1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 //
32 // Tests for Google Test itself.  This verifies that the basic constructs of
33 // Google Test work.
34 
35 #include "gtest/gtest.h"
36 
37 // Verifies that the command line flag variables can be accessed
38 // in code once <gtest/gtest.h> has been #included.
39 // Do not move it after other #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42       || testing::GTEST_FLAG(break_on_failure)
43       || testing::GTEST_FLAG(catch_exceptions)
44       || testing::GTEST_FLAG(color) != "unknown"
45       || testing::GTEST_FLAG(filter) != "unknown"
46       || testing::GTEST_FLAG(list_tests)
47       || testing::GTEST_FLAG(output) != "unknown"
48       || testing::GTEST_FLAG(print_time)
49       || testing::GTEST_FLAG(random_seed)
50       || testing::GTEST_FLAG(repeat) > 0
51       || testing::GTEST_FLAG(show_internal_stack_frames)
52       || testing::GTEST_FLAG(shuffle)
53       || testing::GTEST_FLAG(stack_trace_depth) > 0
54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
55       || testing::GTEST_FLAG(throw_on_failure);
56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
57 }
58 
59 #include <limits.h>  // For INT_MAX.
60 #include <stdlib.h>
61 #include <string.h>
62 #include <time.h>
63 
64 #include <map>
65 #include <vector>
66 #include <ostream>
67 
68 #include "gtest/gtest-spi.h"
69 
70 // Indicates that this translation unit is part of Google Test's
71 // implementation.  It must come before gtest-internal-inl.h is
72 // included, or there will be a compiler error.  This trick is to
73 // prevent a user from accidentally including gtest-internal-inl.h in
74 // his code.
75 #define GTEST_IMPLEMENTATION_ 1
76 #include "src/gtest-internal-inl.h"
77 #undef GTEST_IMPLEMENTATION_
78 
79 namespace testing {
80 namespace internal {
81 
82 #if GTEST_CAN_STREAM_RESULTS_
83 
84 class StreamingListenerTest : public Test {
85  public:
86   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
87    public:
88     // Sends a string to the socket.
Send(const string & message)89     virtual void Send(const string& message) { output_ += message; }
90 
91     string output_;
92   };
93 
StreamingListenerTest()94   StreamingListenerTest()
95       : fake_sock_writer_(new FakeSocketWriter),
96         streamer_(fake_sock_writer_),
97         test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
98 
99  protected:
output()100   string* output() { return &(fake_sock_writer_->output_); }
101 
102   FakeSocketWriter* const fake_sock_writer_;
103   StreamingListener streamer_;
104   UnitTest unit_test_;
105   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
106 };
107 
TEST_F(StreamingListenerTest,OnTestProgramEnd)108 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
109   *output() = "";
110   streamer_.OnTestProgramEnd(unit_test_);
111   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
112 }
113 
TEST_F(StreamingListenerTest,OnTestIterationEnd)114 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
115   *output() = "";
116   streamer_.OnTestIterationEnd(unit_test_, 42);
117   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
118 }
119 
TEST_F(StreamingListenerTest,OnTestCaseStart)120 TEST_F(StreamingListenerTest, OnTestCaseStart) {
121   *output() = "";
122   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
123   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
124 }
125 
TEST_F(StreamingListenerTest,OnTestCaseEnd)126 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
127   *output() = "";
128   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
129   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
130 }
131 
TEST_F(StreamingListenerTest,OnTestStart)132 TEST_F(StreamingListenerTest, OnTestStart) {
133   *output() = "";
134   streamer_.OnTestStart(test_info_obj_);
135   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
136 }
137 
TEST_F(StreamingListenerTest,OnTestEnd)138 TEST_F(StreamingListenerTest, OnTestEnd) {
139   *output() = "";
140   streamer_.OnTestEnd(test_info_obj_);
141   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
142 }
143 
TEST_F(StreamingListenerTest,OnTestPartResult)144 TEST_F(StreamingListenerTest, OnTestPartResult) {
145   *output() = "";
146   streamer_.OnTestPartResult(TestPartResult(
147       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
148 
149   // Meta characters in the failure message should be properly escaped.
150   EXPECT_EQ(
151       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
152       *output());
153 }
154 
155 #endif  // GTEST_CAN_STREAM_RESULTS_
156 
157 // Provides access to otherwise private parts of the TestEventListeners class
158 // that are needed to test it.
159 class TestEventListenersAccessor {
160  public:
GetRepeater(TestEventListeners * listeners)161   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
162     return listeners->repeater();
163   }
164 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)165   static void SetDefaultResultPrinter(TestEventListeners* listeners,
166                                       TestEventListener* listener) {
167     listeners->SetDefaultResultPrinter(listener);
168   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)169   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
170                                      TestEventListener* listener) {
171     listeners->SetDefaultXmlGenerator(listener);
172   }
173 
EventForwardingEnabled(const TestEventListeners & listeners)174   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
175     return listeners.EventForwardingEnabled();
176   }
177 
SuppressEventForwarding(TestEventListeners * listeners)178   static void SuppressEventForwarding(TestEventListeners* listeners) {
179     listeners->SuppressEventForwarding();
180   }
181 };
182 
183 class UnitTestRecordPropertyTestHelper : public Test {
184  protected:
UnitTestRecordPropertyTestHelper()185   UnitTestRecordPropertyTestHelper() {}
186 
187   // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)188   void UnitTestRecordProperty(const char* key, const std::string& value) {
189     unit_test_.RecordProperty(key, value);
190   }
191 
192   UnitTest unit_test_;
193 };
194 
195 }  // namespace internal
196 }  // namespace testing
197 
198 using testing::AssertionFailure;
199 using testing::AssertionResult;
200 using testing::AssertionSuccess;
201 using testing::DoubleLE;
202 using testing::EmptyTestEventListener;
203 using testing::Environment;
204 using testing::FloatLE;
205 using testing::GTEST_FLAG(also_run_disabled_tests);
206 using testing::GTEST_FLAG(break_on_failure);
207 using testing::GTEST_FLAG(catch_exceptions);
208 using testing::GTEST_FLAG(color);
209 using testing::GTEST_FLAG(death_test_use_fork);
210 using testing::GTEST_FLAG(filter);
211 using testing::GTEST_FLAG(list_tests);
212 using testing::GTEST_FLAG(output);
213 using testing::GTEST_FLAG(print_time);
214 using testing::GTEST_FLAG(random_seed);
215 using testing::GTEST_FLAG(repeat);
216 using testing::GTEST_FLAG(show_internal_stack_frames);
217 using testing::GTEST_FLAG(shuffle);
218 using testing::GTEST_FLAG(stack_trace_depth);
219 using testing::GTEST_FLAG(stream_result_to);
220 using testing::GTEST_FLAG(throw_on_failure);
221 using testing::IsNotSubstring;
222 using testing::IsSubstring;
223 using testing::Message;
224 using testing::ScopedFakeTestPartResultReporter;
225 using testing::StaticAssertTypeEq;
226 using testing::Test;
227 using testing::TestCase;
228 using testing::TestEventListeners;
229 using testing::TestInfo;
230 using testing::TestPartResult;
231 using testing::TestPartResultArray;
232 using testing::TestProperty;
233 using testing::TestResult;
234 using testing::TimeInMillis;
235 using testing::UnitTest;
236 using testing::kMaxStackTraceDepth;
237 using testing::internal::AddReference;
238 using testing::internal::AlwaysFalse;
239 using testing::internal::AlwaysTrue;
240 using testing::internal::AppendUserMessage;
241 using testing::internal::ArrayAwareFind;
242 using testing::internal::ArrayEq;
243 using testing::internal::CodePointToUtf8;
244 using testing::internal::CompileAssertTypesEqual;
245 using testing::internal::CopyArray;
246 using testing::internal::CountIf;
247 using testing::internal::EqFailure;
248 using testing::internal::FloatingPoint;
249 using testing::internal::ForEach;
250 using testing::internal::FormatEpochTimeInMillisAsIso8601;
251 using testing::internal::FormatTimeInMillisAsSeconds;
252 using testing::internal::GTestFlagSaver;
253 using testing::internal::GetCurrentOsStackTraceExceptTop;
254 using testing::internal::GetElementOr;
255 using testing::internal::GetNextRandomSeed;
256 using testing::internal::GetRandomSeedFromFlag;
257 using testing::internal::GetTestTypeId;
258 using testing::internal::GetTimeInMillis;
259 using testing::internal::GetTypeId;
260 using testing::internal::GetUnitTestImpl;
261 using testing::internal::ImplicitlyConvertible;
262 using testing::internal::Int32;
263 using testing::internal::Int32FromEnvOrDie;
264 using testing::internal::IsAProtocolMessage;
265 using testing::internal::IsContainer;
266 using testing::internal::IsContainerTest;
267 using testing::internal::IsNotContainer;
268 using testing::internal::NativeArray;
269 using testing::internal::ParseInt32Flag;
270 using testing::internal::RemoveConst;
271 using testing::internal::RemoveReference;
272 using testing::internal::ShouldRunTestOnShard;
273 using testing::internal::ShouldShard;
274 using testing::internal::ShouldUseColor;
275 using testing::internal::Shuffle;
276 using testing::internal::ShuffleRange;
277 using testing::internal::SkipPrefix;
278 using testing::internal::StreamableToString;
279 using testing::internal::String;
280 using testing::internal::TestEventListenersAccessor;
281 using testing::internal::TestResultAccessor;
282 using testing::internal::UInt32;
283 using testing::internal::WideStringToUtf8;
284 using testing::internal::kCopy;
285 using testing::internal::kMaxRandomSeed;
286 using testing::internal::kReference;
287 using testing::internal::kTestTypeIdInGoogleTest;
288 using testing::internal::scoped_ptr;
289 
290 #if GTEST_HAS_STREAM_REDIRECTION
291 using testing::internal::CaptureStdout;
292 using testing::internal::GetCapturedStdout;
293 #endif
294 
295 #if GTEST_IS_THREADSAFE
296 using testing::internal::ThreadWithParam;
297 #endif
298 
299 class TestingVector : public std::vector<int> {
300 };
301 
operator <<(::std::ostream & os,const TestingVector & vector)302 ::std::ostream& operator<<(::std::ostream& os,
303                            const TestingVector& vector) {
304   os << "{ ";
305   for (size_t i = 0; i < vector.size(); i++) {
306     os << vector[i] << " ";
307   }
308   os << "}";
309   return os;
310 }
311 
312 // This line tests that we can define tests in an unnamed namespace.
313 namespace {
314 
TEST(GetRandomSeedFromFlagTest,HandlesZero)315 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
316   const int seed = GetRandomSeedFromFlag(0);
317   EXPECT_LE(1, seed);
318   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
319 }
320 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)321 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
322   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
323   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
324   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
325   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
326             GetRandomSeedFromFlag(kMaxRandomSeed));
327 }
328 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)329 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
330   const int seed1 = GetRandomSeedFromFlag(-1);
331   EXPECT_LE(1, seed1);
332   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
333 
334   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
335   EXPECT_LE(1, seed2);
336   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
337 }
338 
TEST(GetNextRandomSeedTest,WorksForValidInput)339 TEST(GetNextRandomSeedTest, WorksForValidInput) {
340   EXPECT_EQ(2, GetNextRandomSeed(1));
341   EXPECT_EQ(3, GetNextRandomSeed(2));
342   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
343             GetNextRandomSeed(kMaxRandomSeed - 1));
344   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
345 
346   // We deliberately don't test GetNextRandomSeed() with invalid
347   // inputs, as that requires death tests, which are expensive.  This
348   // is fine as GetNextRandomSeed() is internal and has a
349   // straightforward definition.
350 }
351 
ClearCurrentTestPartResults()352 static void ClearCurrentTestPartResults() {
353   TestResultAccessor::ClearTestPartResults(
354       GetUnitTestImpl()->current_test_result());
355 }
356 
357 // Tests GetTypeId.
358 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)359 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
360   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
361   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
362 }
363 
364 class SubClassOfTest : public Test {};
365 class AnotherSubClassOfTest : public Test {};
366 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)367 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
368   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
369   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
370   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
371   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
372   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
373   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
374 }
375 
376 // Verifies that GetTestTypeId() returns the same value, no matter it
377 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)378 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
379   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
380 }
381 
382 // Tests FormatTimeInMillisAsSeconds().
383 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)384 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
385   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
386 }
387 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)388 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
389   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
390   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
391   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
392   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
393   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
394 }
395 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)396 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
397   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
398   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
399   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
400   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
401   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
402 }
403 
404 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
405 // for particular dates below was verified in Python using
406 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
407 
408 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
409 // have to set up a particular timezone to obtain predictable results.
410 class FormatEpochTimeInMillisAsIso8601Test : public Test {
411  public:
412   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
413   // 32 bits, even when 64-bit integer types are available.  We have to
414   // force the constants to have a 64-bit type here.
415   static const TimeInMillis kMillisPerSec = 1000;
416 
417  private:
SetUp()418   virtual void SetUp() {
419     saved_tz_ = NULL;
420 #if _MSC_VER
421 # pragma warning(push)          // Saves the current warning state.
422 # pragma warning(disable:4996)  // Temporarily disables warning 4996
423                                 // (function or variable may be unsafe
424                                 // for getenv, function is deprecated for
425                                 // strdup).
426     if (getenv("TZ"))
427       saved_tz_ = strdup(getenv("TZ"));
428 # pragma warning(pop)           // Restores the warning state again.
429 #else
430     if (getenv("TZ"))
431       saved_tz_ = strdup(getenv("TZ"));
432 #endif
433 
434     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
435     // cannot use the local time zone because the function's output depends
436     // on the time zone.
437     SetTimeZone("UTC+00");
438   }
439 
TearDown()440   virtual void TearDown() {
441     SetTimeZone(saved_tz_);
442     free(const_cast<char*>(saved_tz_));
443     saved_tz_ = NULL;
444   }
445 
SetTimeZone(const char * time_zone)446   static void SetTimeZone(const char* time_zone) {
447     // tzset() distinguishes between the TZ variable being present and empty
448     // and not being present, so we have to consider the case of time_zone
449     // being NULL.
450 #if _MSC_VER
451     // ...Unless it's MSVC, whose standard library's _putenv doesn't
452     // distinguish between an empty and a missing variable.
453     const std::string env_var =
454         std::string("TZ=") + (time_zone ? time_zone : "");
455     _putenv(env_var.c_str());
456 # pragma warning(push)          // Saves the current warning state.
457 # pragma warning(disable:4996)  // Temporarily disables warning 4996
458                                 // (function is deprecated).
459     tzset();
460 # pragma warning(pop)           // Restores the warning state again.
461 #else
462     if (time_zone) {
463       setenv(("TZ"), time_zone, 1);
464     } else {
465       unsetenv("TZ");
466     }
467     tzset();
468 #endif
469   }
470 
471   const char* saved_tz_;
472 };
473 
474 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
475 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)476 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
477   EXPECT_EQ("2011-10-31T18:52:42",
478             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
479 }
480 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,MillisecondsDoNotAffectResult)481 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
482   EXPECT_EQ(
483       "2011-10-31T18:52:42",
484       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
485 }
486 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)487 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
488   EXPECT_EQ("2011-09-03T05:07:02",
489             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
490 }
491 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)492 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
493   EXPECT_EQ("2011-09-28T17:08:22",
494             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
495 }
496 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)497 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
498   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
499 }
500 
501 #if GTEST_CAN_COMPARE_NULL
502 
503 # ifdef __BORLANDC__
504 // Silences warnings: "Condition is always true", "Unreachable code"
505 #  pragma option push -w-ccc -w-rch
506 # endif
507 
508 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
509 // pointer literal.
TEST(NullLiteralTest,IsTrueForNullLiterals)510 TEST(NullLiteralTest, IsTrueForNullLiterals) {
511   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
512   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
513   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
514   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
515 }
516 
517 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
518 // pointer literal.
TEST(NullLiteralTest,IsFalseForNonNullLiterals)519 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
520   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
521   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
522   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
523   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
524 }
525 
526 # ifdef __BORLANDC__
527 // Restores warnings after previous "#pragma option push" suppressed them.
