures, but better to err on the side of
647 // redundant tests than to miss something....)
648 // Returns number of problems found.
FindInsanePartitions(void)649 int GPTData::FindInsanePartitions(void) {
650 uint32_t i;
651 int problems = 0;
652
653 for (i = 0; i < numParts; i++) {
654 if (partitions[i].IsUsed()) {
655 if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
656 problems++;
657 cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
658 } // if
659 if (partitions[i].GetLastLBA() >= diskSize) {
660 problems++;
661 cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
662 } // if
663 } // if
664 } // for
665 return problems;
666 } // GPTData::FindInsanePartitions(void)
667
668
669 /******************************************************************
670 * *
671 * Begin functions that load data from disk or save data to disk. *
672 * *
673 ******************************************************************/
674
675 // Change the filename associated with the GPT. Used for duplicating
676 // the partition table to a new disk and saving backups.
677 // Returns 1 on success, 0 on failure.
SetDisk(const string & deviceFilename)678 int GPTData::SetDisk(const string & deviceFilename) {
679 int err, allOK = 1;
680
681 device = deviceFilename;
682 if (allOK && myDisk.OpenForRead(deviceFilename)) {
683 // store disk information....
684 diskSize = myDisk.DiskSize(&err);
685 blockSize = (uint32_t) myDisk.GetBlockSize();
686 } // if
687 protectiveMBR.SetDisk(&myDisk);
688 protectiveMBR.SetDiskSize(diskSize);
689 protectiveMBR.SetBlockSize(blockSize);
690 return allOK;
691 } // GPTData::SetDisk()
692
693 // Scan for partition data. This function loads the MBR data (regular MBR or
694 // protective MBR) and loads BSD disklabel data (which is probably invalid).
695 // It also looks for APM data, forces a load of GPT data, and summarizes
696 // the results.
PartitionScan(void)697 void GPTData::PartitionScan(void) {
698 BSDData bsdDisklabel;
699
700 // Read the MBR & check for BSD disklabel
701 protectiveMBR.ReadMBRData(&myDisk);
702 bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
703
704 // Load the GPT data, whether or not it's valid
705 ForceLoadGPTData();
706
707 // Some tools create a 0xEE partition that's too big. If this is detected,
708 // normalize it....
709 if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
710 if (!beQuiet) {
711 cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
712 } // if
713 protectiveMBR.MakeProtectiveMBR();
714 } // if
715
716 if (!beQuiet) {
717 cout << "Partition table scan:\n";
718 protectiveMBR.ShowState();
719 bsdDisklabel.ShowState();
720 ShowAPMState(); // Show whether there's an Apple Partition Map present
721 ShowGPTState(); // Show GPT status
722 cout << "\n";
723 } // if
724
725 if (apmFound) {
726 cout << "\n*******************************************************************\n"
727 << "This disk appears to contain an Apple-format (APM) partition table!\n";
728 if (!justLooking) {
729 cout << "It will be destroyed if you continue!\n";
730 } // if
731 cout << "*******************************************************************\n\n\a";
732 } // if
733 } // GPTData::PartitionScan()
734
735 // Read GPT data from a disk.
LoadPartitions(const string & deviceFilename)736 int GPTData::LoadPartitions(const string & deviceFilename) {
737 BSDData bsdDisklabel;
738 int err, allOK = 1;
739 MBRValidity mbrState;
740
741 if (myDisk.OpenForRead(deviceFilename)) {
742 err = myDisk.OpenForWrite(deviceFilename);
743 if ((err == 0) && (!justLooking)) {
744 cout << "\aNOTE: Write test failed with error number " << errno
745 << ". It will be impossible to save\nchanges to this disk's partition table!\n";
746 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
747 cout << "You may be able to enable writes by exiting this program, typing\n"
748 << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
749 << "program.\n";
750 #endif
751 cout << "\n";
752 } // if
753 myDisk.Close(); // Close and re-open read-only in case of bugs
754 } else allOK = 0; // if
755
756 if (allOK && myDisk.OpenForRead(deviceFilename)) {
757 // store disk information....
758 diskSize = myDisk.DiskSize(&err);
759 blockSize = (uint32_t) myDisk.GetBlockSize();
760 device = deviceFilename;
761 PartitionScan(); // Check for partition types, load GPT, & print summary
762
763 whichWasUsed = UseWhichPartitions();
764 switch (whichWasUsed) {
765 case use_mbr:
766 XFormPartitions();
767 break;
768 case use_bsd:
769 bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
770 // bsdDisklabel.DisplayBSDData();
771 ClearGPTData();
772 protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
773 XFormDisklabel(&bsdDisklabel);
774 break;
775 case use_gpt:
776 mbrState = protectiveMBR.GetValidity();
777 if ((mbrState == invalid) || (mbrState == mbr))
778 protectiveMBR.MakeProtectiveMBR();
779 break;
780 case use_new:
781 ClearGPTData();
782 protectiveMBR.MakeProtectiveMBR();
783 break;
784 case use_abort:
785 allOK = 0;
786 cerr << "Invalid partition data!\n";
787 break;
788 } // switch
789
790 if (allOK)
791 CheckGPTSize();
792 myDisk.Close();
793 ComputeAlignment();
794 } else {
795 allOK = 0;
796 } // if/else
797 return (allOK);
798 } // GPTData::LoadPartitions()
799
800 // Loads the GPT, as much as possible. Returns 1 if this seems to have
801 // succeeded, 0 if there are obvious problems....
ForceLoadGPTData(void)802 int GPTData::ForceLoadGPTData(void) {
803 int allOK, validHeaders, loadedTable = 1;
804
805 allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
806
807 if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
808 allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
809 } else {
810 allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
811 if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
812 cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
813 << "secondary header from the last sector of the disk! You should use 'v' to\n"
814 << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
815 << "the disk.\n";
816 } // if/else
817 if (!allOK)
818 state = gpt_invalid;
819
820 // Return valid headers code: 0 = both headers bad; 1 = main header
821 // good, backup bad; 2 = backup header good, main header bad;
822 // 3 = both headers good. Note these codes refer to valid GPT
823 // signatures, version numbers, and CRCs.
824 validHeaders = CheckHeaderValidity();
825
826 // Read partitions (from primary array)
827 if (validHeaders > 0) { // if at least one header is OK....
828 // GPT appears to be valid....
829 state = gpt_valid;
830
831 // We're calling the GPT valid, but there's a possibility that one
832 // of the two headers is corrupt. If so, use the one that seems to
833 // be in better shape to regenerate the bad one
834 if (validHeaders == 1) { // valid main header, invalid backup header
835 cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
836 << "backup header from main header.\n\n";
837 RebuildSecondHeader();
838 state = gpt_corrupt;
839 secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
840 } else if (validHeaders == 2) { // valid backup header, invalid main header
841 cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
842 << "from backup!\n\n";
843 RebuildMainHeader();
844 state = gpt_corrupt;
845 mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
846 } // if/else/if
847
848 // Figure out which partition table to load....
849 // Load the main partition table, since either its header's CRC is OK or the
850 // backup header's CRC is not OK....
851 if (mainCrcOk || !secondCrcOk) {
852 if (LoadMainTable() == 0)
853 allOK = 0;
854 } else { // bad main header CRC and backup header CRC is OK
855 state = gpt_corrupt;
856 if (LoadSecondTableAsMain()) {
857 loadedTable = 2;
858 cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
859 } else { // backup table bad, bad main header CRC, but try main table in desperation....
860 if (LoadMainTable() == 0) {
861 allOK = 0;
862 loadedTable = 0;
863 cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
864 } // if
865 } // if/else (LoadSecondTableAsMain())
866 } // if/else (load partition table)
867
868 if (loadedTable == 1)
869 secondPartsCrcOk = CheckTable(&secondHeader);
870 else if (loadedTable == 2)
871 mainPartsCrcOk = CheckTable(&mainHeader);
872 else
873 mainPartsCrcOk = secondPartsCrcOk = 0;
874
875 // Problem with main partition table; if backup is OK, use it instead....
876 if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
877 state = gpt_corrupt;
878 allOK = allOK && LoadSecondTableAsMain();
879 mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
880 cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
881 << "partition table\ninstead of main partition table!\n\n";
882 } // if */
883
884 // Check for valid CRCs and warn if there are problems
885 if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) ||
886 (secondPartsCrcOk == 0)) {
887 cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n";
888 state = gpt_corrupt;
889 } // if
890 } else {
891 state = gpt_invalid;
892 } // if/else
893 return allOK;
894 } // GPTData::ForceLoadGPTData()
895
896 // Loads the partition table pointed to by the main GPT header. The
897 // main GPT header in memory MUST be valid for this call to do anything
898 // sensible!