528 #  pragma option pop
529 # endif
530 
531 #endif  // GTEST_CAN_COMPARE_NULL
532 //
533 // Tests CodePointToUtf8().
534 
535 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)536 TEST(CodePointToUtf8Test, CanEncodeNul) {
537   EXPECT_EQ("", CodePointToUtf8(L'\0'));
538 }
539 
540 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)541 TEST(CodePointToUtf8Test, CanEncodeAscii) {
542   EXPECT_EQ("a", CodePointToUtf8(L'a'));
543   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
544   EXPECT_EQ("&", CodePointToUtf8(L'&'));
545   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
546 }
547 
548 // Tests that Unicode code-points that have 8 to 11 bits are encoded
549 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)550 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
551   // 000 1101 0011 => 110-00011 10-010011
552   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
553 
554   // 101 0111 0110 => 110-10101 10-110110
555   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
556   // in wide strings and wide chars. In order to accomodate them, we have to
557   // introduce such character constants as integers.
558   EXPECT_EQ("\xD5\xB6",
559             CodePointToUtf8(static_cast<wchar_t>(0x576)));
560 }
561 
562 // Tests that Unicode code-points that have 12 to 16 bits are encoded
563 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)564 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
565   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
566   EXPECT_EQ("\xE0\xA3\x93",
567             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
568 
569   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
570   EXPECT_EQ("\xEC\x9D\x8D",
571             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
572 }
573 
574 #if !GTEST_WIDE_STRING_USES_UTF16_
575 // Tests in this group require a wchar_t to hold > 16 bits, and thus
576 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
577 // 16-bit wide. This code may not compile on those systems.
578 
579 // Tests that Unicode code-points that have 17 to 21 bits are encoded
580 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)581 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
582   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
583   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
584 
585   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
586   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
587 
588   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
589   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
590 }
591 
592 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)593 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
594   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
595 }
596 
597 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
598 
599 // Tests WideStringToUtf8().
600 
601 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)602 TEST(WideStringToUtf8Test, CanEncodeNul) {
603   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
604   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
605 }
606 
607 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)608 TEST(WideStringToUtf8Test, CanEncodeAscii) {
609   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
610   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
611   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
612   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
613 }
614 
615 // Tests that Unicode code-points that have 8 to 11 bits are encoded
616 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)617 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
618   // 000 1101 0011 => 110-00011 10-010011
619   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
620   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
621 
622   // 101 0111 0110 => 110-10101 10-110110
623   const wchar_t s[] = { 0x576, '\0' };
624   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
625   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
626 }
627 
628 // Tests that Unicode code-points that have 12 to 16 bits are encoded
629 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)630 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
631   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
632   const wchar_t s1[] = { 0x8D3, '\0' };
633   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
634   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
635 
636   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
637   const wchar_t s2[] = { 0xC74D, '\0' };
638   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
639   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
640 }
641 
642 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)643 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
644   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
645 }
646 
647 // Tests that the conversion stops when the function reaches the limit
648 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)649 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
650   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
651 }
652 
653 #if !GTEST_WIDE_STRING_USES_UTF16_
654 // Tests that Unicode code-points that have 17 to 21 bits are encoded
655 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
656 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)657 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
658   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
659   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
660   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
661 
662   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
663   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
664   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
665 }
666 
667 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)668 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
669   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
670                WideStringToUtf8(L"\xABCDFF", -1).c_str());
671 }
672 #else  // !GTEST_WIDE_STRING_USES_UTF16_
673 // Tests that surrogate pairs are encoded correctly on the systems using
674 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)675 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
676   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
677   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
678 }
679 
680 // Tests that encoding an invalid UTF-16 surrogate pair
681 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)682 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
683   // Leading surrogate is at the end of the string.
684   const wchar_t s1[] = { 0xD800, '\0' };
685   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
686   // Leading surrogate is not followed by the trailing surrogate.
687   const wchar_t s2[] = { 0xD800, 'M', '\0' };
688   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
689   // Trailing surrogate appearas without a leading surrogate.
690   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
691   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
692 }
693 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
694 
695 // Tests that codepoint concatenation works correctly.
696 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)697 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
698   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
699   EXPECT_STREQ(
700       "\xF4\x88\x98\xB4"
701           "\xEC\x9D\x8D"
702           "\n"
703           "\xD5\xB6"
704           "\xE0\xA3\x93"
705           "\xF4\x88\x98\xB4",
706       WideStringToUtf8(s, -1).c_str());
707 }
708 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)709 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
710   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
711   EXPECT_STREQ(
712       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
713       WideStringToUtf8(s, -1).c_str());
714 }
715 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
716 
717 // Tests the Random class.
718 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)719 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
720   testing::internal::Random random(42);
721   EXPECT_DEATH_IF_SUPPORTED(
722       random.Generate(0),
723       "Cannot generate a number in the range \\[0, 0\\)");
724   EXPECT_DEATH_IF_SUPPORTED(
725       random.Generate(testing::internal::Random::kMaxRange + 1),
726       "Generation of a number in \\[0, 2147483649\\) was requested, "
727       "but this can only generate numbers in \\[0, 2147483648\\)");
728 }
729 
TEST(RandomTest,GeneratesNumbersWithinRange)730 TEST(RandomTest, GeneratesNumbersWithinRange) {
731   const UInt32 kRange = 10000;
732   testing::internal::Random random(12345);
733   for (int i = 0; i < 10; i++) {
734     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
735   }
736 
737   testing::internal::Random random2(testing::internal::Random::kMaxRange);
738   for (int i = 0; i < 10; i++) {
739     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
740   }
741 }
742 
TEST(RandomTest,RepeatsWhenReseeded)743 TEST(RandomTest, RepeatsWhenReseeded) {
744   const int kSeed = 123;
745   const int kArraySize = 10;
746   const UInt32 kRange = 10000;
747   UInt32 values[kArraySize];
748 
749   testing::internal::Random random(kSeed);
750   for (int i = 0; i < kArraySize; i++) {
751     values[i] = random.Generate(kRange);
752   }
753 
754   random.Reseed(kSeed);
755   for (int i = 0; i < kArraySize; i++) {
756     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
757   }
758 }
759 
760 // Tests STL container utilities.
761 
762 // Tests CountIf().
763 
IsPositive(int n)764 static bool IsPositive(int n) { return n > 0; }
765 
TEST(ContainerUtilityTest,CountIf)766 TEST(ContainerUtilityTest, CountIf) {
767   std::vector<int> v;
768   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
769 
770   v.push_back(-1);
771   v.push_back(0);
772   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
773 
774   v.push_back(2);
775   v.push_back(-10);
776   v.push_back(10);
777   EXPECT_EQ(2, CountIf(v, IsPositive));
778 }
779 
780 // Tests ForEach().
781 
782 static int g_sum = 0;
Accumulate(int n)783 static void Accumulate(int n) { g_sum += n; }
784 
TEST(ContainerUtilityTest,ForEach)785 TEST(ContainerUtilityTest, ForEach) {
786   std::vector<int> v;
787   g_sum = 0;
788   ForEach(v, Accumulate);
789   EXPECT_EQ(0, g_sum);  // Works for an empty container;
790 
791   g_sum = 0;
792   v.push_back(1);
793   ForEach(v, Accumulate);
794   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
795 
796   g_sum = 0;
797   v.push_back(20);
798   v.push_back(300);
799   ForEach(v, Accumulate);
800   EXPECT_EQ(321, g_sum);
801 }
802 
803 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)804 TEST(ContainerUtilityTest, GetElementOr) {
805   std::vector<char> a;
806   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
807 
808   a.push_back('a');
809   a.push_back('b');
810   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
811   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
812   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
813   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
814 }
815 
TEST(ContainerUtilityDeathTest,ShuffleRange)816 TEST(ContainerUtilityDeathTest, ShuffleRange) {
817   std::vector<int> a;
818   a.push_back(0);
819   a.push_back(1);
820   a.push_back(2);
821   testing::internal::Random random(1);
822 
823   EXPECT_DEATH_IF_SUPPORTED(
824       ShuffleRange(&random, -1, 1, &a),
825       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
826   EXPECT_DEATH_IF_SUPPORTED(
827       ShuffleRange(&random, 4, 4, &a),
828       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
829   EXPECT_DEATH_IF_SUPPORTED(
830       ShuffleRange(&random, 3, 2, &a),
831       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
832   EXPECT_DEATH_IF_SUPPORTED(
833       ShuffleRange(&random, 3, 4, &a),
834       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
835 }
836 
837 class VectorShuffleTest : public Test {
838  protected:
839   static const int kVectorSize = 20;
840 
VectorShuffleTest()841   VectorShuffleTest() : random_(1) {
842     for (int i = 0; i < kVectorSize; i++) {
843       vector_.push_back(i);
844     }
845   }
846 
VectorIsCorrupt(const TestingVector & vector)847   static bool VectorIsCorrupt(const TestingVector& vector) {
848     if (kVectorSize != static_cast<int>(vector.size())) {
849       return true;
850     }
851 
852     bool found_in_vector[kVectorSize] = { false };
853     for (size_t i = 0; i < vector.size(); i++) {
854       const int e = vector[i];
855       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
856         return true;
857       }
858       found_in_vector[e] = true;
859     }
860 
861     // Vector size is correct, elements' range is correct, no
862     // duplicate elements.  Therefore no corruption has occurred.
863     return false;
864   }
865 
VectorIsNotCorrupt(const TestingVector & vector)866   static bool VectorIsNotCorrupt(const TestingVector& vector) {
867     return !VectorIsCorrupt(vector);
868   }
869 
RangeIsShuffled(const TestingVector & vector,int begin,int end)870   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
871     for (int i = begin; i < end; i++) {
872       if (i != vector[i]) {
873         return true;
874       }
875     }
876     return false;
877   }
878 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)879   static bool RangeIsUnshuffled(
880       const TestingVector& vector, int begin, int end) {
881     return !RangeIsShuffled(vector, begin, end);
882   }
883 
VectorIsShuffled(const TestingVector & vector)884   static bool VectorIsShuffled(const TestingVector& vector) {
885     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
886   }
887 
VectorIsUnshuffled(const TestingVector & vector)888   static bool VectorIsUnshuffled(const TestingVector& vector) {
889     return !VectorIsShuffled(vector);
890   }
891 
892   testing::internal::Random random_;
893   TestingVector vector_;
894 };  // class VectorShuffleTest
895 
896 const int VectorShuffleTest::kVectorSize;
897 
TEST_F(VectorShuffleTest,HandlesEmptyRange)898 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
899   // Tests an empty range at the beginning...
900   ShuffleRange(&random_, 0, 0, &vector_);
901   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
902   ASSERT_PRED1(VectorIsUnshuffled, vector_);
903 
904   // ...in the middle...
905   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
906   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
907   ASSERT_PRED1(VectorIsUnshuffled, vector_);
908 
909   // ...at the end...
910   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
911   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
912   ASSERT_PRED1(VectorIsUnshuffled, vector_);
913 
914   // ...and past the end.
915   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
916   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
917   ASSERT_PRED1(VectorIsUnshuffled, vector_);
918 }
919 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)920 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
921   // Tests a size one range at the beginning...
922   ShuffleRange(&random_, 0, 1, &vector_);
923   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
924   ASSERT_PRED1(VectorIsUnshuffled, vector_);
925 
926   // ...in the middle...
927   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
928   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
929   ASSERT_PRED1(VectorIsUnshuffled, vector_);
930 
931   // ...and at the end.
932   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
933   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
934   ASSERT_PRED1(VectorIsUnshuffled, vector_);
935 }
936 
937 // Because we use our own random number generator and a fixed seed,
938 // we can guarantee that the following "random" tests will succeed.
939 
TEST_F(VectorShuffleTest,ShufflesEntireVector)940 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
941   Shuffle(&random_, &vector_);
942   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
943   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
944 
945   // Tests the first and last elements in particular to ensure that
946   // there are no off-by-one problems in our shuffle algorithm.
947   EXPECT_NE(0, vector_[0]);
948   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
949 }
950 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)951 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
952   const int kRangeSize = kVectorSize/2;
953 
954   ShuffleRange(&random_, 0, kRangeSize, &vector_);
955 
956   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
957   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
958   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
959 }
960 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)961 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
962   const int kRangeSize = kVectorSize / 2;
963   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
964 
965   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
966   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
967   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
968 }
969 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)970 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
971   int kRangeSize = kVectorSize/3;
972   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
973 
974   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
975   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
976   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
977   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
978 }
979 
TEST_F(VectorShuffleTest,ShufflesRepeatably)980 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
981   TestingVector vector2;
982   for (int i = 0; i < kVectorSize; i++) {
983     vector2.push_back(i);
984   }
985 
986   random_.Reseed(1234);
987   Shuffle(&random_, &vector_);
988   random_.Reseed(1234);
989   Shuffle(&random_, &vector2);
990 
991   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
992   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
993 
994   for (int i = 0; i < kVectorSize; i++) {
995     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
996   }
997 }
998 
999 // Tests the size of the AssertHelper class.
1000 
TEST(AssertHelperTest,AssertHelperIsSmall)1001 TEST(AssertHelperTest, AssertHelperIsSmall) {
1002   // To avoid breaking clients that use lots of assertions in one
1003   // function, we cannot grow the size of AssertHelper.
1004   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1005 }
1006 
1007 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1008 TEST(StringTest, EndsWithCaseInsensitive) {
1009   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1010   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1011   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1012   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1013 
1014   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1015   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1016   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1017 }
1018 
1019 // C++Builder's preprocessor is buggy; it fails to expand macros that
1020 // appear in macro parameters after wide char literals.  Provide an alias
1021 // for NULL as a workaround.
1022 static const wchar_t* const kNull = NULL;
1023 
1024 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1025 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1026   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1027   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1028   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1029   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1030   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1031   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1032   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1033   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1034 }
1035 
1036 #if GTEST_OS_WINDOWS
1037 
1038 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1039 TEST(StringTest, ShowWideCString) {
1040   EXPECT_STREQ("(null)",
1041                String::ShowWideCString(NULL).c_str());
1042   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1043   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1044 }
1045 
1046 # if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1047 TEST(StringTest, AnsiAndUtf16Null) {
1048   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1049   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1050 }
1051 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1052 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1053   const char* ansi = String::Utf16ToAnsi(L"str");
1054   EXPECT_STREQ("str", ansi);
1055   delete [] ansi;
1056   const WCHAR* utf16 = String::AnsiToUtf16("str");
1057   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1058   delete [] utf16;
1059 }
1060 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1061 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1062   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1063   EXPECT_STREQ(".:\\ \"*?", ansi);
1064   delete [] ansi;
1065   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1066   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1067   delete [] utf16;
1068 }
1069 # endif  // GTEST_OS_WINDOWS_MOBILE
1070 
1071 #endif  // GTEST_OS_WINDOWS
1072 
1073 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1074 TEST(TestPropertyTest, StringValue) {
1075   TestProperty property("key", "1");
1076   EXPECT_STREQ("key", property.key());
1077   EXPECT_STREQ("1", property.value());
1078 }
1079 
1080 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1081 TEST(TestPropertyTest, ReplaceStringValue) {
1082   TestProperty property("key", "1");
1083   EXPECT_STREQ("1", property.value());
1084   property.SetValue("2");
1085   EXPECT_STREQ("2", property.value());
1086 }
1087 
1088 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1089 // functions (i.e. their definitions cannot be inlined at the call
1090 // sites), or C++Builder won't compile the code.