899 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadMainTable(void)900 int GPTData::LoadMainTable(void) {
901 return LoadPartitionTable(mainHeader, myDisk);
902 } // GPTData::LoadMainTable()
903
904 // Load the second (backup) partition table as the primary partition
905 // table. Used in repair functions, and when starting up if the main
906 // partition table is damaged.
907 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadSecondTableAsMain(void)908 int GPTData::LoadSecondTableAsMain(void) {
909 return LoadPartitionTable(secondHeader, myDisk);
910 } // GPTData::LoadSecondTableAsMain()
911
912 // Load a single GPT header (main or backup) from the specified disk device and
913 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
914 // value appropriately.
915 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
916 // failure.
LoadHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector,int * crcOk)917 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
918 int allOK = 1;
919 GPTHeader tempHeader;
920
921 disk.Seek(sector);
922 if (disk.Read(&tempHeader, 512) != 512) {
923 cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
924 allOK = 0;
925 } // if
926
927 // Reverse byte order, if necessary
928 if (IsLittleEndian() == 0) {
929 ReverseHeaderBytes(&tempHeader);
930 } // if
931 *crcOk = CheckHeaderCRC(&tempHeader);
932
933 if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
934 allOK = SetGPTSize(tempHeader.numParts, 0);
935 }
936
937 *header = tempHeader;
938 return allOK;
939 } // GPTData::LoadHeader
940
941 // Load a partition table (either main or secondary) from the specified disk,
942 // using header as a reference for what to load. If sector != 0 (the default
943 // is 0), loads from the specified sector; otherwise loads from the sector
944 // indicated in header.
945 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadPartitionTable(const struct GPTHeader & header,DiskIO & disk,uint64_t sector)946 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
947 uint32_t sizeOfParts, newCRC;
948 int retval;
949
950 if (disk.OpenForRead()) {
951 if (sector == 0) {
952 retval = disk.Seek(header.partitionEntriesLBA);
953 } else {
954 retval = disk.Seek(sector);
955 } // if/else
956 if (retval == 1)
957 retval = SetGPTSize(header.numParts, 0);
958 if (retval == 1) {
959 sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
960 if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
961 cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
962 retval = 0;
963 } // if
964 newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
965 mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
966 if (IsLittleEndian() == 0)
967 ReversePartitionBytes();
968 if (!mainPartsCrcOk) {
969 cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
970 } // if
971 } else {
972 cerr << "Error! Couldn't seek to partition table!\n";
973 } // if/else
974 } else {
975 cerr << "Error! Couldn't open device " << device
976 << " when reading partition table!\n";
977 retval = 0;
978 } // if/else
979 return retval;
980 } // GPTData::LoadPartitionsTable()
981
982 // Check the partition table pointed to by header, but don't keep it
983 // around.
984 // Returns 1 if the CRC is OK & this table matches the one already in memory,
985 // 0 if not or if there was a read error.
CheckTable(struct GPTHeader * header)986 int GPTData::CheckTable(struct GPTHeader *header) {
987 uint32_t sizeOfParts, newCRC;
988 GPTPart *partsToCheck;
989 GPTHeader *otherHeader;
990 int allOK = 0;
991
992 // Load partition table into temporary storage to check
993 // its CRC and store the results, then discard this temporary
994 // storage, since we don't use it in any but recovery operations
995 if (myDisk.Seek(header->partitionEntriesLBA)) {
996 partsToCheck = new GPTPart[header->numParts];
997 sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
998 if (partsToCheck == NULL) {
999 cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
1000 exit(1);
1001 } // if
1002 if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
1003 cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
1004 } else {
1005 newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
1006 allOK = (newCRC == header->partitionEntriesCRC);
1007 if (header == &mainHeader)
1008 otherHeader = &secondHeader;
1009 else
1010 otherHeader = &mainHeader;
1011 if (newCRC != otherHeader->partitionEntriesCRC) {
1012 cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
1013 << "on the recovery & transformation menu to examine the two tables.\n\n";
1014 allOK = 0;
1015 } // if
1016 } // if/else
1017 delete[] partsToCheck;
1018 } // if
1019 return allOK;
1020 } // GPTData::CheckTable()
1021
1022 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
1023 // header later on the disk without asking for permission, if necessary, and
1024 // doesn't confirm the operation before writing. If quiet==0, asks permission
1025 // before moving the second header and asks for final confirmation of any
1026 // write.
1027 // Returns 1 on successful write, 0 if there was a problem.
SaveGPTData(int quiet)1028 int GPTData::SaveGPTData(int quiet) {
1029 int allOK = 1, syncIt = 1;
1030 char answer;
1031
1032 // First do some final sanity checks....
1033
1034 // This test should only fail on read-only disks....
1035 if (justLooking) {
1036 cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
1037 allOK = 0;
1038 } // if
1039
1040 // Check that disk is really big enough to handle the second header...
1041 if (mainHeader.backupLBA >= diskSize) {
1042 cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
1043 << "header, but other problems may occur!\n";
1044 MoveSecondHeaderToEnd();
1045 } // if
1046
1047 // Is there enough space to hold the GPT headers and partition tables,
1048 // given the partition sizes?
1049 if (CheckGPTSize() > 0) {
1050 allOK = 0;
1051 } // if
1052
1053 // Check that second header is properly placed. Warn and ask if this should
1054 // be corrected if the test fails....
1055 if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
1056 if (quiet == 0) {
1057 cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
1058 << "correct this problem? ";
1059 if (GetYN() == 'Y') {
1060 MoveSecondHeaderToEnd();
1061 cout << "Have moved second header and partition table to correct location.\n";
1062 } else {
1063 cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1064 } // if correction requested
1065 } else { // Go ahead and do correction automatically
1066 MoveSecondHeaderToEnd();
1067 } // if/else quiet
1068 } // if
1069
1070 if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
1071 if (quiet == 0) {
1072 cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
1073 << "this problem? ";
1074 if (GetYN() == 'Y') {
1075 MoveSecondHeaderToEnd();
1076 cout << "Have adjusted the second header and last usable sector value.\n";
1077 } else {
1078 cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1079 } // if correction requested
1080 } else { // go ahead and do correction automatically
1081 MoveSecondHeaderToEnd();
1082 } // if/else quiet
1083 } // if
1084
1085 // Check for overlapping or insane partitions....
1086 if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
1087 allOK = 0;
1088 cerr << "Aborting write operation!\n";
1089 } // if
1090
1091 // Check that protective MBR fits, and warn if it doesn't....
1092 if (!protectiveMBR.DoTheyFit()) {
1093 cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
1094 << "fresh protective or hybrid MBR is recommended.\n";
1095 }
1096
1097 // Check for mismatched MBR and GPT data, but let it pass if found
1098 // (function displays warning message)
1099 FindHybridMismatches();
1100
1101 RecomputeCRCs();
1102
1103 if ((allOK) && (!quiet)) {
1104 cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
1105 << "PARTITIONS!!\n\nDo you want to proceed? ";
1106 answer = GetYN();
1107 if (answer == 'Y') {
1108 cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
1109 } else {
1110 allOK = 0;
1111 } // if/else
1112 } // if
1113
1114 // Do it!
1115 if (allOK) {
1116 if (myDisk.OpenForWrite()) {
1117 // As per UEFI specs, write the secondary table and GPT first....
1118 allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
1119 if (!allOK) {
1120 cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
1121 << "menu will resolve this problem.\n";
1122 syncIt = 0;
1123 } // if
1124
1125 // Now write the secondary GPT header...
1126 allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
1127
1128 // Now write the main partition tables...
1129 allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
1130
1131 // Now write the main GPT header...
1132 allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
1133
1134 // To top it off, write the protective MBR...
1135 allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
1136
1137 // re-read the partition table
1138 // Note: Done even if some write operations failed, but not if all of them failed.
1139 // Done this way because I've received one problem report from a user one whose
1140 // system the MBR write failed but everything else was OK (on a GPT disk under
1141 // Windows), and the failure to sync therefore caused Windows to restore the
1142 // original partition table from its cache. OTOH, such restoration might be
1143 // desirable if the error occurs later; but that seems unlikely unless the initial
1144 // write fails....