AddFatalFailure()1091 static void AddFatalFailure() {
1092   FAIL() << "Expected fatal failure.";
1093 }
1094 
AddNonfatalFailure()1095 static void AddNonfatalFailure() {
1096   ADD_FAILURE() << "Expected non-fatal failure.";
1097 }
1098 
1099 class ScopedFakeTestPartResultReporterTest : public Test {
1100  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1101   enum FailureMode {
1102     FATAL_FAILURE,
1103     NONFATAL_FAILURE
1104   };
AddFailure(FailureMode failure)1105   static void AddFailure(FailureMode failure) {
1106     if (failure == FATAL_FAILURE) {
1107       AddFatalFailure();
1108     } else {
1109       AddNonfatalFailure();
1110     }
1111   }
1112 };
1113 
1114 // Tests that ScopedFakeTestPartResultReporter intercepts test
1115 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1116 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1117   TestPartResultArray results;
1118   {
1119     ScopedFakeTestPartResultReporter reporter(
1120         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1121         &results);
1122     AddFailure(NONFATAL_FAILURE);
1123     AddFailure(FATAL_FAILURE);
1124   }
1125 
1126   EXPECT_EQ(2, results.size());
1127   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1128   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1129 }
1130 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1131 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1132   TestPartResultArray results;
1133   {
1134     // Tests, that the deprecated constructor still works.
1135     ScopedFakeTestPartResultReporter reporter(&results);
1136     AddFailure(NONFATAL_FAILURE);
1137   }
1138   EXPECT_EQ(1, results.size());
1139 }
1140 
1141 #if GTEST_IS_THREADSAFE
1142 
1143 class ScopedFakeTestPartResultReporterWithThreadsTest
1144   : public ScopedFakeTestPartResultReporterTest {
1145  protected:
AddFailureInOtherThread(FailureMode failure)1146   static void AddFailureInOtherThread(FailureMode failure) {
1147     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1148     thread.Join();
1149   }
1150 };
1151 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1152 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1153        InterceptsTestFailuresInAllThreads) {
1154   TestPartResultArray results;
1155   {
1156     ScopedFakeTestPartResultReporter reporter(
1157         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1158     AddFailure(NONFATAL_FAILURE);
1159     AddFailure(FATAL_FAILURE);
1160     AddFailureInOtherThread(NONFATAL_FAILURE);
1161     AddFailureInOtherThread(FATAL_FAILURE);
1162   }
1163 
1164   EXPECT_EQ(4, results.size());
1165   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1166   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1167   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1168   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1169 }
1170 
1171 #endif  // GTEST_IS_THREADSAFE
1172 
1173 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1174 // work even if the failure is generated in a called function rather than
1175 // the current context.
1176 
1177 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1178 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1179 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1180   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1181 }
1182 
1183 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectFatalFailureTest,AcceptsStringObject)1184 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1185   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1186 }
1187 #endif
1188 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1189 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1190   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1191                        ::std::string("Expected fatal failure."));
1192 }
1193 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1194 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1195   // We have another test below to verify that the macro catches fatal
1196   // failures generated on another thread.
1197   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1198                                       "Expected fatal failure.");
1199 }
1200 
1201 #ifdef __BORLANDC__
1202 // Silences warnings: "Condition is always true"
1203 # pragma option push -w-ccc
1204 #endif
1205 
1206 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1207 // function even when the statement in it contains ASSERT_*.
1208 
NonVoidFunction()1209 int NonVoidFunction() {
1210   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1211   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1212   return 0;
1213 }
1214 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1215 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1216   NonVoidFunction();
1217 }
1218 
1219 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1220 // current function even though 'statement' generates a fatal failure.
1221 
DoesNotAbortHelper(bool * aborted)1222 void DoesNotAbortHelper(bool* aborted) {
1223   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1224   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1225 
1226   *aborted = false;
1227 }
1228 
1229 #ifdef __BORLANDC__
1230 // Restores warnings after previous "#pragma option push" suppressed them.
1231 # pragma option pop
1232 #endif
1233 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1234 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1235   bool aborted = true;
1236   DoesNotAbortHelper(&aborted);
1237   EXPECT_FALSE(aborted);
1238 }
1239 
1240 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1241 // statement that contains a macro which expands to code containing an
1242 // unprotected comma.
1243 
1244 static int global_var = 0;
1245 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1246 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1247 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1248 #ifndef __BORLANDC__
1249   // ICE's in C++Builder.
1250   EXPECT_FATAL_FAILURE({
1251     GTEST_USE_UNPROTECTED_COMMA_;
1252     AddFatalFailure();
1253   }, "");
1254 #endif
1255 
1256   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1257     GTEST_USE_UNPROTECTED_COMMA_;
1258     AddFatalFailure();
1259   }, "");
1260 }
1261 
1262 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1263 
1264 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1265 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1266 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1267   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1268                           "Expected non-fatal failure.");
1269 }
1270 
1271 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectNonfatalFailureTest,AcceptsStringObject)1272 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1273   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1274                           ::string("Expected non-fatal failure."));
1275 }
1276 #endif
1277 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1278 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1279   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1280                           ::std::string("Expected non-fatal failure."));
1281 }
1282 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1283 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1284   // We have another test below to verify that the macro catches
1285   // non-fatal failures generated on another thread.
1286   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1287                                          "Expected non-fatal failure.");
1288 }
1289 
1290 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1291 // statement that contains a macro which expands to code containing an
1292 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1293 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1294   EXPECT_NONFATAL_FAILURE({
1295     GTEST_USE_UNPROTECTED_COMMA_;
1296     AddNonfatalFailure();
1297   }, "");
1298 
1299   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1300     GTEST_USE_UNPROTECTED_COMMA_;
1301     AddNonfatalFailure();
1302   }, "");
1303 }
1304 
1305 #if GTEST_IS_THREADSAFE
1306 
1307 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1308     ExpectFailureWithThreadsTest;
1309 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1310 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1311   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1312                                       "Expected fatal failure.");
1313 }
1314 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1315 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1316   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1317       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1318 }
1319 
1320 #endif  // GTEST_IS_THREADSAFE
1321 
1322 // Tests the TestProperty class.
1323 
TEST(TestPropertyTest,ConstructorWorks)1324 TEST(TestPropertyTest, ConstructorWorks) {
1325   const TestProperty property("key", "value");
1326   EXPECT_STREQ("key", property.key());
1327   EXPECT_STREQ("value", property.value());
1328 }
1329 
TEST(TestPropertyTest,SetValue)1330 TEST(TestPropertyTest, SetValue) {
1331   TestProperty property("key", "value_1");
1332   EXPECT_STREQ("key", property.key());
1333   property.SetValue("value_2");
1334   EXPECT_STREQ("key", property.key());
1335   EXPECT_STREQ("value_2", property.value());
1336 }
1337 
1338 // Tests the TestResult class
1339 
1340 // The test fixture for testing TestResult.
1341 class TestResultTest : public Test {
1342  protected:
1343   typedef std::vector<TestPartResult> TPRVector;
1344 
1345   // We make use of 2 TestPartResult objects,
1346   TestPartResult * pr1, * pr2;
1347 
1348   // ... and 3 TestResult objects.
1349   TestResult * r0, * r1, * r2;
1350 
SetUp()1351   virtual void SetUp() {
1352     // pr1 is for success.
1353     pr1 = new TestPartResult(TestPartResult::kSuccess,
1354                              "foo/bar.cc",
1355                              10,
1356                              "Success!");
1357 
1358     // pr2 is for fatal failure.
1359     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1360                              "foo/bar.cc",
1361                              -1,  // This line number means "unknown"
1362                              "Failure!");
1363 
1364     // Creates the TestResult objects.
1365     r0 = new TestResult();
1366     r1 = new TestResult();
1367     r2 = new TestResult();
1368 
1369     // In order to test TestResult, we need to modify its internal
1370     // state, in particular the TestPartResult vector it holds.
1371     // test_part_results() returns a const reference to this vector.
1372     // We cast it to a non-const object s.t. it can be modified (yes,
1373     // this is a hack).
1374     TPRVector* results1 = const_cast<TPRVector*>(
1375         &TestResultAccessor::test_part_results(*r1));
1376     TPRVector* results2 = const_cast<TPRVector*>(
1377         &TestResultAccessor::test_part_results(*r2));
1378 
1379     // r0 is an empty TestResult.
1380 
1381     // r1 contains a single SUCCESS TestPartResult.
1382     results1->push_back(*pr1);
1383 
1384     // r2 contains a SUCCESS, and a FAILURE.
1385     results2->push_back(*pr1);
1386     results2->push_back(*pr2);
1387   }
1388 
TearDown()1389   virtual void TearDown() {
1390     delete pr1;
1391     delete pr2;
1392 
1393     delete r0;
1394     delete r1;
1395     delete r2;
1396   }
1397 
1398   // Helper that compares two two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1399   static void CompareTestPartResult(const TestPartResult& expected,
1400                                     const TestPartResult& actual) {
1401     EXPECT_EQ(expected.type(), actual.type());
1402     EXPECT_STREQ(expected.file_name(), actual.file_name());
1403     EXPECT_EQ(expected.line_number(), actual.line_number());
1404     EXPECT_STREQ(expected.summary(), actual.summary());
1405     EXPECT_STREQ(expected.message(), actual.message());
1406     EXPECT_EQ(expected.passed(), actual.passed());
1407     EXPECT_EQ(expected.failed(), actual.failed());
1408     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1409     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1410   }
1411 };
1412 
1413 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1414 TEST_F(TestResultTest, total_part_count) {
1415   ASSERT_EQ(0, r0->total_part_count());
1416   ASSERT_EQ(1, r1->total_part_count());
1417   ASSERT_EQ(2, r2->total_part_count());
1418 }
1419 
1420 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1421 TEST_F(TestResultTest, Passed) {
1422   ASSERT_TRUE(r0->Passed());
1423   ASSERT_TRUE(r1->Passed());
1424   ASSERT_FALSE(r2->Passed());
1425 }
1426 
1427 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1428 TEST_F(TestResultTest, Failed) {
1429   ASSERT_FALSE(r0->Failed());
1430   ASSERT_FALSE(r1->Failed());
1431   ASSERT_TRUE(r2->Failed());
1432 }
1433 
1434 // Tests TestResult::GetTestPartResult().
1435 
1436 typedef TestResultTest TestResultDeathTest;
1437 
TEST_F(TestResultDeathTest,GetTestPartResult)1438 TEST_F(TestResultDeathTest, GetTestPartResult) {
1439   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1440   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1441   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1442   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1443 }
1444 
1445 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1446 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1447   TestResult test_result;
1448   ASSERT_EQ(0, test_result.test_property_count());
1449 }
1450 
1451 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1452 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1453   TestResult test_result;
1454   TestProperty property("key_1", "1");
1455   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1456   ASSERT_EQ(1, test_result.test_property_count());
1457   const TestProperty& actual_property = test_result.GetTestProperty(0);
1458   EXPECT_STREQ("key_1", actual_property.key());
1459   EXPECT_STREQ("1", actual_property.value());
1460 }
1461 
1462 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1463 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1464   TestResult test_result;
1465   TestProperty property_1("key_1", "1");
1466   TestProperty property_2("key_2", "2");
1467   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1468   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1469   ASSERT_EQ(2, test_result.test_property_count());
1470   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1471   EXPECT_STREQ("key_1", actual_property_1.key());
1472   EXPECT_STREQ("1", actual_property_1.value());
1473 
1474   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1475   EXPECT_STREQ("key_2", actual_property_2.key());
1476   EXPECT_STREQ("2", actual_property_2.value());
1477 }
1478 
1479 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1480 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1481   TestResult test_result;
1482   TestProperty property_1_1("key_1", "1");
1483   TestProperty property_2_1("key_2", "2");
1484   TestProperty property_1_2("key_1", "12");
1485   TestProperty property_2_2("key_2", "22");
1486   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1487   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1488   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1489   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1490 
1491   ASSERT_EQ(2, test_result.test_property_count());
1492   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1493   EXPECT_STREQ("key_1", actual_property_1.key());
1494   EXPECT_STREQ("12", actual_property_1.value());
1495 
1496   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1497   EXPECT_STREQ("key_2", actual_property_2.key());
1498   EXPECT_STREQ("22", actual_property_2.value());
1499 }
1500 
1501 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1502 TEST(TestResultPropertyTest, GetTestProperty) {
1503   TestResult test_result;
1504   TestProperty property_1("key_1", "1");
1505   TestProperty property_2("key_2", "2");
1506   TestProperty property_3("key_3", "3");
1507   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1508   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1509   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1510 
1511   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1512   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1513   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1514 
1515   EXPECT_STREQ("key_1", fetched_property_1.key());
1516   EXPECT_STREQ("1", fetched_property_1.value());
1517 
1518   EXPECT_STREQ("key_2", fetched_property_2.key());
1519   EXPECT_STREQ("2", fetched_property_2.value());
1520 
1521   EXPECT_STREQ("key_3", fetched_property_3.key());
1522   EXPECT_STREQ("3", fetched_property_3.value());
1523 
1524   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1525   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1526 }
1527 
1528 // Tests that GTestFlagSaver works on Windows and Mac.
1529 
1530 class GTestFlagSaverTest : public Test {
1531  protected:
1532   // Saves the Google Test flags such that we can restore them later, and
1533   // then sets them to their default values.  This will be called
1534   // before the first test in this test case is run.
SetUpTestCase()1535   static void SetUpTestCase() {
1536     saver_ = new GTestFlagSaver;
1537 
1538     GTEST_FLAG(also_run_disabled_tests) = false;
1539     GTEST_FLAG(break_on_failure) = false;
1540     GTEST_FLAG(catch_exceptions) = false;
1541     GTEST_FLAG(death_test_use_fork) = false;
1542     GTEST_FLAG(color) = "auto";
1543     GTEST_FLAG(filter) = "";
1544     GTEST_FLAG(list_tests) = false;
1545     GTEST_FLAG(output) = "";
1546     GTEST_FLAG(print_time) = true;
1547     GTEST_FLAG(random_seed) = 0;
1548     GTEST_FLAG(repeat) = 1;
1549     GTEST_FLAG(shuffle) = false;
1550     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1551     GTEST_FLAG(stream_result_to) = "";
1552     GTEST_FLAG(throw_on_failure) = false;
1553   }
1554 
1555   // Restores the Google Test flags that the tests have modified.  This will
1556   // be called after the last test in this test case is run.
TearDownTestCase()1557   static void TearDownTestCase() {
1558     delete saver_;
1559     saver_ = NULL;
1560   }
1561 
1562   // Verifies that the Google Test flags have their default values, and then
1563   // modifies each of them.
VerifyAndModifyFlags()1564   void VerifyAndModifyFlags() {
1565     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1566     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1567     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1568     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1569     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1570     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1571     EXPECT_FALSE(GTEST_FLAG(list_tests));
1572     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1573     EXPECT_TRUE(GTEST_FLAG(print_time));
1574     EXPECT_EQ(0, GTEST_FLAG(random_seed));
1575     EXPECT_EQ(1, GTEST_FLAG(repeat));
1576     EXPECT_FALSE(GTEST_FLAG(shuffle));
1577     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1578     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1579     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1580 
1581     GTEST_FLAG(also_run_disabled_tests) = true;
1582     GTEST_FLAG(break_on_failure) = true;
1583     GTEST_FLAG(catch_exceptions) = true;
1584     GTEST_FLAG(color) = "no";
1585     GTEST_FLAG(death_test_use_fork) = true;
1586     GTEST_FLAG(filter) = "abc";
1587     GTEST_FLAG(list_tests) = true;
1588     GTEST_FLAG(output) = "xml:foo.xml";
1589     GTEST_FLAG(print_time) = false;
1590     GTEST_FLAG(random_seed) = 1;
1591     GTEST_FLAG(repeat) = 100;
1592     GTEST_FLAG(shuffle) = true;
1593     GTEST_FLAG(stack_trace_depth) = 1;
1594     GTEST_FLAG(stream_result_to) = "localhost:1234";
1595     GTEST_FLAG(throw_on_failure) = true;
1596   }
1597 
1598  private:
1599   // For saving Google Test flags during this test case.
1600   static GTestFlagSaver* saver_;
1601 };
1602 
1603 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1604 
1605 // Google Test doesn't guarantee the order of tests.  The following two
1606 // tests are designed to work regardless of their order.
1607 
1608 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1609 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1610   VerifyAndModifyFlags();
1611 }
1612 
1613 // Verifies that the Google Test flags in the body of the previous test were
1614 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1615 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1616   VerifyAndModifyFlags();
1617 }
1618 
1619 // Sets an environment variable with the given name to the given
1620 // value.  If the value argument is "", unsets the environment
1621 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1622 static void SetEnv(const char* name, const char* value) {
1623 #if GTEST_OS_WINDOWS_MOBILE
1624   // Environment variables are not supported on Windows CE.
1625   return;
1626 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1627   // C++Builder's putenv only stores a pointer to its parameter; we have to
1628   // ensure that the string remains valid as long as it might be needed.
1629   // We use an std::map to do so.
1630   static std::map<std::string, std::string*> added_env;
1631 
1632   // Because putenv stores a pointer to the string buffer, we can't delete the
1633   // previous string (if present) until after it's replaced.
1634   std::string *prev_env = NULL;
1635   if (added_env.find(name) != added_env.end()) {
1636     prev_env = added_env[name];
1637   }
1638   added_env[name] = new std::string(
1639       (Message() << name << "=" << value).GetString());
1640 
1641   // The standard signature of putenv accepts a 'char*' argument. Other
1642   // implementations, like C++Builder's, accept a 'const char*'.
1643   // We cast away the 'const' since that would work for both variants.
1644   putenv(const_cast<char*>(added_env[name]->c_str()));
1645   delete prev_env;
1646 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1647   _putenv((Message() << name << "=" << value).GetString().c_str());
1648 #else
1649   if (*value == '\0') {
1650     unsetenv(name);
1651   } else {
1652     setenv(name, value, 1);
1653   }
1654 #endif  // GTEST_OS_WINDOWS_MOBILE
1655 }
1656 
1657 #if !GTEST_OS_WINDOWS_MOBILE
1658 // Environment variables are not supported on Windows CE.
1659 
1660 using testing::internal::Int32FromGTestEnv;
1661 
1662 // Tests Int32FromGTestEnv().
1663 
1664 // Tests that Int32FromGTestEnv() returns the default value when the
1665 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1666 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1667   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1668   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1669 }
1670 
1671 // Tests that Int32FromGTestEnv() returns the default value when the
1672 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1673 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1674   printf("(expecting 2 warnings)\n");
1675 
1676   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1677   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1678 
1679   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1680   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1681 }
1682 
1683 // Tests that Int32FromGTestEnv() returns the default value when the
1684 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1685 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1686   printf("(expecting 2 warnings)\n");
1687 
1688   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1689   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1690 
1691   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1692   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1693 }
1694 
1695 // Tests that Int32FromGTestEnv() parses and returns the value of the
1696 // environment variable when it represents a valid decimal integer in
1697 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1698 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1699   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1700   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1701 
1702   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1703   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1704 }
1705 #endif  // !GTEST_OS_WINDOWS_MOBILE
1706 
1707 // Tests ParseInt32Flag().
1708 
1709 // Tests that ParseInt32Flag() returns false and doesn't change the
1710 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1711 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1712   Int32 value = 123;
1713   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1714   EXPECT_EQ(123, value);
1715 
1716   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1717   EXPECT_EQ(123, value);
1718 }
1719 
1720 // Tests that ParseInt32Flag() returns false and doesn't change the
1721 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1722 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1723   printf("(expecting 2 warnings)\n");
1724 
1725   Int32 value = 123;
1726   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1727   EXPECT_EQ(123, value);
1728 
1729   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1730   EXPECT_EQ(123, value);
1731 }
1732 
1733 // Tests that ParseInt32Flag() returns false and doesn't change the
1734 // output value when the flag does not represent a valid decimal
1735 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1736 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1737   printf("(expecting 2 warnings)\n");
1738 
1739   Int32 value = 123;
1740   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1741   EXPECT_EQ(123, value);
1742 
1743   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1744   EXPECT_EQ(123, value);
1745 }
1746 
1747 // Tests that ParseInt32Flag() parses the value of the flag and
1748 // returns true when the flag represents a valid decimal integer in
1749 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1750 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1751   Int32 value = 123;
1752   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1753   EXPECT_EQ(456, value);
1754 
1755   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1756                              "abc", &value));
1757   EXPECT_EQ(-789, value);
1758 }
1759 
1760 // Tests that Int32FromEnvOrDie() parses the value of the var or
1761 // returns the correct default.
1762 // Environment variables are not supported on Windows CE.
1763 #if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1764 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1765   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1766   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1767   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1768   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1769   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1770 }
1771 #endif  // !GTEST_OS_WINDOWS_MOBILE
1772 
1773 // Tests that Int32FromEnvOrDie() aborts with an error message
1774 // if the variable is not an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1775 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1776   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1777   EXPECT_DEATH_IF_SUPPORTED(
1778       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1779       ".*");
1780 }
1781 
1782 // Tests that Int32FromEnvOrDie() aborts with an error message
1783 // if the variable cannot be represnted by an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1784 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1785   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1786   EXPECT_DEATH_IF_SUPPORTED(
1787       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1788       ".*");
1789 }
1790 
1791 // Tests that ShouldRunTestOnShard() selects all tests
1792 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1793 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1794   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1795   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1796   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1797   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1798   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1799 }
1800 
1801 class ShouldShardTest : public testing::Test {
1802  protected:
SetUp()1803   virtual void SetUp() {
1804     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1805     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1806   }
1807 
TearDown()1808   virtual void TearDown() {
1809     SetEnv(index_var_, "");
1810     SetEnv(total_var_, "");
1811   }
1812 
1813   const char* index_var_;
1814   const char* total_var_;
1815 };
1816 
1817 // Tests that sharding is disabled if neither of the environment variables
1818 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1819 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1820   SetEnv(index_var_, "");
1821   SetEnv(total_var_, "");
1822 
1823   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1824   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1825 }
1826 
1827 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1828 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1829   SetEnv(index_var_, "0");
1830   SetEnv(total_var_, "1");
1831   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1832   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1833 }
1834 
1835 // Tests that sharding is enabled if total_shards > 1 and
1836 // we are not in a death test subprocess.
1837 // Environment variables are not supported on Windows CE.
1838 #if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1839 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1840   SetEnv(index_var_, "4");
1841   SetEnv(total_var_, "22");
1842   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1843   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1844 
1845   SetEnv(index_var_, "8");
1846   SetEnv(total_var_, "9");
1847   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1848   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1849 
1850   SetEnv(index_var_, "0");
1851   SetEnv(total_var_, "9");
1852   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1853   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1854 }
1855 #endif  // !GTEST_OS_WINDOWS_MOBILE
1856 
1857 // Tests that we exit in error if the sharding values are not valid.
1858 
1859 typedef ShouldShardTest ShouldShardDeathTest;
1860 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1861 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1862   SetEnv(index_var_, "4");
1863   SetEnv(total_var_, "4");
1864   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1865 
1866   SetEnv(index_var_, "4");
1867   SetEnv(total_var_, "-2");
1868   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1869 
1870   SetEnv(index_var_, "5");
1871   SetEnv(total_var_, "");
1872   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1873 
1874   SetEnv(index_var_, "");
1875   SetEnv(total_var_, "5");
1876   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1877 }
1878 
1879 // Tests that ShouldRunTestOnShard is a partition when 5
1880 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1881 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1882   // Choose an arbitrary number of tests and shards.
1883   const int num_tests = 17;
1884   const int num_shards = 5;
1885 
1886   // Check partitioning: each test should be on exactly 1 shard.
1887   for (int test_id = 0; test_id < num_tests; test_id++) {
1888     int prev_selected_shard_index = -1;
1889     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1890       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1891         if (prev_selected_shard_index < 0) {
1892           prev_selected_shard_index = shard_index;
1893         } else {
1894           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1895             << shard_index << " are both selected to run test " << test_id;
1896         }
1897       }
1898     }
1899   }
1900 
1901   // Check balance: This is not required by the sharding protocol, but is a
1902   // desirable property for performance.
1903   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1904     int num_tests_on_shard = 0;
1905     for (int test_id = 0; test_id < num_tests; test_id++) {
1906       num_tests_on_shard +=
1907         ShouldRunTestOnShard(num_shards, shard_index, test_id);
1908     }
1909     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1910   }
1911 }
1912 
1913 // For the same reason we are not explicitly testing everything in the
1914 // Test class, there are no separate tests for the following classes
1915 // (except for some trivial cases):
1916 //
1917 //   TestCase, UnitTest, UnitTestResultPrinter.
1918 //
1919 // Similarly, there are no separate tests for the following macros:
1920 //
1921 //   TEST, TEST_F, RUN_ALL_TESTS
1922 
TEST(UnitTestTest,CanGetOriginalWorkingDir)1923 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1924   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
1925   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1926 }
1927 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)1928 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1929   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1930   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1931 }
1932 
1933 // When a property using a reserved key is supplied to this function, it
1934 // tests that a non-fatal failure is added, a fatal failure is not added,
1935 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)1936 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1937     const TestResult& test_result, const char* key) {
1938   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1939   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1940                                                   << "' recorded unexpectedly.";
1941 }
1942 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)1943 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1944     const char* key) {
1945   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1946   ASSERT_TRUE(test_info != NULL);
1947   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1948                                                         key);
1949 }
1950 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(const char * key)1951 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1952     const char* key) {
1953   const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1954   ASSERT_TRUE(test_case != NULL);
1955   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1956       test_case->ad_hoc_test_result(), key);
1957 }
1958 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(const char * key)1959 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
1960     const char* key) {
1961   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1962       UnitTest::GetInstance()->ad_hoc_test_result(), key);
1963 }
1964 
1965 // Tests that property recording functions in UnitTest outside of tests
1966 // functions correcly.  Creating a separate instance of UnitTest ensures it
1967 // is in a state similar to the UnitTest's singleton's between tests.
1968 class UnitTestRecordPropertyTest :
1969     public testing::internal::UnitTestRecordPropertyTestHelper {
1970  public:
SetUpTestCase()1971   static void SetUpTestCase() {
1972     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1973         "disabled");
1974     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1975         "errors");
1976     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1977         "failures");
1978     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1979         "name");
1980     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1981         "tests");
1982     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1983         "time");
1984 
1985     Test::RecordProperty("test_case_key_1", "1");
1986     const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1987     ASSERT_TRUE(test_case != NULL);
1988 
1989     ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
1990     EXPECT_STREQ("test_case_key_1",
1991                  test_case->ad_hoc_test_result().GetTestProperty(0).key());
1992     EXPECT_STREQ("1",
1993                  test_case->ad_hoc_test_result().GetTestProperty(0).value());
1994   }
1995 };
1996 
1997 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)1998 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
1999   UnitTestRecordProperty("key_1", "1");
2000 
2001   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2002 
2003   EXPECT_STREQ("key_1",
2004                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2005   EXPECT_STREQ("1",
2006                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2007 }
2008 
2009 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2010 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2011   UnitTestRecordProperty("key_1", "1");
2012   UnitTestRecordProperty("key_2", "2");
2013 
2014   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2015 
2016   EXPECT_STREQ("key_1",
2017                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2018   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2019 
2020   EXPECT_STREQ("key_2",
2021                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2022   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2023 }
2024 
2025 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2026 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2027   UnitTestRecordProperty("key_1", "1");
2028   UnitTestRecordProperty("key_2", "2");
2029   UnitTestRecordProperty("key_1", "12");
2030   UnitTestRecordProperty("key_2", "22");
2031 
2032   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2033 
2034   EXPECT_STREQ("key_1",
2035                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2036   EXPECT_STREQ("12",
2037                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2038 
2039   EXPECT_STREQ("key_2",
2040                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2041   EXPECT_STREQ("22",
2042                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2043 }
2044 
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestCaseReservedKeys)2045 TEST_F(UnitTestRecordPropertyTest,
2046        AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
2047   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2048       "name");
2049   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2050       "value_param");
2051   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2052       "type_param");
2053   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2054       "status");
2055   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2056       "time");
2057   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2058       "classname");
2059 }
2060 
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2061 TEST_F(UnitTestRecordPropertyTest,
2062        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2063   EXPECT_NONFATAL_FAILURE(
2064       Test::RecordProperty("name", "1"),
2065       "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
2066       " are reserved");
2067 }
2068 
2069 class UnitTestRecordPropertyTestEnvironment : public Environment {
2070  public:
TearDown()2071   virtual void TearDown() {
2072     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2073         "tests");
2074     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2075         "failures");
2076     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2077         "disabled");
2078     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2079         "errors");
2080     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2081         "name");
2082     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2083         "timestamp");
2084     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2085         "time");
2086     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2087         "random_seed");
2088   }
2089 };
2090 
2091 // This will test property recording outside of any test or test case.
2092 static Environment* record_property_env =
2093     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2094 
2095 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2096 // of various arities.  They do not attempt to be exhaustive.  Rather,
2097 // view them as smoke tests that can be easily reviewed and verified.
2098 // A more complete set of tests for predicate assertions can be found
2099 // in gtest_pred_impl_unittest.cc.
2100 
2101 // First, some predicates and predicate-formatters needed by the tests.
2102 
2103 // Returns true iff the argument is an even number.
IsEven(int n)2104 bool IsEven(int n) {
2105   return (n % 2) == 0;
2106 }
2107 
2108 // A functor that returns true iff the argument is an even number.
2109 struct IsEvenFunctor {
operator ()__anona8d7a1d00111::IsEvenFunctor2110   bool operator()(int n) { return IsEven(n); }
2111 };
2112 
2113 // A predicate-formatter function that asserts the argument is an even
2114 // number.
AssertIsEven(const char * expr,int n)2115 AssertionResult AssertIsEven(const char* expr, int n) {
2116   if (IsEven(n)) {
2117     return AssertionSuccess();
2118   }
2119 
2120   Message msg;
2121   msg << expr << " evaluates to " << n << ", which is not even.";
2122   return AssertionFailure(msg);
2123 }
2124 
2125 // A predicate function that returns AssertionResult for use in
2126 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2127 AssertionResult ResultIsEven(int n) {
2128   if (IsEven(n))
2129     return AssertionSuccess() << n << " is even";
2130   else
2131     return AssertionFailure() << n << " is odd";
2132 }
2133 
2134 // A predicate function that returns AssertionResult but gives no
2135 // explanation why it succeeds. Needed for testing that
2136 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2137 AssertionResult ResultIsEvenNoExplanation(int n) {
2138   if (IsEven(n))
2139     return AssertionSuccess();
2140   else
2141     return AssertionFailure() << n << " is odd";
2142 }
2143 
2144 // A predicate-formatter functor that asserts the argument is an even
2145 // number.
2146 struct AssertIsEvenFunctor {
operator ()__anona8d7a1d00111::AssertIsEvenFunctor2147   AssertionResult operator()(const char* expr, int n) {
2148     return AssertIsEven(expr, n);
2149   }
2150 };
2151 
2152 // Returns true iff the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2153 bool SumIsEven2(int n1, int n2) {
2154   return IsEven(n1 + n2);
2155 }
2156 
2157 // A functor that returns true iff the sum of the arguments is an even
2158 // number.
2159 struct SumIsEven3Functor {
operator ()__anona8d7a1d00111::SumIsEven3Functor2160   bool operator()(int n1, int n2, int n3) {
2161     return IsEven(n1 + n2 + n3);
2162   }
2163 };
2164 
2165 // A predicate-formatter function that asserts the sum of the
2166 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2167 AssertionResult AssertSumIsEven4(
2168     const char* e1, const char* e2, const char* e3, const char* e4,
2169     int n1, int n2, int n3, int n4) {
2170   const int sum = n1 + n2 + n3 + n4;
2171   if (IsEven(sum)) {
2172     return AssertionSuccess();
2173   }
2174 
2175   Message msg;
2176   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2177       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2178       << ") evaluates to " << sum << ", which is not even.";
2179   return AssertionFailure(msg);
2180 }
2181 
2182 // A predicate-formatter functor that asserts the sum of the arguments
2183 // is an even number.
2184 struct AssertSumIsEven5Functor {
operator ()__anona8d7a1d00111::AssertSumIsEven5Functor2185   AssertionResult operator()(
2186       const char* e1, const char* e2, const char* e3, const char* e4,
2187       const char* e5, int n1, int n2, int n3, int n4, int n5) {
2188     const int sum = n1 + n2 + n3 + n4 + n5;
2189     if (IsEven(sum)) {
2190       return AssertionSuccess();
2191     }
2192 
2193     Message msg;
2194     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2195         << " ("
2196         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2197         << ") evaluates to " << sum << ", which is not even.";
2198     return AssertionFailure(msg);
2199   }
2200 };
2201 
2202 
2203 // Tests unary predicate assertions.