1145 if (syncIt)
1146 myDisk.DiskSync();
1147
1148 if (allOK) { // writes completed OK
1149 cout << "The operation has completed successfully.\n";
1150 } else {
1151 cerr << "Warning! An error was reported when writing the partition table! This error\n"
1152 << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
1153 } // if/else
1154
1155 myDisk.Close();
1156 } else {
1157 cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
1158 << errno << "! Aborting write!\n";
1159 allOK = 0;
1160 } // if/else
1161 } else {
1162 cout << "Aborting write of new partition table.\n";
1163 } // if
1164
1165 return (allOK);
1166 } // GPTData::SaveGPTData()
1167
1168 // Save GPT data to a backup file. This function does much less error
1169 // checking than SaveGPTData(). It can therefore preserve many types of
1170 // corruption for later analysis; however, it preserves only the MBR,
1171 // the main GPT header, the backup GPT header, and the main partition
1172 // table; it discards the backup partition table, since it should be
1173 // identical to the main partition table on healthy disks.
SaveGPTBackup(const string & filename)1174 int GPTData::SaveGPTBackup(const string & filename) {
1175 int allOK = 1;
1176 DiskIO backupFile;
1177
1178 if (backupFile.OpenForWrite(filename)) {
1179 // Recomputing the CRCs is likely to alter them, which could be bad
1180 // if the intent is to save a potentially bad GPT for later analysis;
1181 // but if we don't do this, we get bogus errors when we load the
1182 // backup. I'm favoring misses over false alarms....
1183 RecomputeCRCs();
1184
1185 protectiveMBR.WriteMBRData(&backupFile);
1186 protectiveMBR.SetDisk(&myDisk);
1187
1188 if (allOK) {
1189 // MBR write closed disk, so re-open and seek to end....
1190 backupFile.OpenForWrite();
1191 allOK = SaveHeader(&mainHeader, backupFile, 1);
1192 } // if (allOK)
1193
1194 if (allOK)
1195 allOK = SaveHeader(&secondHeader, backupFile, 2);
1196
1197 if (allOK)
1198 allOK = SavePartitionTable(backupFile, 3);
1199
1200 if (allOK) { // writes completed OK
1201 cout << "The operation has completed successfully.\n";
1202 } else {
1203 cerr << "Warning! An error was reported when writing the backup file.\n"
1204 << "It may not be usable!\n";
1205 } // if/else
1206 backupFile.Close();
1207 } else {
1208 cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
1209 allOK = 0;
1210 } // if/else
1211 return allOK;
1212 } // GPTData::SaveGPTBackup()
1213
1214 // Write a GPT header (main or backup) to the specified sector. Used by both
1215 // the SaveGPTData() and SaveGPTBackup() functions.
1216 // Should be passed an architecture-appropriate header (DO NOT call
1217 // ReverseHeaderBytes() on the header before calling this function)
1218 // Returns 1 on success, 0 on failure
SaveHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector)1219 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
1220 int littleEndian, allOK = 1;
1221
1222 littleEndian = IsLittleEndian();
1223 if (!littleEndian)
1224 ReverseHeaderBytes(header);
1225 if (disk.Seek(sector)) {
1226 if (disk.Write(header, 512) == -1)
1227 allOK = 0;
1228 } else allOK = 0; // if (disk.Seek()...)
1229 if (!littleEndian)
1230 ReverseHeaderBytes(header);
1231 return allOK;
1232 } // GPTData::SaveHeader()
1233
1234 // Save the partitions to the specified sector. Used by both the SaveGPTData()
1235 // and SaveGPTBackup() functions.
1236 // Should be passed an architecture-appropriate header (DO NOT call
1237 // ReverseHeaderBytes() on the header before calling this function)
1238 // Returns 1 on success, 0 on failure
SavePartitionTable(DiskIO & disk,uint64_t sector)1239 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
1240 int littleEndian, allOK = 1;
1241
1242 littleEndian = IsLittleEndian();
1243 if (disk.Seek(sector)) {
1244 if (!littleEndian)
1245 ReversePartitionBytes();
1246 if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
1247 allOK = 0;
1248 if (!littleEndian)
1249 ReversePartitionBytes();
1250 } else allOK = 0; // if (myDisk.Seek()...)
1251 return allOK;
1252 } // GPTData::SavePartitionTable()
1253
1254 // Load GPT data from a backup file created by SaveGPTBackup(). This function
1255 // does minimal error checking. It returns 1 if it completed successfully,
1256 // 0 if there was a problem. In the latter case, it creates a new empty
1257 // set of partitions.
LoadGPTBackup(const string & filename)1258 int GPTData::LoadGPTBackup(const string & filename) {
1259 int allOK = 1, val, err;
1260 int shortBackup = 0;
1261 DiskIO backupFile;
1262
1263 if (backupFile.OpenForRead(filename)) {
1264 // Let the MBRData class load the saved MBR...
1265 protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
1266 protectiveMBR.SetDisk(&myDisk);
1267
1268 LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
1269
1270 // Check backup file size and rebuild second header if file is right
1271 // size to be direct dd copy of MBR, main header, and main partition
1272 // table; if other size, treat it like a GPT fdisk-generated backup
1273 // file
1274 shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
1275 (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
1276 if (shortBackup) {
1277 RebuildSecondHeader();
1278 secondCrcOk = mainCrcOk;
1279 } else {
1280 LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
1281 } // if/else
1282
1283 // Return valid headers code: 0 = both headers bad; 1 = main header
1284 // good, backup bad; 2 = backup header good, main header bad;
1285 // 3 = both headers good. Note these codes refer to valid GPT
1286 // signatures and version numbers; more subtle problems will elude
1287 // this check!
1288 if ((val = CheckHeaderValidity()) > 0) {
1289 if (val == 2) { // only backup header seems to be good
1290 SetGPTSize(secondHeader.numParts, 0);
1291 } else { // main header is OK
1292 SetGPTSize(mainHeader.numParts, 0);
1293 } // if/else
1294
1295 if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
1296 cout << "Warning! Current disk size doesn't match that of the backup!\n"
1297 << "Adjusting sizes to match, but subsequent problems are possible!\n";
1298 MoveSecondHeaderToEnd();
1299 } // if
1300
1301 if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
1302 cerr << "Warning! Read error " << errno
1303 << " loading partition table; strange behavior now likely!\n";
1304 } else {
1305 allOK = 0;
1306 } // if/else
1307 // Something went badly wrong, so blank out partitions
1308 if (allOK == 0) {
1309 cerr << "Improper backup file! Clearing all partition data!\n";
1310 ClearGPTData();
1311 protectiveMBR.MakeProtectiveMBR();
1312 } // if
1313 } else {
1314 allOK = 0;
1315 cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
1316 } // if/else
1317
1318 return allOK;
1319 } // GPTData::LoadGPTBackup()
1320
SaveMBR(void)1321 int GPTData::SaveMBR(void) {
1322 return protectiveMBR.WriteMBRData(&myDisk);
1323 } // GPTData::SaveMBR()
1324
1325 // This function destroys the on-disk GPT structures, but NOT the on-disk
1326 // MBR.
1327 // Returns 1 if the operation succeeds, 0 if not.
DestroyGPT(void)1328 int GPTData::DestroyGPT(void) {
1329 int sum, tableSize, allOK = 1;
1330 uint8_t blankSector[512];
1331 uint8_t* emptyTable;
1332
1333 memset(blankSector, 0, sizeof(blankSector));
1334 ClearGPTData();
1335
1336 if (myDisk.OpenForWrite()) {
1337 if (!myDisk.Seek(mainHeader.currentLBA))
1338 allOK = 0;
1339 if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1340 cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
1341 allOK = 0;
1342 } // if
1343 if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
1344 allOK = 0;
1345 tableSize = numParts * mainHeader.sizeOfPartitionEntries;
1346 emptyTable = new uint8_t[tableSize];
1347 if (emptyTable == NULL) {
1348 cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
1349 exit(1);
1350 } // if
1351 memset(emptyTable, 0, tableSize);
1352 if (allOK) {
1353 sum = myDisk.Write(emptyTable, tableSize);
1354 if (sum != tableSize) {
1355 cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
1356 allOK = 0;
1357 } // if write failed
1358 } // if
1359 if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
1360 allOK = 0;
1361 if (allOK) {
1362 sum = myDisk.Write(emptyTable, tableSize);
1363 if (sum != tableSize) {
1364 cerr << "Warning! GPT backup partition table not overwritten! Error is "
1365 << errno << "\n";
1366 allOK = 0;
1367 } // if wrong size written
1368 } // if
1369 if (!myDisk.Seek(secondHeader.currentLBA))
1370 allOK = 0;
1371 if (allOK) {
1372 if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1373 cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
1374 allOK = 0;
1375 } // if
1376 } // if
1377 myDisk.DiskSync();
1378 myDisk.Close();
1379 cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
1380 << "other utilities.\n";
1381 delete[] emptyTable;
1382 } else {
1383 cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
1384 } // if/else (fd != -1)
1385 return (allOK);
1386 } // GPTDataTextUI::DestroyGPT()
1387
1388 // Wipe MBR data from the disk (zero it out completely)
1389 // Returns 1 on success, 0 on failure.