2204 
2205 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2206 TEST(Pred1Test, WithoutFormat) {
2207   // Success cases.
2208   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2209   ASSERT_PRED1(IsEven, 4);
2210 
2211   // Failure cases.
2212   EXPECT_NONFATAL_FAILURE({  // NOLINT
2213     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2214   }, "This failure is expected.");
2215   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2216                        "evaluates to false");
2217 }
2218 
2219 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2220 TEST(Pred1Test, WithFormat) {
2221   // Success cases.
2222   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2223   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2224     << "This failure is UNEXPECTED!";
2225 
2226   // Failure cases.
2227   const int n = 5;
2228   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2229                           "n evaluates to 5, which is not even.");
2230   EXPECT_FATAL_FAILURE({  // NOLINT
2231     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2232   }, "This failure is expected.");
2233 }
2234 
2235 // Tests that unary predicate assertions evaluates their arguments
2236 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2237 TEST(Pred1Test, SingleEvaluationOnFailure) {
2238   // A success case.
2239   static int n = 0;
2240   EXPECT_PRED1(IsEven, n++);
2241   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2242 
2243   // A failure case.
2244   EXPECT_FATAL_FAILURE({  // NOLINT
2245     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2246         << "This failure is expected.";
2247   }, "This failure is expected.");
2248   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2249 }
2250 
2251 
2252 // Tests predicate assertions whose arity is >= 2.
2253 
2254 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2255 TEST(PredTest, WithoutFormat) {
2256   // Success cases.
2257   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2258   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2259 
2260   // Failure cases.
2261   const int n1 = 1;
2262   const int n2 = 2;
2263   EXPECT_NONFATAL_FAILURE({  // NOLINT
2264     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2265   }, "This failure is expected.");
2266   EXPECT_FATAL_FAILURE({  // NOLINT
2267     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2268   }, "evaluates to false");
2269 }
2270 
2271 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2272 TEST(PredTest, WithFormat) {
2273   // Success cases.
2274   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2275     "This failure is UNEXPECTED!";
2276   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2277 
2278   // Failure cases.
2279   const int n1 = 1;
2280   const int n2 = 2;
2281   const int n3 = 4;
2282   const int n4 = 6;
2283   EXPECT_NONFATAL_FAILURE({  // NOLINT
2284     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2285   }, "evaluates to 13, which is not even.");
2286   EXPECT_FATAL_FAILURE({  // NOLINT
2287     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2288         << "This failure is expected.";
2289   }, "This failure is expected.");
2290 }
2291 
2292 // Tests that predicate assertions evaluates their arguments
2293 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2294 TEST(PredTest, SingleEvaluationOnFailure) {
2295   // A success case.
2296   int n1 = 0;
2297   int n2 = 0;
2298   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2299   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2300   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2301 
2302   // Another success case.
2303   n1 = n2 = 0;
2304   int n3 = 0;
2305   int n4 = 0;
2306   int n5 = 0;
2307   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2308                       n1++, n2++, n3++, n4++, n5++)
2309                         << "This failure is UNEXPECTED!";
2310   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2311   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2312   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2313   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2314   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2315 
2316   // A failure case.
2317   n1 = n2 = n3 = 0;
2318   EXPECT_NONFATAL_FAILURE({  // NOLINT
2319     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2320         << "This failure is expected.";
2321   }, "This failure is expected.");
2322   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2323   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2324   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2325 
2326   // Another failure case.
2327   n1 = n2 = n3 = n4 = 0;
2328   EXPECT_NONFATAL_FAILURE({  // NOLINT
2329     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2330   }, "evaluates to 1, which is not even.");
2331   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2332   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2333   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2334   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2335 }
2336 
2337 
2338 // Some helper functions for testing using overloaded/template
2339 // functions with ASSERT_PREDn and EXPECT_PREDn.
2340 
IsPositive(double x)2341 bool IsPositive(double x) {
2342   return x > 0;
2343 }
2344 
2345 template <typename T>
IsNegative(T x)2346 bool IsNegative(T x) {
2347   return x < 0;
2348 }
2349 
2350 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2351 bool GreaterThan(T1 x1, T2 x2) {
2352   return x1 > x2;
2353 }
2354 
2355 // Tests that overloaded functions can be used in *_PRED* as long as
2356 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2357 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2358   // C++Builder requires C-style casts rather than static_cast.
2359   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2360   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2361 }
2362 
2363 // Tests that template functions can be used in *_PRED* as long as
2364 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2365 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2366   EXPECT_PRED1(IsNegative<int>, -5);
2367   // Makes sure that we can handle templates with more than one
2368   // parameter.
2369   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2370 }
2371 
2372 
2373 // Some helper functions for testing using overloaded/template
2374 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2375 
IsPositiveFormat(const char *,int n)2376 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2377   return n > 0 ? AssertionSuccess() :
2378       AssertionFailure(Message() << "Failure");
2379 }
2380 
IsPositiveFormat(const char *,double x)2381 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2382   return x > 0 ? AssertionSuccess() :
2383       AssertionFailure(Message() << "Failure");
2384 }
2385 
2386 template <typename T>
IsNegativeFormat(const char *,T x)2387 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2388   return x < 0 ? AssertionSuccess() :
2389       AssertionFailure(Message() << "Failure");
2390 }
2391 
2392 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2393 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2394                              const T1& x1, const T2& x2) {
2395   return x1 == x2 ? AssertionSuccess() :
2396       AssertionFailure(Message() << "Failure");
2397 }
2398 
2399 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2400 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2401 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2402   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2403   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2404 }
2405 
2406 // Tests that template functions can be used in *_PRED_FORMAT* without
2407 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2408 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2409   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2410   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2411 }
2412 
2413 
2414 // Tests string assertions.
2415 
2416 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2417 TEST(StringAssertionTest, ASSERT_STREQ) {
2418   const char * const p1 = "good";
2419   ASSERT_STREQ(p1, p1);
2420 
2421   // Let p2 have the same content as p1, but be at a different address.
2422   const char p2[] = "good";
2423   ASSERT_STREQ(p1, p2);
2424 
2425   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2426                        "Expected: \"bad\"");
2427 }
2428 
2429 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2430 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2431   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2432   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2433                        "non-null");
2434 }
2435 
2436 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2437 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2438   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2439                        "non-null");
2440 }
2441 
2442 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2443 TEST(StringAssertionTest, ASSERT_STRNE) {
2444   ASSERT_STRNE("hi", "Hi");
2445   ASSERT_STRNE("Hi", NULL);
2446   ASSERT_STRNE(NULL, "Hi");
2447   ASSERT_STRNE("", NULL);
2448   ASSERT_STRNE(NULL, "");
2449   ASSERT_STRNE("", "Hi");
2450   ASSERT_STRNE("Hi", "");
2451   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2452                        "\"Hi\" vs \"Hi\"");
2453 }
2454 
2455 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2456 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2457   ASSERT_STRCASEEQ("hi", "Hi");
2458   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2459 
2460   ASSERT_STRCASEEQ("", "");
2461   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2462                        "(ignoring case)");
2463 }
2464 
2465 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2466 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2467   ASSERT_STRCASENE("hi1", "Hi2");
2468   ASSERT_STRCASENE("Hi", NULL);
2469   ASSERT_STRCASENE(NULL, "Hi");
2470   ASSERT_STRCASENE("", NULL);
2471   ASSERT_STRCASENE(NULL, "");
2472   ASSERT_STRCASENE("", "Hi");
2473   ASSERT_STRCASENE("Hi", "");
2474   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2475                        "(ignoring case)");
2476 }
2477 
2478 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2479 TEST(StringAssertionTest, STREQ_Wide) {
2480   // NULL strings.
2481   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2482 
2483   // Empty strings.
2484   ASSERT_STREQ(L"", L"");
2485 
2486   // Non-null vs NULL.
2487   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2488                           "non-null");
2489 
2490   // Equal strings.
2491   EXPECT_STREQ(L"Hi", L"Hi");
2492 
2493   // Unequal strings.
2494   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2495                           "Abc");
2496 
2497   // Strings containing wide characters.
2498   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2499                           "abc");
2500 
2501   // The streaming variation.
2502   EXPECT_NONFATAL_FAILURE({  // NOLINT
2503     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2504   }, "Expected failure");
2505 }
2506 
2507 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2508 TEST(StringAssertionTest, STRNE_Wide) {
2509   // NULL strings.
2510   EXPECT_NONFATAL_FAILURE({  // NOLINT
2511     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2512   }, "");
2513 
2514   // Empty strings.
2515   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2516                           "L\"\"");
2517 
2518   // Non-null vs NULL.
2519   ASSERT_STRNE(L"non-null", NULL);
2520 
2521   // Equal strings.
2522   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2523                           "L\"Hi\"");
2524 
2525   // Unequal strings.
2526   EXPECT_STRNE(L"abc", L"Abc");
2527 
2528   // Strings containing wide characters.
2529   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2530                           "abc");
2531 
2532   // The streaming variation.
2533   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2534 }
2535 
2536 // Tests for ::testing::IsSubstring().
2537 
2538 // Tests that IsSubstring() returns the correct result when the input
2539 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2540 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2541   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2542   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2543   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2544 
2545   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2546   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2547 }
2548 
2549 // Tests that IsSubstring() returns the correct result when the input
2550 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2551 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2552   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2553   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2554   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2555 
2556   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2557   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2558 }
2559 
2560 // Tests that IsSubstring() generates the correct message when the input
2561 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2562 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2563   EXPECT_STREQ("Value of: needle_expr\n"
2564                "  Actual: \"needle\"\n"
2565                "Expected: a substring of haystack_expr\n"
2566                "Which is: \"haystack\"",
2567                IsSubstring("needle_expr", "haystack_expr",
2568                            "needle", "haystack").failure_message());
2569 }
2570 
2571 // Tests that IsSubstring returns the correct result when the input
2572 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2573 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2574   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2575   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2576 }
2577 
2578 #if GTEST_HAS_STD_WSTRING
2579 // Tests that IsSubstring returns the correct result when the input
2580 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2581 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2582   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2583   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2584 }
2585 
2586 // Tests that IsSubstring() generates the correct message when the input
2587 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2588 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2589   EXPECT_STREQ("Value of: needle_expr\n"
2590                "  Actual: L\"needle\"\n"
2591                "Expected: a substring of haystack_expr\n"
2592                "Which is: L\"haystack\"",
2593                IsSubstring(
2594                    "needle_expr", "haystack_expr",
2595                    ::std::wstring(L"needle"), L"haystack").failure_message());
2596 }
2597 
2598 #endif  // GTEST_HAS_STD_WSTRING
2599 
2600 // Tests for ::testing::IsNotSubstring().
2601 
2602 // Tests that IsNotSubstring() returns the correct result when the input
2603 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2604 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2605   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2606   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2607 }
2608 
2609 // Tests that IsNotSubstring() returns the correct result when the input
2610 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2611 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2612   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2613   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2614 }
2615 
2616 // Tests that IsNotSubstring() generates the correct message when the input
2617 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2618 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2619   EXPECT_STREQ("Value of: needle_expr\n"
2620                "  Actual: L\"needle\"\n"
2621                "Expected: not a substring of haystack_expr\n"
2622                "Which is: L\"two needles\"",
2623                IsNotSubstring(
2624                    "needle_expr", "haystack_expr",
2625                    L"needle", L"two needles").failure_message());
2626 }
2627 
2628 // Tests that IsNotSubstring returns the correct result when the input
2629 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2630 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2631   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2632   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2633 }
2634 
2635 // Tests that IsNotSubstring() generates the correct message when the input
2636 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2637 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2638   EXPECT_STREQ("Value of: needle_expr\n"
2639                "  Actual: \"needle\"\n"
2640                "Expected: not a substring of haystack_expr\n"
2641                "Which is: \"two needles\"",
2642                IsNotSubstring(
2643                    "needle_expr", "haystack_expr",
2644                    ::std::string("needle"), "two needles").failure_message());
2645 }
2646 
2647 #if GTEST_HAS_STD_WSTRING
2648 
2649 // Tests that IsNotSubstring returns the correct result when the input
2650 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2651 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2652   EXPECT_FALSE(
2653       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2654   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2655 }
2656 
2657 #endif  // GTEST_HAS_STD_WSTRING
2658 
2659 // Tests floating-point assertions.
2660 
2661 template <typename RawType>
2662 class FloatingPointTest : public Test {
2663  protected:
2664   // Pre-calculated numbers to be used by the tests.
2665   struct TestValues {
2666     RawType close_to_positive_zero;
2667     RawType close_to_negative_zero;
2668     RawType further_from_negative_zero;
2669 
2670     RawType close_to_one;
2671     RawType further_from_one;
2672 
2673     RawType infinity;
2674     RawType close_to_infinity;
2675     RawType further_from_infinity;
2676 
2677     RawType nan1;
2678     RawType nan2;
2679   };
2680 
2681   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2682   typedef typename Floating::Bits Bits;
2683 
SetUp()2684   virtual void SetUp() {
2685     const size_t max_ulps = Floating::kMaxUlps;
2686 
2687     // The bits that represent 0.0.
2688     const Bits zero_bits = Floating(0).bits();
2689 
2690     // Makes some numbers close to 0.0.
2691     values_.close_to_positive_zero = Floating::ReinterpretBits(
2692         zero_bits + max_ulps/2);
2693     values_.close_to_negative_zero = -Floating::ReinterpretBits(
2694         zero_bits + max_ulps - max_ulps/2);
2695     values_.further_from_negative_zero = -Floating::ReinterpretBits(
2696         zero_bits + max_ulps + 1 - max_ulps/2);
2697 
2698     // The bits that represent 1.0.
2699     const Bits one_bits = Floating(1).bits();
2700 
2701     // Makes some numbers close to 1.0.
2702     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2703     values_.further_from_one = Floating::ReinterpretBits(
2704         one_bits + max_ulps + 1);
2705 
2706     // +infinity.
2707     values_.infinity = Floating::Infinity();
2708 
2709     // The bits that represent +infinity.
2710     const Bits infinity_bits = Floating(values_.infinity).bits();
2711 
2712     // Makes some numbers close to infinity.
2713     values_.close_to_infinity = Floating::ReinterpretBits(
2714         infinity_bits - max_ulps);
2715     values_.further_from_infinity = Floating::ReinterpretBits(
2716         infinity_bits - max_ulps - 1);
2717 
2718     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2719     // our NaN's are quiet; trying to process a signaling NaN would raise an
2720     // exception if our environment enables floating point exceptions.
2721     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2722         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2723     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2724         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2725   }
2726 
TestSize()2727   void TestSize() {
2728     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2729   }
2730 
2731   static TestValues values_;
2732 };
2733 
2734 template <typename RawType>
2735 typename FloatingPointTest<RawType>::TestValues
2736     FloatingPointTest<RawType>::values_;
2737 
2738 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2739 typedef FloatingPointTest<float> FloatTest;
2740 
2741 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2742 TEST_F(FloatTest, Size) {
2743   TestSize();
2744 }
2745 
2746 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2747 TEST_F(FloatTest, Zeros) {
2748   EXPECT_FLOAT_EQ(0.0, -0.0);
2749   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2750                           "1.0");
2751   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2752                        "1.5");
2753 }
2754 
2755 // Tests comparing numbers close to 0.
2756 //
2757 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2758 // overflow occurs when comparing numbers whose absolute value is very
2759 // small.
TEST_F(FloatTest,AlmostZeros)2760 TEST_F(FloatTest, AlmostZeros) {
2761   // In C++Builder, names within local classes (such as used by
2762   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2763   // scoping class.  Use a static local alias as a workaround.
2764   // We use the assignment syntax since some compilers, like Sun Studio,
2765   // don't allow initializing references using construction syntax
2766   // (parentheses).