DestroyMBR(void)1390 int GPTData::DestroyMBR(void) {
1391 int allOK;
1392 uint8_t blankSector[512];
1393
1394 memset(blankSector, 0, sizeof(blankSector));
1395
1396 allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
1397
1398 if (!allOK)
1399 cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
1400 return allOK;
1401 } // GPTData::DestroyMBR(void)
1402
1403 // Tell user whether Apple Partition Map (APM) was discovered....
ShowAPMState(void)1404 void GPTData::ShowAPMState(void) {
1405 if (apmFound)
1406 cout << " APM: present\n";
1407 else
1408 cout << " APM: not present\n";
1409 } // GPTData::ShowAPMState()
1410
1411 // Tell user about the state of the GPT data....
ShowGPTState(void)1412 void GPTData::ShowGPTState(void) {
1413 switch (state) {
1414 case gpt_invalid:
1415 cout << " GPT: not present\n";
1416 break;
1417 case gpt_valid:
1418 cout << " GPT: present\n";
1419 break;
1420 case gpt_corrupt:
1421 cout << " GPT: damaged\n";
1422 break;
1423 default:
1424 cout << "\a GPT: unknown -- bug!\n";
1425 break;
1426 } // switch
1427 } // GPTData::ShowGPTState()
1428
1429 // Display the basic GPT data
DisplayGPTData(void)1430 void GPTData::DisplayGPTData(void) {
1431 uint32_t i;
1432 uint64_t temp, totalFree;
1433
1434 cout << "Disk " << device << ": " << diskSize << " sectors, "
1435 << BytesToIeee(diskSize, blockSize) << "\n";
1436 cout << "Logical sector size: " << blockSize << " bytes\n";
1437 cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
1438 cout << "Partition table holds up to " << numParts << " entries\n";
1439 cout << "First usable sector is " << mainHeader.firstUsableLBA
1440 << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
1441 totalFree = FindFreeBlocks(&i, &temp);
1442 cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
1443 cout << "Total free space is " << totalFree << " sectors ("
1444 << BytesToIeee(totalFree, blockSize) << ")\n";
1445 cout << "\nNumber Start (sector) End (sector) Size Code Name\n";
1446 for (i = 0; i < numParts; i++) {
1447 partitions[i].ShowSummary(i, blockSize);
1448 } // for
1449 } // GPTData::DisplayGPTData()
1450
1451 // Show detailed information on the specified partition
ShowPartDetails(uint32_t partNum)1452 void GPTData::ShowPartDetails(uint32_t partNum) {
1453 if ((partNum < numParts) && !IsFreePartNum(partNum)) {
1454 partitions[partNum].ShowDetails(blockSize);
1455 } else {
1456 cout << "Partition #" << partNum + 1 << " does not exist.\n";
1457 } // if
1458 } // GPTData::ShowPartDetails()
1459
1460 /**************************************************************************
1461 * *
1462 * Partition table transformation functions (MBR or BSD disklabel to GPT) *
1463 * (some of these functions may require user interaction) *
1464 * *
1465 **************************************************************************/
1466
1467 // Examines the MBR & GPT data to determine which set of data to use: the
1468 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
1469 // a new set of partitions (use_new). A return value of use_abort indicates
1470 // that this function couldn't determine what to do. Overriding functions
1471 // in derived classes may ask users questions in such cases.
UseWhichPartitions(void)1472 WhichToUse GPTData::UseWhichPartitions(void) {
1473 WhichToUse which = use_new;
1474 MBRValidity mbrState;
1475
1476 mbrState = protectiveMBR.GetValidity();
1477
1478 if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
1479 cout << "\n***************************************************************\n"
1480 << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
1481 << "in memory. ";
1482 if (!justLooking) {
1483 cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
1484 << "typing 'q' if you don't want to convert your MBR partitions\n"
1485 << "to GPT format!";
1486 } // if
1487 cout << "\n***************************************************************\n\n";
1488 which = use_mbr;
1489 } // if
1490
1491 if ((state == gpt_invalid) && bsdFound) {
1492 cout << "\n**********************************************************************\n"
1493 << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
1494 << "to GPT format.";
1495 if ((!justLooking) && (!beQuiet)) {
1496 cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
1497 << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
1498 << "want to convert your BSD partitions to GPT format!";
1499 } // if
1500 cout << "\n**********************************************************************\n\n";
1501 which = use_bsd;
1502 } // if
1503
1504 if ((state == gpt_valid) && (mbrState == gpt)) {
1505 which = use_gpt;
1506 if (!beQuiet)
1507 cout << "Found valid GPT with protective MBR; using GPT.\n";
1508 } // if
1509 if ((state == gpt_valid) && (mbrState == hybrid)) {
1510 which = use_gpt;
1511 if (!beQuiet)
1512 cout << "Found valid GPT with hybrid MBR; using GPT.\n";
1513 } // if
1514 if ((state == gpt_valid) && (mbrState == invalid)) {
1515 cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
1516 << "protective MBR on save.\n";
1517 which = use_gpt;
1518 } // if
1519 if ((state == gpt_valid) && (mbrState == mbr)) {
1520 which = use_abort;
1521 } // if
1522
1523 if (state == gpt_corrupt) {
1524 if (mbrState == gpt) {
1525 cout << "\a\a****************************************************************************\n"
1526 << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
1527 << "verification and recovery are STRONGLY recommended.\n"
1528 << "****************************************************************************\n";
1529 which = use_gpt;
1530 } else {
1531 which = use_abort;
1532 } // if/else MBR says disk is GPT
1533 } // if GPT corrupt
1534
1535 if (which == use_new)
1536 cout << "Creating new GPT entries.\n";
1537
1538 return which;
1539 } // UseWhichPartitions()
1540
1541 // Convert MBR partition table into GPT form.
XFormPartitions(void)1542 void GPTData::XFormPartitions(void) {
1543 int i, numToConvert;
1544 uint8_t origType;
1545
1546 // Clear out old data & prepare basics....
1547 ClearGPTData();
1548
1549 // Convert the smaller of the # of GPT or MBR partitions
1550 if (numParts > MAX_MBR_PARTS)
1551 numToConvert = MAX_MBR_PARTS;
1552 else
1553 numToConvert = numParts;
1554
1555 for (i = 0; i < numToConvert; i++) {
1556 origType = protectiveMBR.GetType(i);
1557 // don't waste CPU time trying to convert extended, hybrid protective, or
1558 // null (non-existent) partitions
1559 if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
1560 (origType != 0x00) && (origType != 0xEE))
1561 partitions[i] = protectiveMBR.AsGPT(i);
1562 } // for
1563
1564 // Convert MBR into protective MBR
1565 protectiveMBR.MakeProtectiveMBR();
1566
1567 // Record that all original CRCs were OK so as not to raise flags
1568 // when doing a disk verification
1569 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1570 } // GPTData::XFormPartitions()
1571
1572 // Transforms BSD disklabel on the specified partition (numbered from 0).
1573 // If an invalid partition number is given, the program does nothing.
1574 // Returns the number of new partitions created.
XFormDisklabel(uint32_t partNum)1575 int GPTData::XFormDisklabel(uint32_t partNum) {
1576 uint32_t low, high;
1577 int goOn = 1, numDone = 0;
1578 BSDData disklabel;
1579
1580 if (GetPartRange(&low, &high) == 0) {
1581 goOn = 0;
1582 cout << "No partitions!\n";
1583 } // if
1584 if (partNum > high) {
1585 goOn = 0;
1586 cout << "Specified partition is invalid!\n";
1587 } // if
1588
1589 // If all is OK, read the disklabel and convert it.
1590 if (goOn) {
1591 goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
1592 partitions[partNum].GetLastLBA());
1593 if ((goOn) && (disklabel.IsDisklabel())) {
1594 numDone = XFormDisklabel(&disklabel);
1595 if (numDone == 1)
1596 cout << "Converted 1 BSD partition.\n";
1597 else
1598 cout << "Converted " << numDone << " BSD partitions.\n";
1599 } else {
1600 cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
1601 } // if/else
1602 } // if
1603 if (numDone > 0) { // converted partitions; delete carrier
1604 partitions[partNum].BlankPartition();
1605 } // if
1606 return numDone;
1607 } // GPTData::XFormDisklabel(uint32_t i)
1608
1609 // Transform the partitions on an already-loaded BSD disklabel...
XFormDisklabel(BSDData * disklabel)1610 int GPTData::XFormDisklabel(BSDData* disklabel) {
1611 int i, partNum = 0, numDone = 0;
1612
1613 if (disklabel->IsDisklabel()) {
1614 for (i = 0; i < disklabel->GetNumParts(); i++) {
1615 partNum = FindFirstFreePart();
1616 if (partNum >= 0) {
1617 partitions[partNum] = disklabel->AsGPT(i);
1618 if (partitions[partNum].IsUsed())
1619 numDone++;
1620 } // if
1621 } // for
1622 if (partNum == -1)
1623 cerr << "Warning! Too many partitions to convert!\n";
1624 } // if
1625
1626 // Record that all original CRCs were OK so as not to raise flags
1627 // when doing a disk verification
1628 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1629
1630 return numDone;
1631 } // GPTData::XFormDisklabel(BSDData* disklabel)
1632
1633 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
1634 // partition has the active/bootable flag UNset and uses the GPT fdisk
1635 // type code divided by 0x0100 as the MBR type code.
1636 // Returns 1 if operation was 100% successful, 0 if there were ANY
1637 // problems.
OnePartToMBR(uint32_t gptPart,int mbrPart)1638 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
1639 int allOK = 1;
1640
1641 if ((mbrPart < 0) || (mbrPart > 3)) {
1642 cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
1643 allOK = 0;
1644 } // if
1645 if (gptPart >= numParts) {
1646 cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
1647 allOK = 0;
1648 } // if
1649 if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
1650 cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
1651 allOK = 0;
1652 } // if
1653 if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
1654 (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
1655 if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
1656 cout << "Caution: Partition end point past 32-bit pointer boundary;"
1657 << " some OSes may\nreact strangely.\n";
1658 } // if
1659 protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
1660 (uint32_t) partitions[gptPart].GetLengthLBA(),
1661 partitions[gptPart].GetHexType() / 256, 0);
1662 } else { // partition out of range
1663 if (allOK) // Display only if "else" triggered by out-of-bounds condition
1664 cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
1665 << "partitions, or is\n too big; omitting it.\n";
1666 allOK = 0;
1667 } // if/else
1668 return allOK;
1669 } // GPTData::OnePartToMBR()
1670
1671
1672 /**********************************************************************
1673 * *
1674 * Functions that adjust GPT data structures WITHOUT user interaction *
1675 * (they may display information for the user's benefit, though) *
1676 * *
1677 **********************************************************************/
1678
1679 // Resizes GPT to specified number of entries. Creates a new table if
1680 // necessary, copies data if it already exists. If fillGPTSectors is 1
1681 // (the default), rounds numEntries to fill all the sectors necessary to
1682 // hold the GPT.
1683 // Returns 1 if all goes well, 0 if an error is encountered.
SetGPTSize(uint32_t numEntries,int fillGPTSectors)1684 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
1685 GPTPart* newParts;
1686 uint32_t i, high, copyNum, entriesPerSector;
1687 int allOK = 1;
1688
1689 // First, adjust numEntries upward, if necessary, to get a number
1690 // that fills the allocated sectors
1691 entriesPerSector = blockSize / GPT_SIZE;
1692 if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
1693 cout << "Adjusting GPT size from " << numEntries << " to ";
1694 numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
1695 cout << numEntries << " to fill the sector\n";
1696 } // if
1697
1698 // Do the work only if the # of partitions is changing. Along with being
1699 // efficient, this prevents mucking with the location of the secondary
1700 // partition table, which causes problems when loading data from a RAID
1701 // array that's been expanded because this function is called when loading
1702 // data.
1703 if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
1704 newParts = new GPTPart [numEntries];
1705 if (newParts != NULL) {
1706 if (partitions != NULL) { // existing partitions; copy them over
1707 GetPartRange(&i, &high);
1708 if (numEntries < (high + 1)) { // Highest entry too high for new #
1709 cout << "The highest-numbered partition is " << high + 1
1710 << ", which is greater than the requested\n"
1711 << "partition table size of " << numEntries
1712 << "; cannot resize. Perhaps sorting will help.\n";
1713 allOK = 0;
1714 delete[] newParts;
1715 } else { // go ahead with copy
1716 if (numEntries < numParts)
1717 copyNum = numEntries;
1718 else
1719 copyNum = numParts;
1720 for (i = 0; i < copyNum; i++) {
1721 newParts[i] = partitions[i];
1722 } // for
1723 delete[] partitions;
1724 partitions = newParts;
1725 } // if
1726 } else { // No existing partition table; just create it
1727 partitions = newParts;
1728 } // if/else existing partitions
1729 numParts = numEntries;
1730 mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ;
1731 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
1732 MoveSecondHeaderToEnd();
1733 if (diskSize > 0)
1734 CheckGPTSize();
1735 } else { // Bad memory allocation
1736 cerr << "Error allocating memory for partition table! Size is unchanged!\n";
1737 allOK = 0;
1738 } // if/else
1739 } // if/else
1740 mainHeader.numParts = numParts;
1741 secondHeader.numParts = numParts;
1742 return (allOK);
1743 } // GPTData::SetGPTSize()
1744
1745 // Blank the partition array
BlankPartitions(void)1746 void GPTData::BlankPartitions(void) {
1747 uint32_t i;
1748
1749 for (i = 0; i < numParts; i++) {
1750 partitions[i].BlankPartition();
1751 } // for
1752 } // GPTData::BlankPartitions()
1753
1754 // Delete a partition by number. Returns 1 if successful,
1755 // 0 if there was a problem. Returns 1 if partition was in
1756 // range, 0 if it was out of range.
DeletePartition(uint32_t partNum)1757 int GPTData::DeletePartition(uint32_t partNum) {
1758 uint64_t startSector, length;
1759 uint32_t low, high, numUsedParts, retval = 1;;
1760
1761 numUsedParts = GetPartRange(&low, &high);
1762 if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
1763 // In case there's a protective MBR, look for & delete matching
1764 // MBR partition....
1765 startSector = partitions[partNum].GetFirstLBA();
1766 length = partitions[partNum].GetLengthLBA();
1767 protectiveMBR.DeleteByLocation(startSector, length);
1768
1769 // Now delete the GPT partition
1770 partitions[partNum].BlankPartition();
1771 } else {
1772 cerr << "Partition number " << partNum + 1 << " out of range!\n";
1773 retval = 0;
1774 } // if/else
1775 return retval;
1776 } // GPTData::DeletePartition(uint32_t partNum)
1777
1778 // Non-interactively create a partition.
1779 // Returns 1 if the operation was successful, 0 if a problem was discovered.
CreatePartition(uint32_t partNum,uint64_t startSector,uint64_t endSector)1780 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
1781 int retval = 1; // assume there'll be no problems
1782 uint64_t origSector = startSector;
1783
1784 if (IsFreePartNum(partNum)) {
1785 if (Align(&startSector)) {
1786 cout << "Information: Moved requested sector from " << origSector << " to "
1787 << startSector << " in\norder to align on " << sectorAlignment
1788 << "-sector boundaries.\n";
1789 } // if
1790 if (IsFree(startSector) && (startSector <= endSector)) {
1791 if (FindLastInFree(startSector) >= endSector) {
1792 partitions[partNum].SetFirstLBA(startSector);
1793 partitions[partNum].SetLastLBA(endSector);
1794 partitions[partNum].SetType(DEFAULT_GPT_TYPE);
1795 partitions[partNum].RandomizeUniqueGUID();
1796 } else retval = 0; // if free space until endSector
1797 } else retval = 0; // if startSector is free
1798 } else retval = 0; // if legal partition number
1799 return retval;
1800 } // GPTData::CreatePartition(partNum, startSector, endSector)
1801
1802 // Sort the GPT entries, eliminating gaps and making for a logical
1803 // ordering.
SortGPT(void)1804 void GPTData::SortGPT(void) {
1805 if (numParts > 0)
1806 sort(partitions, partitions + numParts);
1807 } // GPTData::SortGPT()
1808
1809 // Swap the contents of two partitions.
1810 // Returns 1 if successful, 0 if either partition is out of range
1811 // (that is, not a legal number; either or both can be empty).
1812 // Note that if partNum1 = partNum2 and this number is in range,
1813 // it will be considered successful.