2767   static const FloatTest::TestValues& v = this->values_;
2768 
2769   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2770   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2771   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2772 
2773   EXPECT_FATAL_FAILURE({  // NOLINT
2774     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2775                     v.further_from_negative_zero);
2776   }, "v.further_from_negative_zero");
2777 }
2778 
2779 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2780 TEST_F(FloatTest, SmallDiff) {
2781   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2782   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2783                           "values_.further_from_one");
2784 }
2785 
2786 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2787 TEST_F(FloatTest, LargeDiff) {
2788   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2789                           "3.0");
2790 }
2791 
2792 // Tests comparing with infinity.
2793 //
2794 // This ensures that no overflow occurs when comparing numbers whose
2795 // absolute value is very large.
TEST_F(FloatTest,Infinity)2796 TEST_F(FloatTest, Infinity) {
2797   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2798   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2799 #if !GTEST_OS_SYMBIAN
2800   // Nokia's STLport crashes if we try to output infinity or NaN.
2801   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2802                           "-values_.infinity");
2803 
2804   // This is interesting as the representations of infinity and nan1
2805   // are only 1 DLP apart.
2806   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2807                           "values_.nan1");
2808 #endif  // !GTEST_OS_SYMBIAN
2809 }
2810 
2811 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2812 TEST_F(FloatTest, NaN) {
2813 #if !GTEST_OS_SYMBIAN
2814 // Nokia's STLport crashes if we try to output infinity or NaN.
2815 
2816   // In C++Builder, names within local classes (such as used by
2817   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2818   // scoping class.  Use a static local alias as a workaround.
2819   // We use the assignment syntax since some compilers, like Sun Studio,
2820   // don't allow initializing references using construction syntax
2821   // (parentheses).
2822   static const FloatTest::TestValues& v = this->values_;
2823 
2824   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2825                           "v.nan1");
2826   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2827                           "v.nan2");
2828   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2829                           "v.nan1");
2830 
2831   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2832                        "v.infinity");
2833 #endif  // !GTEST_OS_SYMBIAN
2834 }
2835 
2836 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2837 TEST_F(FloatTest, Reflexive) {
2838   EXPECT_FLOAT_EQ(0.0, 0.0);
2839   EXPECT_FLOAT_EQ(1.0, 1.0);
2840   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2841 }
2842 
2843 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2844 TEST_F(FloatTest, Commutative) {
2845   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2846   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2847 
2848   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2849   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2850                           "1.0");
2851 }
2852 
2853 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2854 TEST_F(FloatTest, EXPECT_NEAR) {
2855   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2856   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2857   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2858                           "The difference between 1.0f and 1.5f is 0.5, "
2859                           "which exceeds 0.25f");
2860   // To work around a bug in gcc 2.95.0, there is intentionally no
2861   // space after the first comma in the previous line.
2862 }
2863 
2864 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2865 TEST_F(FloatTest, ASSERT_NEAR) {
2866   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2867   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2868   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2869                        "The difference between 1.0f and 1.5f is 0.5, "
2870                        "which exceeds 0.25f");
2871   // To work around a bug in gcc 2.95.0, there is intentionally no
2872   // space after the first comma in the previous line.
2873 }
2874 
2875 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2876 TEST_F(FloatTest, FloatLESucceeds) {
2877   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2878   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2879 
2880   // or when val1 is greater than, but almost equals to, val2.
2881   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2882 }
2883 
2884 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2885 TEST_F(FloatTest, FloatLEFails) {
2886   // When val1 is greater than val2 by a large margin,
2887   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2888                           "(2.0f) <= (1.0f)");
2889 
2890   // or by a small yet non-negligible margin,
2891   EXPECT_NONFATAL_FAILURE({  // NOLINT
2892     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2893   }, "(values_.further_from_one) <= (1.0f)");
2894 
2895 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2896   // Nokia's STLport crashes if we try to output infinity or NaN.
2897   // C++Builder gives bad results for ordered comparisons involving NaNs
2898   // due to compiler bugs.
2899   EXPECT_NONFATAL_FAILURE({  // NOLINT
2900     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2901   }, "(values_.nan1) <= (values_.infinity)");
2902   EXPECT_NONFATAL_FAILURE({  // NOLINT
2903     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2904   }, "(-values_.infinity) <= (values_.nan1)");
2905   EXPECT_FATAL_FAILURE({  // NOLINT
2906     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2907   }, "(values_.nan1) <= (values_.nan1)");
2908 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2909 }
2910 
2911 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2912 typedef FloatingPointTest<double> DoubleTest;
2913 
2914 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2915 TEST_F(DoubleTest, Size) {
2916   TestSize();
2917 }
2918 
2919 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2920 TEST_F(DoubleTest, Zeros) {
2921   EXPECT_DOUBLE_EQ(0.0, -0.0);
2922   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2923                           "1.0");
2924   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2925                        "1.0");
2926 }
2927 
2928 // Tests comparing numbers close to 0.
2929 //
2930 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2931 // overflow occurs when comparing numbers whose absolute value is very
2932 // small.
TEST_F(DoubleTest,AlmostZeros)2933 TEST_F(DoubleTest, AlmostZeros) {
2934   // In C++Builder, names within local classes (such as used by
2935   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2936   // scoping class.  Use a static local alias as a workaround.
2937   // We use the assignment syntax since some compilers, like Sun Studio,
2938   // don't allow initializing references using construction syntax
2939   // (parentheses).
2940   static const DoubleTest::TestValues& v = this->values_;
2941 
2942   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2943   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2944   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2945 
2946   EXPECT_FATAL_FAILURE({  // NOLINT
2947     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2948                      v.further_from_negative_zero);
2949   }, "v.further_from_negative_zero");
2950 }
2951 
2952 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)2953 TEST_F(DoubleTest, SmallDiff) {
2954   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2955   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2956                           "values_.further_from_one");
2957 }
2958 
2959 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)2960 TEST_F(DoubleTest, LargeDiff) {
2961   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
2962                           "3.0");
2963 }
2964 
2965 // Tests comparing with infinity.
2966 //
2967 // This ensures that no overflow occurs when comparing numbers whose
2968 // absolute value is very large.
TEST_F(DoubleTest,Infinity)2969 TEST_F(DoubleTest, Infinity) {
2970   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
2971   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
2972 #if !GTEST_OS_SYMBIAN
2973   // Nokia's STLport crashes if we try to output infinity or NaN.
2974   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
2975                           "-values_.infinity");
2976 
2977   // This is interesting as the representations of infinity_ and nan1_
2978   // are only 1 DLP apart.
2979   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
2980                           "values_.nan1");
2981 #endif  // !GTEST_OS_SYMBIAN
2982 }
2983 
2984 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)2985 TEST_F(DoubleTest, NaN) {
2986 #if !GTEST_OS_SYMBIAN
2987   // In C++Builder, names within local classes (such as used by
2988   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2989   // scoping class.  Use a static local alias as a workaround.
2990   // We use the assignment syntax since some compilers, like Sun Studio,
2991   // don't allow initializing references using construction syntax
2992   // (parentheses).
2993   static const DoubleTest::TestValues& v = this->values_;
2994 
2995   // Nokia's STLport crashes if we try to output infinity or NaN.
2996   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
2997                           "v.nan1");
2998   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
2999   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3000   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3001                        "v.infinity");
3002 #endif  // !GTEST_OS_SYMBIAN
3003 }
3004 
3005 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3006 TEST_F(DoubleTest, Reflexive) {
3007   EXPECT_DOUBLE_EQ(0.0, 0.0);
3008   EXPECT_DOUBLE_EQ(1.0, 1.0);
3009 #if !GTEST_OS_SYMBIAN
3010   // Nokia's STLport crashes if we try to output infinity or NaN.
3011   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3012 #endif  // !GTEST_OS_SYMBIAN
3013 }
3014 
3015 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3016 TEST_F(DoubleTest, Commutative) {
3017   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3018   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3019 
3020   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3021   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3022                           "1.0");
3023 }
3024 
3025 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3026 TEST_F(DoubleTest, EXPECT_NEAR) {
3027   EXPECT_NEAR(-1.0, -1.1, 0.2);
3028   EXPECT_NEAR(2.0, 3.0, 1.0);
3029   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3030                           "The difference between 1.0 and 1.5 is 0.5, "
3031                           "which exceeds 0.25");
3032   // To work around a bug in gcc 2.95.0, there is intentionally no
3033   // space after the first comma in the previous statement.
3034 }
3035 
3036 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3037 TEST_F(DoubleTest, ASSERT_NEAR) {
3038   ASSERT_NEAR(-1.0, -1.1, 0.2);
3039   ASSERT_NEAR(2.0, 3.0, 1.0);
3040   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3041                        "The difference between 1.0 and 1.5 is 0.5, "
3042                        "which exceeds 0.25");
3043   // To work around a bug in gcc 2.95.0, there is intentionally no
3044   // space after the first comma in the previous statement.
3045 }
3046 
3047 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3048 TEST_F(DoubleTest, DoubleLESucceeds) {
3049   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3050   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3051 
3052   // or when val1 is greater than, but almost equals to, val2.
3053   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3054 }
3055 
3056 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3057 TEST_F(DoubleTest, DoubleLEFails) {
3058   // When val1 is greater than val2 by a large margin,
3059   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3060                           "(2.0) <= (1.0)");
3061 
3062   // or by a small yet non-negligible margin,
3063   EXPECT_NONFATAL_FAILURE({  // NOLINT
3064     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3065   }, "(values_.further_from_one) <= (1.0)");
3066 
3067 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3068   // Nokia's STLport crashes if we try to output infinity or NaN.
3069   // C++Builder gives bad results for ordered comparisons involving NaNs
3070   // due to compiler bugs.
3071   EXPECT_NONFATAL_FAILURE({  // NOLINT
3072     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3073   }, "(values_.nan1) <= (values_.infinity)");
3074   EXPECT_NONFATAL_FAILURE({  // NOLINT
3075     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3076   }, " (-values_.infinity) <= (values_.nan1)");
3077   EXPECT_FATAL_FAILURE({  // NOLINT
3078     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3079   }, "(values_.nan1) <= (values_.nan1)");
3080 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3081 }
3082 
3083 
3084 // Verifies that a test or test case whose name starts with DISABLED_ is
3085 // not run.
3086 
3087 // A test whose name starts with DISABLED_.
3088 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3089 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3090   FAIL() << "Unexpected failure: Disabled test should not be run.";
3091 }
3092 
3093 // A test whose name does not start with DISABLED_.
3094 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3095 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3096   EXPECT_EQ(1, 1);
3097 }
3098 
3099 // A test case whose name starts with DISABLED_.
3100 // Should not run.
TEST(DISABLED_TestCase,TestShouldNotRun)3101 TEST(DISABLED_TestCase, TestShouldNotRun) {
3102   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3103 }
3104 
3105 // A test case and test whose names start with DISABLED_.
3106 // Should not run.
TEST(DISABLED_TestCase,DISABLED_TestShouldNotRun)3107 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3108   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3109 }
3110 
3111 // Check that when all tests in a test case are disabled, SetupTestCase() and
3112 // TearDownTestCase() are not called.
3113 class DisabledTestsTest : public Test {
3114  protected:
SetUpTestCase()3115   static void SetUpTestCase() {
3116     FAIL() << "Unexpected failure: All tests disabled in test case. "
3117               "SetupTestCase() should not be called.";
3118   }
3119 
TearDownTestCase()3120   static void TearDownTestCase() {
3121     FAIL() << "Unexpected failure: All tests disabled in test case. "
3122               "TearDownTestCase() should not be called.";
3123   }
3124 };
3125 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3126 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3127   FAIL() << "Unexpected failure: Disabled test should not be run.";
3128 }
3129 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3130 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3131   FAIL() << "Unexpected failure: Disabled test should not be run.";
3132 }
3133 
3134 // Tests that disabled typed tests aren't run.
3135 
3136 #if GTEST_HAS_TYPED_TEST
3137 
3138 template <typename T>
3139 class TypedTest : public Test {
3140 };
3141 
3142 typedef testing::Types<int, double> NumericTypes;
3143 TYPED_TEST_CASE(TypedTest, NumericTypes);
3144 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3145 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3146   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3147 }
3148 
3149 template <typename T>
3150 class DISABLED_TypedTest : public Test {
3151 };
3152 
3153 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3154 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3155 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3156   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3157 }
3158 
3159 #endif  // GTEST_HAS_TYPED_TEST
3160 
3161 // Tests that disabled type-parameterized tests aren't run.
3162 
3163 #if GTEST_HAS_TYPED_TEST_P
3164 
3165 template <typename T>
3166 class TypedTestP : public Test {
3167 };
3168 
3169 TYPED_TEST_CASE_P(TypedTestP);
3170 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3171 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3172   FAIL() << "Unexpected failure: "
3173          << "Disabled type-parameterized test should not run.";
3174 }
3175 
3176 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3177 
3178 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3179 
3180 template <typename T>
3181 class DISABLED_TypedTestP : public Test {
3182 };
3183 
3184 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3185 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3186 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3187   FAIL() << "Unexpected failure: "
3188          << "Disabled type-parameterized test should not run.";
3189 }
3190 
3191 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3192 
3193 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3194 
3195 #endif  // GTEST_HAS_TYPED_TEST_P
3196 
3197 // Tests that assertion macros evaluate their arguments exactly once.
3198 
3199 class SingleEvaluationTest : public Test {
3200  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3201   // This helper function is needed by the FailedASSERT_STREQ test
3202   // below.  It's public to work around C++Builder's bug with scoping local
3203   // classes.