SwapPartitions(uint32_t partNum1,uint32_t partNum2)1814 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
1815 GPTPart temp;
1816 int allOK = 1;
1817
1818 if ((partNum1 < numParts) && (partNum2 < numParts)) {
1819 if (partNum1 != partNum2) {
1820 temp = partitions[partNum1];
1821 partitions[partNum1] = partitions[partNum2];
1822 partitions[partNum2] = temp;
1823 } // if
1824 } else allOK = 0; // partition numbers are valid
1825 return allOK;
1826 } // GPTData::SwapPartitions()
1827
1828 // Set up data structures for entirely new set of partitions on the
1829 // specified device. Returns 1 if OK, 0 if there were problems.
1830 // Note that this function does NOT clear the protectiveMBR data
1831 // structure, since it may hold the original MBR partitions if the
1832 // program was launched on an MBR disk, and those may need to be
1833 // converted to GPT format.
ClearGPTData(void)1834 int GPTData::ClearGPTData(void) {
1835 int goOn = 1, i;
1836
1837 // Set up the partition table....
1838 delete[] partitions;
1839 partitions = NULL;
1840 SetGPTSize(NUM_GPT_ENTRIES);
1841
1842 // Now initialize a bunch of stuff that's static....
1843 mainHeader.signature = GPT_SIGNATURE;
1844 mainHeader.revision = 0x00010000;
1845 mainHeader.headerSize = HEADER_SIZE;
1846 mainHeader.reserved = 0;
1847 mainHeader.currentLBA = UINT64_C(1);
1848 mainHeader.partitionEntriesLBA = (uint64_t) 2;
1849 mainHeader.sizeOfPartitionEntries = GPT_SIZE;
1850 for (i = 0; i < GPT_RESERVED; i++) {
1851 mainHeader.reserved2[i] = '\0';
1852 } // for
1853 if (blockSize > 0)
1854 sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
1855 else
1856 sectorAlignment = DEFAULT_ALIGNMENT;
1857
1858 // Now some semi-static items (computed based on end of disk)
1859 mainHeader.backupLBA = diskSize - UINT64_C(1);
1860 mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1861
1862 // Set a unique GUID for the disk, based on random numbers
1863 mainHeader.diskGUID.Randomize();
1864
1865 // Copy main header to backup header
1866 RebuildSecondHeader();
1867
1868 // Blank out the partitions array....
1869 BlankPartitions();
1870
1871 // Flag all CRCs as being OK....
1872 mainCrcOk = 1;
1873 secondCrcOk = 1;
1874 mainPartsCrcOk = 1;
1875 secondPartsCrcOk = 1;
1876
1877 return (goOn);
1878 } // GPTData::ClearGPTData()
1879
1880 // Set the location of the second GPT header data to the end of the disk.
1881 // If the disk size has actually changed, this also adjusts the protective
1882 // entry in the MBR, since it's probably no longer correct.
1883 // Used internally and called by the 'e' option on the recovery &
1884 // transformation menu, to help users of RAID arrays who add disk space
1885 // to their arrays or to adjust data structures in restore operations
1886 // involving unequal-sized disks.
MoveSecondHeaderToEnd()1887 void GPTData::MoveSecondHeaderToEnd() {
1888 mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
1889 if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
1890 if (protectiveMBR.GetValidity() == hybrid) {
1891 protectiveMBR.OptimizeEESize();
1892 RecomputeCHS();
1893 } // if
1894 if (protectiveMBR.GetValidity() == gpt)
1895 MakeProtectiveMBR();
1896 } // if
1897 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1898 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
1899 } // GPTData::FixSecondHeaderLocation()
1900
1901 // Sets the partition's name to the specified UnicodeString without
1902 // user interaction.
1903 // Returns 1 on success, 0 on failure (invalid partition number).
SetName(uint32_t partNum,const UnicodeString & theName)1904 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
1905 int retval = 1;
1906
1907 if (IsUsedPartNum(partNum))
1908 partitions[partNum].SetName(theName);
1909 else
1910 retval = 0;
1911
1912 return retval;
1913 } // GPTData::SetName
1914
1915 // Set the disk GUID to the specified value. Note that the header CRCs must
1916 // be recomputed after calling this function.
SetDiskGUID(GUIDData newGUID)1917 void GPTData::SetDiskGUID(GUIDData newGUID) {
1918 mainHeader.diskGUID = newGUID;
1919 secondHeader.diskGUID = newGUID;
1920 } // SetDiskGUID()
1921
1922 // Set the unique GUID of the specified partition. Returns 1 on
1923 // successful completion, 0 if there were problems (invalid
1924 // partition number).
SetPartitionGUID(uint32_t pn,GUIDData theGUID)1925 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
1926 int retval = 0;
1927
1928 if (pn < numParts) {
1929 if (partitions[pn].IsUsed()) {
1930 partitions[pn].SetUniqueGUID(theGUID);
1931 retval = 1;
1932 } // if
1933 } // if
1934 return retval;
1935 } // GPTData::SetPartitionGUID()
1936
1937 // Set new random GUIDs for the disk and all partitions. Intended to be used
1938 // after disk cloning or similar operations that don't randomize the GUIDs.
RandomizeGUIDs(void)1939 void GPTData::RandomizeGUIDs(void) {
1940 uint32_t i;
1941
1942 mainHeader.diskGUID.Randomize();
1943 secondHeader.diskGUID = mainHeader.diskGUID;
1944 for (i = 0; i < numParts; i++)
1945 if (partitions[i].IsUsed())
1946 partitions[i].RandomizeUniqueGUID();
1947 } // GPTData::RandomizeGUIDs()
1948
1949 // Change partition type code non-interactively. Returns 1 if
1950 // successful, 0 if not....
ChangePartType(uint32_t partNum,PartType theGUID)1951 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
1952 int retval = 1;
1953
1954 if (!IsFreePartNum(partNum)) {
1955 partitions[partNum].SetType(theGUID);
1956 } else retval = 0;
1957 return retval;
1958 } // GPTData::ChangePartType()
1959
1960 // Recompute the CHS values of all the MBR partitions. Used to reset
1961 // CHS values that some BIOSes require, despite the fact that the
1962 // resulting CHS values violate the GPT standard.
RecomputeCHS(void)1963 void GPTData::RecomputeCHS(void) {
1964 int i;
1965
1966 for (i = 0; i < 4; i++)
1967 protectiveMBR.RecomputeCHS(i);
1968 } // GPTData::RecomputeCHS()
1969
1970 // Adjust sector number so that it falls on a sector boundary that's a
1971 // multiple of sectorAlignment. This is done to improve the performance
1972 // of Western Digital Advanced Format disks and disks with similar
1973 // technology from other companies, which use 4096-byte sectors
1974 // internally although they translate to 512-byte sectors for the
1975 // benefit of the OS. If partitions aren't properly aligned on these
1976 // disks, some filesystem data structures can span multiple physical
1977 // sectors, degrading performance. This function should be called
1978 // only on the FIRST sector of the partition, not the last!
1979 // This function returns 1 if the alignment was altered, 0 if it
1980 // was unchanged.
Align(uint64_t * sector)1981 int GPTData::Align(uint64_t* sector) {
1982 int retval = 0, sectorOK = 0;
1983 uint64_t earlier, later, testSector;
1984
1985 if ((*sector % sectorAlignment) != 0) {
1986 earlier = (*sector / sectorAlignment) * sectorAlignment;
1987 later = earlier + (uint64_t) sectorAlignment;
1988
1989 // Check to see that every sector between the earlier one and the
1990 // requested one is clear, and that it's not too early....
1991 if (earlier >= mainHeader.firstUsableLBA) {
1992 sectorOK = 1;
1993 testSector = earlier;
1994 do {
1995 sectorOK = IsFree(testSector++);
1996 } while ((sectorOK == 1) && (testSector < *sector));
1997 if (sectorOK == 1) {
1998 *sector = earlier;
1999 retval = 1;
2000 } // if
2001 } // if firstUsableLBA check
2002
2003 // If couldn't move the sector earlier, try to move it later instead....
2004 if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
2005 sectorOK = 1;
2006 testSector = later;
2007 do {
2008 sectorOK = IsFree(testSector--);
2009 } while ((sectorOK == 1) && (testSector > *sector));
2010 if (sectorOK == 1) {
2011 *sector = later;
2012 retval = 1;
2013 } // if
2014 } // if
2015 } // if
2016 return retval;
2017 } // GPTData::Align()
2018
2019 /********************************************************
2020 * *
2021 * Functions that return data about GPT data structures *
2022 * (most of these are inline in gpt.h) *
2023 * *
2024 ********************************************************/
2025
2026 // Find the low and high used partition numbers (numbered from 0).
2027 // Return value is the number of partitions found. Note that the
2028 // *low and *high values are both set to 0 when no partitions
2029 // are found, as well as when a single partition in the first
2030 // position exists. Thus, the return value is the only way to
2031 // tell when no partitions exist.
GetPartRange(uint32_t * low,uint32_t * high)2032 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
2033 uint32_t i;
2034 int numFound = 0;
2035
2036 *low = numParts + 1; // code for "not found"
2037 *high = 0;
2038 for (i = 0; i < numParts; i++) {
2039 if (partitions[i].IsUsed()) { // it exists
2040 *high = i; // since we're counting up, set the high value
2041 // Set the low value only if it's not yet found...
2042 if (*low == (numParts + 1)) *low = i;
2043 numFound++;
2044 } // if
2045 } // for
2046
2047 // Above will leave *low pointing to its "not found" value if no partitions
2048 // are defined, so reset to 0 if this is the case....
2049 if (*low == (numParts + 1))
2050 *low = 0;
2051 return numFound;
2052 } // GPTData::GetPartRange()
2053
2054 // Returns the value of the first free partition, or -1 if none is
2055 // unused.
FindFirstFreePart(void)2056 int GPTData::FindFirstFreePart(void) {
2057 int i = 0;
2058
2059 if (partitions != NULL) {
2060 while ((i < (int) numParts) && (partitions[i].IsUsed()))
2061 i++;
2062 if (i >= (int) numParts)
2063 i = -1;
2064 } else i = -1;
2065 return i;
2066 } // GPTData::FindFirstFreePart()
2067
2068 // Returns the number of defined partitions.
CountParts(void)2069 uint32_t GPTData::CountParts(void) {
2070 uint32_t i, counted = 0;
2071
2072 for (i = 0; i < numParts; i++) {
2073 if (partitions[i].IsUsed())
2074 counted++;
2075 } // for
2076 return counted;
2077 } // GPTData::CountParts()
2078
2079 /****************************************************
2080 * *
2081 * Functions that return data about disk free space *
2082 * *
2083 ****************************************************/
2084
2085 // Find the first available block after the starting point; returns 0 if
2086 // there are no available blocks left
FindFirstAvailable(uint64_t start)2087 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
2088 uint64_t first;
2089 uint32_t i;
2090 int firstMoved = 0;
2091
2092 // Begin from the specified starting point or from the first usable
2093 // LBA, whichever is greater...
2094 if (start < mainHeader.firstUsableLBA)
2095 first = mainHeader.firstUsableLBA;
2096 else
2097 first = start;
2098
2099 // ...now search through all partitions; if first is within an
2100 // existing partition, move it to the next sector after that
2101 // partition and repeat. If first was moved, set firstMoved
2102 // flag; repeat until firstMoved is not set, so as to catch
2103 // cases where partitions are out of sequential order....
2104 do {
2105 firstMoved = 0;
2106 for (i = 0; i < numParts; i++) {
2107 if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
2108 (first <= partitions[i].GetLastLBA())) { // in existing part.
2109 first = partitions[i].GetLastLBA() + 1;
2110 firstMoved = 1;
2111 } // if
2112 } // for
2113 } while (firstMoved == 1);
2114 if (first > mainHeader.lastUsableLBA)
2115 first = 0;
2116 return (first);
2117 } // GPTData::FindFirstAvailable()
2118
2119 // Finds the first available sector in the largest block of unallocated
2120 // space on the disk. Returns 0 if there are no available blocks left
FindFirstInLargest(void)2121 uint64_t GPTData::FindFirstInLargest(void) {
2122 uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
2123
2124 start = 0;
2125 do {
2126 firstBlock = FindFirstAvailable(start);
2127 if (firstBlock != UINT32_C(0)) { // something's free...
2128 lastBlock = FindLastInFree(firstBlock);
2129 segmentSize = lastBlock - firstBlock + UINT32_C(1);
2130 if (segmentSize > selectedSize) {
2131 selectedSize = segmentSize;
2132 selectedSegment = firstBlock;
2133 } // if
2134 start = lastBlock + 1;
2135 } // if
2136 } while (firstBlock != 0);
2137 return selectedSegment;
2138 } // GPTData::FindFirstInLargest()
2139
2140 // Find the last available block on the disk.
2141 // Returns 0 if there are no available sectors
FindLastAvailable(void)2142 uint64_t GPTData::FindLastAvailable(void) {
2143 uint64_t last;
2144 uint32_t i;
2145 int lastMoved = 0;
2146
2147 // Start by assuming the last usable LBA is available....
2148 last = mainHeader.lastUsableLBA;
2149
2150 // ...now, similar to algorithm in FindFirstAvailable(), search
2151 // through all partitions, moving last when it's in an existing
2152 // partition. Set the lastMoved flag so we repeat to catch cases
2153 // where partitions are out of logical order.
2154 do {
2155 lastMoved = 0;
2156 for (i = 0; i < numParts; i++) {
2157 if ((last >= partitions[i].GetFirstLBA()) &&
2158 (last <= partitions[i].GetLastLBA())) { // in existing part.
2159 last = partitions[i].GetFirstLBA() - 1;
2160 lastMoved = 1;
2161 } // if
2162 } // for
2163 } while (lastMoved == 1);
2164 if (last < mainHeader.firstUsableLBA)
2165 last = 0;
2166 return (last);
2167 } // GPTData::FindLastAvailable()
2168
2169 // Find the last available block in the free space pointed to by start.
FindLastInFree(uint64_t start)2170 uint64_t GPTData::FindLastInFree(uint64_t start) {
2171 uint64_t nearestStart;
2172 uint32_t i;
2173
2174 nearestStart = mainHeader.lastUsableLBA;
2175 for (i = 0; i < numParts; i++) {
2176 if ((nearestStart > partitions[i].GetFirstLBA()) &&
2177 (partitions[i].GetFirstLBA() > start)) {
2178 nearestStart = partitions[i].GetFirstLBA() - 1;
2179 } // if
2180 } // for
2181 return (nearestStart);
2182 } // GPTData::FindLastInFree()
2183
2184 // Finds the total number of free blocks, the number of segments in which
2185 // they reside, and the size of the largest of those segments
FindFreeBlocks(uint32_t * numSegments,uint64_t * largestSegment)2186 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
2187 uint64_t start = UINT64_C(0); // starting point for each search
2188 uint64_t totalFound = UINT64_C(0); // running total
2189 uint64_t firstBlock; // first block in a segment
2190 uint64_t lastBlock; // last block in a segment
2191 uint64_t segmentSize; // size of segment in blocks
2192 uint32_t num = 0;
2193
2194 *largestSegment = UINT64_C(0);
2195 if (diskSize > 0) {
2196 do {
2197 firstBlock = FindFirstAvailable(start);
2198 if (firstBlock != UINT64_C(0)) { // something's free...
2199 lastBlock = FindLastInFree(firstBlock);
2200 segmentSize = lastBlock - firstBlock + UINT64_C(1);
2201 if (segmentSize > *largestSegment) {
2202 *largestSegment = segmentSize;
2203 } // if
2204 totalFound += segmentSize;
2205 num++;
2206 start = lastBlock + 1;
2207 } // if
2208 } while (firstBlock != 0);
2209 } // if
2210 *numSegments = num;
2211 return totalFound;
2212 } // GPTData::FindFreeBlocks()
2213
2214 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
2215 // If it's allocated, return the partition number to which it's allocated
2216 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
2217 // returned in partNum if the sector is in use by basic GPT data structures.)
IsFree(uint64_t sector,uint32_t * partNum)2218 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
2219 int isFree = 1;
2220 uint32_t i;
2221
2222 for (i = 0; i < numParts; i++) {
2223 if ((sector >= partitions[i].GetFirstLBA()) &&
2224 (sector <= partitions[i].GetLastLBA())) {
2225 isFree = 0;
2226 if (partNum != NULL)
2227 *partNum = i;
2228 } // if
2229 } // for
2230 if ((sector < mainHeader.firstUsableLBA) ||
2231 (sector > mainHeader.lastUsableLBA)) {
2232 isFree = 0;
2233 if (partNum != NULL)
2234 *partNum = UINT32_MAX;
2235 } // if
2236 return (isFree);
2237 } // GPTData::IsFree()
2238
2239 // Returns 1 if partNum is unused AND if it's a legal value.