CompareAndIncrementCharPtrs()3204   static void CompareAndIncrementCharPtrs() {
3205     ASSERT_STREQ(p1_++, p2_++);
3206   }
3207 
3208   // This helper function is needed by the FailedASSERT_NE test below.  It's
3209   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3210   static void CompareAndIncrementInts() {
3211     ASSERT_NE(a_++, b_++);
3212   }
3213 
3214  protected:
SingleEvaluationTest()3215   SingleEvaluationTest() {
3216     p1_ = s1_;
3217     p2_ = s2_;
3218     a_ = 0;
3219     b_ = 0;
3220   }
3221 
3222   static const char* const s1_;
3223   static const char* const s2_;
3224   static const char* p1_;
3225   static const char* p2_;
3226 
3227   static int a_;
3228   static int b_;
3229 };
3230 
3231 const char* const SingleEvaluationTest::s1_ = "01234";
3232 const char* const SingleEvaluationTest::s2_ = "abcde";
3233 const char* SingleEvaluationTest::p1_;
3234 const char* SingleEvaluationTest::p2_;
3235 int SingleEvaluationTest::a_;
3236 int SingleEvaluationTest::b_;
3237 
3238 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3239 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3240 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3241   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3242                        "p2_++");
3243   EXPECT_EQ(s1_ + 1, p1_);
3244   EXPECT_EQ(s2_ + 1, p2_);
3245 }
3246 
3247 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3248 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3249   // successful EXPECT_STRNE
3250   EXPECT_STRNE(p1_++, p2_++);
3251   EXPECT_EQ(s1_ + 1, p1_);
3252   EXPECT_EQ(s2_ + 1, p2_);
3253 
3254   // failed EXPECT_STRCASEEQ
3255   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3256                           "ignoring case");
3257   EXPECT_EQ(s1_ + 2, p1_);
3258   EXPECT_EQ(s2_ + 2, p2_);
3259 }
3260 
3261 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3262 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3263 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3264   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3265                        "(a_++) != (b_++)");
3266   EXPECT_EQ(1, a_);
3267   EXPECT_EQ(1, b_);
3268 }
3269 
3270 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3271 TEST_F(SingleEvaluationTest, OtherCases) {
3272   // successful EXPECT_TRUE
3273   EXPECT_TRUE(0 == a_++);  // NOLINT
3274   EXPECT_EQ(1, a_);
3275 
3276   // failed EXPECT_TRUE
3277   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3278   EXPECT_EQ(2, a_);
3279 
3280   // successful EXPECT_GT
3281   EXPECT_GT(a_++, b_++);
3282   EXPECT_EQ(3, a_);
3283   EXPECT_EQ(1, b_);
3284 
3285   // failed EXPECT_LT
3286   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3287   EXPECT_EQ(4, a_);
3288   EXPECT_EQ(2, b_);
3289 
3290   // successful ASSERT_TRUE
3291   ASSERT_TRUE(0 < a_++);  // NOLINT
3292   EXPECT_EQ(5, a_);
3293 
3294   // successful ASSERT_GT
3295   ASSERT_GT(a_++, b_++);
3296   EXPECT_EQ(6, a_);
3297   EXPECT_EQ(3, b_);
3298 }
3299 
3300 #if GTEST_HAS_EXCEPTIONS
3301 
ThrowAnInteger()3302 void ThrowAnInteger() {
3303   throw 1;
3304 }
3305 
3306 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3307 TEST_F(SingleEvaluationTest, ExceptionTests) {
3308   // successful EXPECT_THROW
3309   EXPECT_THROW({  // NOLINT
3310     a_++;
3311     ThrowAnInteger();
3312   }, int);
3313   EXPECT_EQ(1, a_);
3314 
3315   // failed EXPECT_THROW, throws different
3316   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3317     a_++;
3318     ThrowAnInteger();
3319   }, bool), "throws a different type");
3320   EXPECT_EQ(2, a_);
3321 
3322   // failed EXPECT_THROW, throws nothing
3323   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3324   EXPECT_EQ(3, a_);
3325 
3326   // successful EXPECT_NO_THROW
3327   EXPECT_NO_THROW(a_++);
3328   EXPECT_EQ(4, a_);
3329 
3330   // failed EXPECT_NO_THROW
3331   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3332     a_++;
3333     ThrowAnInteger();
3334   }), "it throws");
3335   EXPECT_EQ(5, a_);
3336 
3337   // successful EXPECT_ANY_THROW
3338   EXPECT_ANY_THROW({  // NOLINT
3339     a_++;
3340     ThrowAnInteger();
3341   });
3342   EXPECT_EQ(6, a_);
3343 
3344   // failed EXPECT_ANY_THROW
3345   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3346   EXPECT_EQ(7, a_);
3347 }
3348 
3349 #endif  // GTEST_HAS_EXCEPTIONS
3350 
3351 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3352 class NoFatalFailureTest : public Test {
3353  protected:
Succeeds()3354   void Succeeds() {}
FailsNonFatal()3355   void FailsNonFatal() {
3356     ADD_FAILURE() << "some non-fatal failure";
3357   }
Fails()3358   void Fails() {
3359     FAIL() << "some fatal failure";
3360   }
3361 
DoAssertNoFatalFailureOnFails()3362   void DoAssertNoFatalFailureOnFails() {
3363     ASSERT_NO_FATAL_FAILURE(Fails());
3364     ADD_FAILURE() << "shold not reach here.";
3365   }
3366 
DoExpectNoFatalFailureOnFails()3367   void DoExpectNoFatalFailureOnFails() {
3368     EXPECT_NO_FATAL_FAILURE(Fails());
3369     ADD_FAILURE() << "other failure";
3370   }
3371 };
3372 
TEST_F(NoFatalFailureTest,NoFailure)3373 TEST_F(NoFatalFailureTest, NoFailure) {
3374   EXPECT_NO_FATAL_FAILURE(Succeeds());
3375   ASSERT_NO_FATAL_FAILURE(Succeeds());
3376 }
3377 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3378 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3379   EXPECT_NONFATAL_FAILURE(
3380       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3381       "some non-fatal failure");
3382   EXPECT_NONFATAL_FAILURE(
3383       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3384       "some non-fatal failure");
3385 }
3386 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3387 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3388   TestPartResultArray gtest_failures;
3389   {
3390     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3391     DoAssertNoFatalFailureOnFails();
3392   }
3393   ASSERT_EQ(2, gtest_failures.size());
3394   EXPECT_EQ(TestPartResult::kFatalFailure,
3395             gtest_failures.GetTestPartResult(0).type());
3396   EXPECT_EQ(TestPartResult::kFatalFailure,
3397             gtest_failures.GetTestPartResult(1).type());
3398   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3399                       gtest_failures.GetTestPartResult(0).message());
3400   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3401                       gtest_failures.GetTestPartResult(1).message());
3402 }
3403 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3404 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3405   TestPartResultArray gtest_failures;
3406   {
3407     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3408     DoExpectNoFatalFailureOnFails();
3409   }
3410   ASSERT_EQ(3, gtest_failures.size());
3411   EXPECT_EQ(TestPartResult::kFatalFailure,
3412             gtest_failures.GetTestPartResult(0).type());
3413   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3414             gtest_failures.GetTestPartResult(1).type());
3415   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3416             gtest_failures.GetTestPartResult(2).type());
3417   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3418                       gtest_failures.GetTestPartResult(0).message());
3419   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3420                       gtest_failures.GetTestPartResult(1).message());
3421   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3422                       gtest_failures.GetTestPartResult(2).message());
3423 }
3424 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3425 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3426   TestPartResultArray gtest_failures;
3427   {
3428     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3429     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3430   }
3431   ASSERT_EQ(2, gtest_failures.size());
3432   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3433             gtest_failures.GetTestPartResult(0).type());
3434   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3435             gtest_failures.GetTestPartResult(1).type());
3436   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3437                       gtest_failures.GetTestPartResult(0).message());
3438   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3439                       gtest_failures.GetTestPartResult(1).message());
3440 }
3441 
3442 // Tests non-string assertions.
3443 
3444 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3445 TEST(AssertionTest, EqFailure) {
3446   const std::string foo_val("5"), bar_val("6");
3447   const std::string msg1(
3448       EqFailure("foo", "bar", foo_val, bar_val, false)
3449       .failure_message());
3450   EXPECT_STREQ(
3451       "Value of: bar\n"
3452       "  Actual: 6\n"
3453       "Expected: foo\n"
3454       "Which is: 5",
3455       msg1.c_str());
3456 
3457   const std::string msg2(
3458       EqFailure("foo", "6", foo_val, bar_val, false)
3459       .failure_message());
3460   EXPECT_STREQ(
3461       "Value of: 6\n"
3462       "Expected: foo\n"
3463       "Which is: 5",
3464       msg2.c_str());
3465 
3466   const std::string msg3(
3467       EqFailure("5", "bar", foo_val, bar_val, false)
3468       .failure_message());
3469   EXPECT_STREQ(
3470       "Value of: bar\n"
3471       "  Actual: 6\n"
3472       "Expected: 5",
3473       msg3.c_str());
3474 
3475   const std::string msg4(
3476       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3477   EXPECT_STREQ(
3478       "Value of: 6\n"
3479       "Expected: 5",
3480       msg4.c_str());
3481 
3482   const std::string msg5(
3483       EqFailure("foo", "bar",
3484                 std::string("\"x\""), std::string("\"y\""),
3485                 true).failure_message());
3486   EXPECT_STREQ(
3487       "Value of: bar\n"
3488       "  Actual: \"y\"\n"
3489       "Expected: foo (ignoring case)\n"
3490       "Which is: \"x\"",
3491       msg5.c_str());
3492 }
3493 
3494 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3495 TEST(AssertionTest, AppendUserMessage) {
3496   const std::string foo("foo");
3497 
3498   Message msg;
3499   EXPECT_STREQ("foo",
3500                AppendUserMessage(foo, msg).c_str());
3501 
3502   msg << "bar";
3503   EXPECT_STREQ("foo\nbar",
3504                AppendUserMessage(foo, msg).c_str());
3505 }
3506 
3507 #ifdef __BORLANDC__
3508 // Silences warnings: "Condition is always true", "Unreachable code"
3509 # pragma option push -w-ccc -w-rch
3510 #endif
3511 
3512 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3513 TEST(AssertionTest, ASSERT_TRUE) {
3514   ASSERT_TRUE(2 > 1);  // NOLINT
3515   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3516                        "2 < 1");
3517 }
3518 
3519 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3520 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3521   ASSERT_TRUE(ResultIsEven(2));
3522 #ifndef __BORLANDC__
3523   // ICE's in C++Builder.
3524   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3525                        "Value of: ResultIsEven(3)\n"
3526                        "  Actual: false (3 is odd)\n"
3527                        "Expected: true");
3528 #endif
3529   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3530   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3531                        "Value of: ResultIsEvenNoExplanation(3)\n"
3532                        "  Actual: false (3 is odd)\n"
3533                        "Expected: true");
3534 }
3535 
3536 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3537 TEST(AssertionTest, ASSERT_FALSE) {
3538   ASSERT_FALSE(2 < 1);  // NOLINT
3539   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3540                        "Value of: 2 > 1\n"
3541                        "  Actual: true\n"
3542                        "Expected: false");
3543 }
3544 
3545 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3546 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3547   ASSERT_FALSE(ResultIsEven(3));
3548 #ifndef __BORLANDC__
3549   // ICE's in C++Builder.
3550   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3551                        "Value of: ResultIsEven(2)\n"
3552                        "  Actual: true (2 is even)\n"
3553                        "Expected: false");
3554 #endif
3555   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3556   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3557                        "Value of: ResultIsEvenNoExplanation(2)\n"
3558                        "  Actual: true\n"
3559                        "Expected: false");
3560 }
3561 
3562 #ifdef __BORLANDC__
3563 // Restores warnings after previous "#pragma option push" supressed them
3564 # pragma option pop
3565 #endif
3566 
3567 // Tests using ASSERT_EQ on double values.  The purpose is to make
3568 // sure that the specialization we did for integer and anonymous enums
3569 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3570 TEST(ExpectTest, ASSERT_EQ_Double) {
3571   // A success.
3572   ASSERT_EQ(5.6, 5.6);
3573 
3574   // A failure.
3575   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3576                        "5.1");
3577 }
3578 
3579 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3580 TEST(AssertionTest, ASSERT_EQ) {
3581   ASSERT_EQ(5, 2 + 3);
3582   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3583                        "Value of: 2*3\n"
3584                        "  Actual: 6\n"
3585                        "Expected: 5");
3586 }
3587 
3588 // Tests ASSERT_EQ(NULL, pointer).
3589 #if GTEST_CAN_COMPARE_NULL
TEST(AssertionTest,ASSERT_EQ_NULL)3590 TEST(AssertionTest, ASSERT_EQ_NULL) {
3591   // A success.
3592   const char* p = NULL;
3593   // Some older GCC versions may issue a spurious waring in this or the next
3594   // assertion statement. This warning should not be suppressed with
3595   // static_cast since the test verifies the ability to use bare NULL as the
3596   // expected parameter to the macro.
3597   ASSERT_EQ(NULL, p);
3598 
3599   // A failure.
3600   static int n = 0;
3601   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3602                        "Value of: &n\n");
3603 }
3604 #endif  // GTEST_CAN_COMPARE_NULL
3605 
3606 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3607 // treated as a null pointer by the compiler, we need to make sure
3608 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3609 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3610 TEST(ExpectTest, ASSERT_EQ_0) {
3611   int n = 0;
3612 
3613   // A success.
3614   ASSERT_EQ(0, n);
3615 
3616   // A failure.
3617   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3618                        "Expected: 0");
3619 }
3620 
3621 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3622 TEST(AssertionTest, ASSERT_NE) {
3623   ASSERT_NE(6, 7);
3624   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3625                        "Expected: ('a') != ('a'), "
3626                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3627 }
3628 
3629 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3630 TEST(AssertionTest, ASSERT_LE) {
3631   ASSERT_LE(2, 3);
3632   ASSERT_LE(2, 2);
3633   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3634                        "Expected: (2) <= (0), actual: 2 vs 0");
3635 }
3636 
3637 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3638 TEST(AssertionTest, ASSERT_LT) {
3639   ASSERT_LT(2, 3);
3640   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3641                        "Expected: (2) < (2), actual: 2 vs 2");
3642 }
3643 
3644 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3645 TEST(AssertionTest, ASSERT_GE) {
3646   ASSERT_GE(2, 1);
3647   ASSERT_GE(2, 2);
3648   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3649                        "Expected: (2) >= (3), actual: 2 vs 3");
3650 }
3651 
3652 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3653 TEST(AssertionTest, ASSERT_GT) {
3654   ASSERT_GT(2, 1);
3655   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3656                        "Expected: (2) > (2), actual: 2 vs 2");
3657 }
3658 
3659 #if GTEST_HAS_EXCEPTIONS
3660 
ThrowNothing()3661 void ThrowNothing() {}
3662 
3663 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3664 TEST(AssertionTest, ASSERT_THROW) {
3665   ASSERT_THROW(ThrowAnInteger(), int);
3666 
3667 # ifndef __BORLANDC__
3668 
3669   // ICE's in C++Builder 2007 and 2009.
3670   EXPECT_FATAL_FAILURE(
3671       ASSERT_THROW(ThrowAnInteger(), bool),
3672       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3673       "  Actual: it throws a different type.");
3674 # endif
3675 
3676   EXPECT_FATAL_FAILURE(
3677       ASSERT_THROW(ThrowNothing(), bool),
3678       "Expected: ThrowNothing() throws an exception of type bool.\n"
3679       "  Actual: it throws nothing.");
3680 }
3681 
3682 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3683 TEST(AssertionTest, ASSERT_NO_THROW) {
3684   ASSERT_NO_THROW(ThrowNothing());
3685   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3686                        "Expected: ThrowAnInteger() doesn't throw an exception."
3687                        "\n  Actual: it throws.");
3688 }
3689 
3690 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3691 TEST(AssertionTest, ASSERT_ANY_THROW) {
3692   ASSERT_ANY_THROW(ThrowAnInteger());
3693   EXPECT_FATAL_FAILURE(
3694       ASSERT_ANY_THROW(ThrowNothing()),
3695       "Expected: ThrowNothing() throws an exception.\n"
3696       "  Actual: it doesn't.");
3697 }
3698 
3699 #endif  // GTEST_HAS_EXCEPTIONS
3700 
3701 // Makes sure we deal with the precedence of <<.  This test should
3702 // compile.
TEST(AssertionTest,AssertPrecedence)3703 TEST(AssertionTest, AssertPrecedence) {
3704   ASSERT_EQ(1 < 2, true);
3705   bool false_value = false;
3706   ASSERT_EQ(true && false_value, false);
3707 }
3708 
3709 // A subroutine used by the following test.
TestEq1(int x)3710 void TestEq1(int x) {
3711   ASSERT_EQ(1, x);
3712 }
3713 
3714 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3715 TEST(AssertionTest, NonFixtureSubroutine) {
3716   EXPECT_FATAL_FAILURE(TestEq1(2),
3717                        "Value of: x");
3718 }
3719 
3720 // An uncopyable class.
3721 class Uncopyable {
3722  public:
Uncopyable(int a_value)3723   explicit Uncopyable(int a_value) : value_(a_value) {}
3724 
value() const3725   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3726   bool operator==(const Uncopyable& rhs) const {
3727     return value() == rhs.value();
3728   }
3729  private:
3730   // This constructor deliberately has no implementation, as we don't
3731   // want this class to be copyable.
3732   Uncopyable(const Uncopyable&);  // NOLINT
3733 
3734   int value_;
3735 };
3736 
operator <<(::std::ostream & os,const Uncopyable & value)3737 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3738   return os << value.value();
3739 }
3740 
3741 
IsPositiveUncopyable(const Uncopyable & x)3742 bool IsPositiveUncopyable(const Uncopyable& x) {
3743   return x.value() > 0;
3744 }
3745 
3746 // A subroutine used by the following test.
TestAssertNonPositive()3747 void TestAssertNonPositive() {
3748   Uncopyable y(-1);
3749   ASSERT_PRED1(IsPositiveUncopyable, y);
3750 }
3751 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3752 void TestAssertEqualsUncopyable() {
3753   Uncopyable x(5);
3754   Uncopyable y(-1);
3755   ASSERT_EQ(x, y);
3756 }
3757 
3758 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3759 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3760   Uncopyable x(5);
3761   ASSERT_PRED1(IsPositiveUncopyable, x);
3762   ASSERT_EQ(x, x);
3763   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3764     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3765   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3766     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3767 }
3768 
3769 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3770 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3771   Uncopyable x(5);
3772   EXPECT_PRED1(IsPositiveUncopyable, x);
3773   Uncopyable y(-1);
3774   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3775     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3776   EXPECT_EQ(x, x);
3777   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3778     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3779 }
3780 
3781 enum NamedEnum {
3782   kE1 = 0,
3783   kE2 = 1
3784 };
3785 
TEST(AssertionTest,NamedEnum)3786 TEST(AssertionTest, NamedEnum) {
3787   EXPECT_EQ(kE1, kE1);
3788   EXPECT_LT(kE1, kE2);
3789   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3790   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3791 }
3792 
3793 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
3794 // anonymous enums in assertions.  Therefore the following test is not
3795 // done on Mac.