IsFreePartNum(uint32_t partNum)2240 int GPTData::IsFreePartNum(uint32_t partNum) {
2241 return ((partNum < numParts) && (partitions != NULL) &&
2242 (!partitions[partNum].IsUsed()));
2243 } // GPTData::IsFreePartNum()
2244
2245 // Returns 1 if partNum is in use.
IsUsedPartNum(uint32_t partNum)2246 int GPTData::IsUsedPartNum(uint32_t partNum) {
2247 return ((partNum < numParts) && (partitions != NULL) &&
2248 (partitions[partNum].IsUsed()));
2249 } // GPTData::IsUsedPartNum()
2250
2251 /***********************************************************
2252 * *
2253 * Change how functions work or return information on them *
2254 * *
2255 ***********************************************************/
2256
2257 // Set partition alignment value; partitions will begin on multiples of
2258 // the specified value
SetAlignment(uint32_t n)2259 void GPTData::SetAlignment(uint32_t n) {
2260 if (n > 0)
2261 sectorAlignment = n;
2262 else
2263 cerr << "Attempt to set partition alignment to 0!\n";
2264 } // GPTData::SetAlignment()
2265
2266 // Compute sector alignment based on the current partitions (if any). Each
2267 // partition's starting LBA is examined, and if it's divisible by a power-of-2
2268 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
2269 // sector size), but not by the previously-located alignment value, then the
2270 // alignment value is adjusted down. If the computed alignment is less than 8
2271 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
2272 // is a safety measure for Advanced Format drives. If no partitions are
2273 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
2274 // adjustment of that based on the current sector size). The result is that new
2275 // drives are aligned to 2048-sector multiples but the program won't complain
2276 // about other alignments on existing disks unless a smaller-than-8 alignment
2277 // is used on big disks (as safety for Advanced Format drives).
2278 // Returns the computed alignment value.
ComputeAlignment(void)2279 uint32_t GPTData::ComputeAlignment(void) {
2280 uint32_t i = 0, found, exponent = 31;
2281 uint32_t align = DEFAULT_ALIGNMENT;
2282
2283 if (blockSize > 0)
2284 align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2285 exponent = (uint32_t) log2(align);
2286 for (i = 0; i < numParts; i++) {
2287 if (partitions[i].IsUsed()) {
2288 found = 0;
2289 while (!found) {
2290 align = UINT64_C(1) << exponent;
2291 if ((partitions[i].GetFirstLBA() % align) == 0) {
2292 found = 1;
2293 } else {
2294 exponent--;
2295 } // if/else
2296 } // while
2297 } // if
2298 } // for
2299 if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
2300 align = MIN_AF_ALIGNMENT;
2301 sectorAlignment = align;
2302 return align;
2303 } // GPTData::ComputeAlignment()
2304
2305 /********************************
2306 * *
2307 * Endianness support functions *
2308 * *
2309 ********************************/
2310
ReverseHeaderBytes(struct GPTHeader * header)2311 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
2312 ReverseBytes(&header->signature, 8);
2313 ReverseBytes(&header->revision, 4);
2314 ReverseBytes(&header->headerSize, 4);
2315 ReverseBytes(&header->headerCRC, 4);
2316 ReverseBytes(&header->reserved, 4);
2317 ReverseBytes(&header->currentLBA, 8);
2318 ReverseBytes(&header->backupLBA, 8);
2319 ReverseBytes(&header->firstUsableLBA, 8);
2320 ReverseBytes(&header->lastUsableLBA, 8);
2321 ReverseBytes(&header->partitionEntriesLBA, 8);
2322 ReverseBytes(&header->numParts, 4);
2323 ReverseBytes(&header->sizeOfPartitionEntries, 4);
2324 ReverseBytes(&header->partitionEntriesCRC, 4);
2325 ReverseBytes(header->reserved2, GPT_RESERVED);
2326 } // GPTData::ReverseHeaderBytes()
2327
2328 // Reverse byte order for all partitions.
ReversePartitionBytes()2329 void GPTData::ReversePartitionBytes() {
2330 uint32_t i;
2331
2332 for (i = 0; i < numParts; i++) {
2333 partitions[i].ReversePartBytes();
2334 } // for
2335 } // GPTData::ReversePartitionBytes()
2336
2337 // Validate partition number
ValidPartNum(const uint32_t partNum)2338 bool GPTData::ValidPartNum (const uint32_t partNum) {
2339 if (partNum >= numParts) {
2340 cerr << "Partition number out of range: " << partNum << "\n";
2341 return false;
2342 } // if
2343 return true;
2344 } // GPTData::ValidPartNum
2345
2346 // Return a single partition for inspection (not modification!) by other
2347 // functions.
operator [](uint32_t partNum) const2348 const GPTPart & GPTData::operator[](uint32_t partNum) const {
2349 if (partNum >= numParts) {
2350 cerr << "Partition number out of range (" << partNum << " requested, but only "
2351 << numParts << " available)\n";
2352 exit(1);
2353 } // if
2354 if (partitions == NULL) {
2355 cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
2356 exit(1);
2357 } // if
2358 return partitions[partNum];
2359 } // operator[]
2360
2361 // Return (not for modification!) the disk's GUID value
GetDiskGUID(void) const2362 const GUIDData & GPTData::GetDiskGUID(void) const {
2363 return mainHeader.diskGUID;
2364 } // GPTData::GetDiskGUID()
2365
2366 // Manage attributes for a partition, based on commands passed to this function.
2367 // (Function is non-interactive.)
2368 // Returns 1 if a modification command succeeded, 0 if the command should not have
2369 // modified data, and -1 if a modification command failed.
ManageAttributes(int partNum,const string & command,const string & bits)2370 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
2371 int retval = 0;
2372 Attributes theAttr;
2373
2374 if (partNum >= (int) numParts) {
2375 cerr << "Invalid partition number (" << partNum + 1 << ")\n";
2376 retval = -1;
2377 } else {
2378 if (command == "show") {
2379 ShowAttributes(partNum);
2380 } else if (command == "get") {
2381 GetAttribute(partNum, bits);
2382 } else {
2383 theAttr = partitions[partNum].GetAttributes();
2384 if (theAttr.OperateOnAttributes(partNum, command, bits)) {
2385 partitions[partNum].SetAttributes(theAttr.GetAttributes());
2386 retval = 1;
2387 } else {
2388 retval = -1;
2389 } // if/else
2390 } // if/elseif/else
2391 } // if/else invalid partition #
2392
2393 return retval;
2394 } // GPTData::ManageAttributes()
2395
2396 // Show all attributes for a specified partition....
ShowAttributes(const uint32_t partNum)2397 void GPTData::ShowAttributes(const uint32_t partNum) {
2398 if ((partNum < numParts) && partitions[partNum].IsUsed())
2399 partitions[partNum].ShowAttributes(partNum);
2400 } // GPTData::ShowAttributes
2401
2402 // Show whether a single attribute bit is set (terse output)...
GetAttribute(const uint32_t partNum,const string & attributeBits)2403 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
2404 if (partNum < numParts)
2405 partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
2406 } // GPTData::GetAttribute
2407
2408
2409 /******************************************
2410 * *
2411 * Additional non-class support functions *
2412 * *
2413 ******************************************/
2414
2415 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
2416 // never fail these tests, but the struct types may fail depending on compile options.
2417 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
2418 // sizes.
SizesOK(void)2419 int SizesOK(void) {
2420 int allOK = 1;
2421
2422 if (sizeof(uint8_t) != 1) {
2423 cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
2424 allOK = 0;
2425 } // if
2426 if (sizeof(uint16_t) != 2) {
2427 cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
2428 allOK = 0;
2429 } // if
2430 if (sizeof(uint32_t) != 4) {
2431 cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
2432 allOK = 0;
2433 } // if
2434 if (sizeof(uint64_t) != 8) {
2435 cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
2436 allOK = 0;
2437 } // if
2438 if (sizeof(struct MBRRecord) != 16) {
2439 cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
2440 allOK = 0;
2441 } // if
2442 if (sizeof(struct TempMBR) != 512) {
2443 cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
2444 allOK = 0;
2445 } // if
2446 if (sizeof(struct GPTHeader) != 512) {
2447 cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
2448 allOK = 0;
2449 } // if
2450 if (sizeof(GPTPart) != 128) {
2451 cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
2452 allOK = 0;
2453 } // if
2454 if (sizeof(GUIDData) != 16) {
2455 cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
2456 allOK = 0;
2457 } // if
2458 if (sizeof(PartType) != 16) {
2459 cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
2460 allOK = 0;
2461 } // if
2462 return (allOK);
2463 } // SizesOK()
2464
2465