3796 // Sun Studio and HP aCC also reject this code.
3797 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3798 
3799 // Tests using assertions with anonymous enums.
3800 enum {
3801   kCaseA = -1,
3802 
3803 # if GTEST_OS_LINUX
3804 
3805   // We want to test the case where the size of the anonymous enum is
3806   // larger than sizeof(int), to make sure our implementation of the
3807   // assertions doesn't truncate the enums.  However, MSVC
3808   // (incorrectly) doesn't allow an enum value to exceed the range of
3809   // an int, so this has to be conditionally compiled.
3810   //
3811   // On Linux, kCaseB and kCaseA have the same value when truncated to
3812   // int size.  We want to test whether this will confuse the
3813   // assertions.
3814   kCaseB = testing::internal::kMaxBiggestInt,
3815 
3816 # else
3817 
3818   kCaseB = INT_MAX,
3819 
3820 # endif  // GTEST_OS_LINUX
3821 
3822   kCaseC = 42
3823 };
3824 
TEST(AssertionTest,AnonymousEnum)3825 TEST(AssertionTest, AnonymousEnum) {
3826 # if GTEST_OS_LINUX
3827 
3828   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3829 
3830 # endif  // GTEST_OS_LINUX
3831 
3832   EXPECT_EQ(kCaseA, kCaseA);
3833   EXPECT_NE(kCaseA, kCaseB);
3834   EXPECT_LT(kCaseA, kCaseB);
3835   EXPECT_LE(kCaseA, kCaseB);
3836   EXPECT_GT(kCaseB, kCaseA);
3837   EXPECT_GE(kCaseA, kCaseA);
3838   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3839                           "(kCaseA) >= (kCaseB)");
3840   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3841                           "-1 vs 42");
3842 
3843   ASSERT_EQ(kCaseA, kCaseA);
3844   ASSERT_NE(kCaseA, kCaseB);
3845   ASSERT_LT(kCaseA, kCaseB);
3846   ASSERT_LE(kCaseA, kCaseB);
3847   ASSERT_GT(kCaseB, kCaseA);
3848   ASSERT_GE(kCaseA, kCaseA);
3849 
3850 # ifndef __BORLANDC__
3851 
3852   // ICE's in C++Builder.
3853   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3854                        "Value of: kCaseB");
3855   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3856                        "Actual: 42");
3857 # endif
3858 
3859   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3860                        "Which is: -1");
3861 }
3862 
3863 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3864 
3865 #if GTEST_OS_WINDOWS
3866 
UnexpectedHRESULTFailure()3867 static HRESULT UnexpectedHRESULTFailure() {
3868   return E_UNEXPECTED;
3869 }
3870 
OkHRESULTSuccess()3871 static HRESULT OkHRESULTSuccess() {
3872   return S_OK;
3873 }
3874 
FalseHRESULTSuccess()3875 static HRESULT FalseHRESULTSuccess() {
3876   return S_FALSE;
3877 }
3878 
3879 // HRESULT assertion tests test both zero and non-zero
3880 // success codes as well as failure message for each.
3881 //
3882 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)3883 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3884   EXPECT_HRESULT_SUCCEEDED(S_OK);
3885   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3886 
3887   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3888     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3889     "  Actual: 0x8000FFFF");
3890 }
3891 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)3892 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3893   ASSERT_HRESULT_SUCCEEDED(S_OK);
3894   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3895 
3896   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3897     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3898     "  Actual: 0x8000FFFF");
3899 }
3900 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)3901 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
3902   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
3903 
3904   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
3905     "Expected: (OkHRESULTSuccess()) fails.\n"
3906     "  Actual: 0x0");
3907   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
3908     "Expected: (FalseHRESULTSuccess()) fails.\n"
3909     "  Actual: 0x1");
3910 }
3911 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)3912 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
3913   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
3914 
3915 # ifndef __BORLANDC__
3916 
3917   // ICE's in C++Builder 2007 and 2009.
3918   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
3919     "Expected: (OkHRESULTSuccess()) fails.\n"
3920     "  Actual: 0x0");
3921 # endif
3922 
3923   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
3924     "Expected: (FalseHRESULTSuccess()) fails.\n"
3925     "  Actual: 0x1");
3926 }
3927 
3928 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)3929 TEST(HRESULTAssertionTest, Streaming) {
3930   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3931   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3932   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3933   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3934 
3935   EXPECT_NONFATAL_FAILURE(
3936       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3937       "expected failure");
3938 
3939 # ifndef __BORLANDC__
3940 
3941   // ICE's in C++Builder 2007 and 2009.
3942   EXPECT_FATAL_FAILURE(
3943       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3944       "expected failure");
3945 # endif
3946 
3947   EXPECT_NONFATAL_FAILURE(
3948       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
3949       "expected failure");
3950 
3951   EXPECT_FATAL_FAILURE(
3952       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
3953       "expected failure");
3954 }
3955 
3956 #endif  // GTEST_OS_WINDOWS
3957 
3958 #ifdef __BORLANDC__
3959 // Silences warnings: "Condition is always true", "Unreachable code"
3960 # pragma option push -w-ccc -w-rch
3961 #endif
3962 
3963 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)3964 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
3965   if (AlwaysFalse())
3966     ASSERT_TRUE(false) << "This should never be executed; "
3967                           "It's a compilation test only.";
3968 
3969   if (AlwaysTrue())
3970     EXPECT_FALSE(false);
3971   else
3972     ;  // NOLINT
3973 
3974   if (AlwaysFalse())
3975     ASSERT_LT(1, 3);
3976 
3977   if (AlwaysFalse())
3978     ;  // NOLINT
3979   else
3980     EXPECT_GT(3, 2) << "";
3981 }
3982 
3983 #if GTEST_HAS_EXCEPTIONS
3984 // Tests that the compiler will not complain about unreachable code in the
3985 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)3986 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
3987   int n = 0;
3988 
3989   EXPECT_THROW(throw 1, int);
3990   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
3991   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
3992   EXPECT_NO_THROW(n++);
3993   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
3994   EXPECT_ANY_THROW(throw 1);
3995   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
3996 }
3997 
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)3998 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
3999   if (AlwaysFalse())
4000     EXPECT_THROW(ThrowNothing(), bool);
4001 
4002   if (AlwaysTrue())
4003     EXPECT_THROW(ThrowAnInteger(), int);
4004   else
4005     ;  // NOLINT
4006 
4007   if (AlwaysFalse())
4008     EXPECT_NO_THROW(ThrowAnInteger());
4009 
4010   if (AlwaysTrue())
4011     EXPECT_NO_THROW(ThrowNothing());
4012   else
4013     ;  // NOLINT
4014 
4015   if (AlwaysFalse())
4016     EXPECT_ANY_THROW(ThrowNothing());
4017 
4018   if (AlwaysTrue())
4019     EXPECT_ANY_THROW(ThrowAnInteger());
4020   else
4021     ;  // NOLINT
4022 }
4023 #endif  // GTEST_HAS_EXCEPTIONS
4024 
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4025 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4026   if (AlwaysFalse())
4027     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4028                                     << "It's a compilation test only.";
4029   else
4030     ;  // NOLINT
4031 
4032   if (AlwaysFalse())
4033     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4034   else
4035     ;  // NOLINT
4036 
4037   if (AlwaysTrue())
4038     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4039   else
4040     ;  // NOLINT
4041 
4042   if (AlwaysFalse())
4043     ;  // NOLINT
4044   else
4045     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4046 }
4047 
4048 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4049 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4050   switch (0) {
4051     case 1:
4052       break;
4053     default:
4054       ASSERT_TRUE(true);
4055   }
4056 
4057   switch (0)
4058     case 0:
4059       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4060 
4061   // Binary assertions are implemented using a different code path
4062   // than the Boolean assertions.  Hence we test them separately.
4063   switch (0) {
4064     case 1:
4065     default:
4066       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4067   }
4068 
4069   switch (0)
4070     case 0:
4071       EXPECT_NE(1, 2);
4072 }
4073 
4074 #if GTEST_HAS_EXCEPTIONS
4075 
ThrowAString()4076 void ThrowAString() {
4077     throw "std::string";
4078 }
4079 
4080 // Test that the exception assertion macros compile and work with const
4081 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4082 TEST(AssertionSyntaxTest, WorksWithConst) {
4083     ASSERT_THROW(ThrowAString(), const char*);
4084 
4085     EXPECT_THROW(ThrowAString(), const char*);
4086 }
4087 
4088 #endif  // GTEST_HAS_EXCEPTIONS
4089 
4090 }  // namespace
4091 
4092 namespace testing {
4093 
4094 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4095 TEST(SuccessfulAssertionTest, SUCCEED) {
4096   SUCCEED();
4097   SUCCEED() << "OK";
4098   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4099 }
4100 
4101 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4102 TEST(SuccessfulAssertionTest, EXPECT) {
4103   EXPECT_TRUE(true);
4104   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4105 }
4106 
4107 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4108 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4109   EXPECT_STREQ("", "");
4110   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4111 }
4112 
4113 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4114 TEST(SuccessfulAssertionTest, ASSERT) {
4115   ASSERT_TRUE(true);
4116   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4117 }
4118 
4119 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4120 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4121   ASSERT_STREQ("", "");
4122   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4123 }
4124 
4125 }  // namespace testing
4126 
4127 namespace {
4128 
4129 // Tests the message streaming variation of assertions.
4130 
TEST(AssertionWithMessageTest,EXPECT)4131 TEST(AssertionWithMessageTest, EXPECT) {
4132   EXPECT_EQ(1, 1) << "This should succeed.";
4133   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4134                           "Expected failure #1");
4135   EXPECT_LE(1, 2) << "This should succeed.";
4136   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4137                           "Expected failure #2.");
4138   EXPECT_GE(1, 0) << "This should succeed.";
4139   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4140                           "Expected failure #3.");
4141 
4142   EXPECT_STREQ("1", "1") << "This should succeed.";
4143   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4144                           "Expected failure #4.");
4145   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4146   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4147                           "Expected failure #5.");
4148 
4149   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4150   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4151                           "Expected failure #6.");
4152   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4153 }
4154 
TEST(AssertionWithMessageTest,ASSERT)4155 TEST(AssertionWithMessageTest, ASSERT) {
4156   ASSERT_EQ(1, 1) << "This should succeed.";
4157   ASSERT_NE(1, 2) << "This should succeed.";
4158   ASSERT_LE(1, 2) << "This should succeed.";
4159   ASSERT_LT(1, 2) << "This should succeed.";
4160   ASSERT_GE(1, 0) << "This should succeed.";
4161   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4162                        "Expected failure.");
4163 }
4164 
TEST(AssertionWithMessageTest,ASSERT_STR)4165 TEST(AssertionWithMessageTest, ASSERT_STR) {
4166   ASSERT_STREQ("1", "1") << "This should succeed.";
4167   ASSERT_STRNE("1", "2") << "This should succeed.";
4168   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4169   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4170                        "Expected failure.");
4171 }
4172 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4173 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4174   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4175   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4176   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
4177                        "Expect failure.");
4178   // To work around a bug in gcc 2.95.0, there is intentionally no
4179   // space after the first comma in the previous statement.
4180 }
4181 
4182 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4183 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4184   ASSERT_FALSE(false) << "This shouldn't fail.";
4185   EXPECT_FATAL_FAILURE({  // NOLINT
4186     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4187                        << " evaluates to " << true;
4188   }, "Expected failure");
4189 }
4190 
4191 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4192 TEST(AssertionWithMessageTest, FAIL) {
4193   EXPECT_FATAL_FAILURE(FAIL() << 0,
4194                        "0");
4195 }
4196 
4197 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4198 TEST(AssertionWithMessageTest, SUCCEED) {
4199   SUCCEED() << "Success == " << 1;
4200 }
4201 
4202 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4203 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4204   ASSERT_TRUE(true) << "This should succeed.";
4205   ASSERT_TRUE(true) << true;
4206   EXPECT_FATAL_FAILURE({  // NOLINT
4207     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4208                        << static_cast<char *>(NULL);
4209   }, "(null)(null)");
4210 }
4211 
4212 #if GTEST_OS_WINDOWS
4213 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4214 TEST(AssertionWithMessageTest, WideStringMessage) {
4215   EXPECT_NONFATAL_FAILURE({  // NOLINT
4216     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4217   }, "This failure is expected.");
4218   EXPECT_FATAL_FAILURE({  // NOLINT
4219     ASSERT_EQ(1, 2) << "This failure is "
4220                     << L"expected too.\x8120";
4221   }, "This failure is expected too.");
4222 }
4223 #endif  // GTEST_OS_WINDOWS
4224 
4225 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4226 TEST(ExpectTest, EXPECT_TRUE) {
4227   EXPECT_TRUE(true) << "Intentional success";
4228   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4229                           "Intentional failure #1.");
4230   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4231                           "Intentional failure #2.");
4232   EXPECT_TRUE(2 > 1);  // NOLINT
4233   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4234                           "Value of: 2 < 1\n"
4235                           "  Actual: false\n"
4236                           "Expected: true");
4237   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4238                           "2 > 3");
4239 }
4240 
4241 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4242 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4243   EXPECT_TRUE(ResultIsEven(2));
4244   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4245                           "Value of: ResultIsEven(3)\n"
4246                           "  Actual: false (3 is odd)\n"
4247                           "Expected: true");
4248   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4249   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4250                           "Value of: ResultIsEvenNoExplanation(3)\n"
4251                           "  Actual: false (3 is odd)\n"
4252                           "Expected: true");
4253 }
4254 
4255 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4256 TEST(ExpectTest, EXPECT_FALSE) {
4257   EXPECT_FALSE(2 < 1);  // NOLINT
4258   EXPECT_FALSE(false) << "Intentional success";
4259   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4260                           "Intentional failure #1.");
4261   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4262                           "Intentional failure #2.");
4263   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4264                           "Value of: 2 > 1\n"
4265                           "  Actual: true\n"
4266                           "Expected: false");
4267   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4268                           "2 < 3");
4269 }
4270 
4271 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4272 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4273   EXPECT_FALSE(ResultIsEven(3));
4274   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4275                           "Value of: ResultIsEven(2)\n"
4276                           "  Actual: true (2 is even)\n"
4277                           "Expected: false");
4278   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4279   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4280                           "Value of: ResultIsEvenNoExplanation(2)\n"
4281                           "  Actual: true\n"
4282                           "Expected: false");
4283 }
4284 
4285 #ifdef __BORLANDC__
4286 // Restores warnings after previous "#pragma option push" supressed them
4287 # pragma option pop
4288 #endif
4289 
4290 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4291 TEST(ExpectTest, EXPECT_EQ) {
4292   EXPECT_EQ(5, 2 + 3);
4293   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4294                           "Value of: 2*3\n"
4295                           "  Actual: 6\n"
4296                           "Expected: 5");
4297   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4298                           "2 - 3");
4299 }
4300 
4301 // Tests using EXPECT_EQ on double values.  The purpose is to make
4302 // sure that the specialization we did for integer and anonymous enums
4303 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4304 TEST(ExpectTest, EXPECT_EQ_Double) {
4305   // A success.
4306   EXPECT_EQ(5.6, 5.6);
4307 
4308   // A failure.
4309   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4310                           "5.1");
4311 }
4312 
4313 #if GTEST_CAN_COMPARE_NULL
4314 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4315 TEST(ExpectTest, EXPECT_EQ_NULL) {
4316   // A success.
4317   const char* p = NULL;
4318   // Some older GCC versions may issue a spurious warning in this or the next
4319   // assertion statement. This warning should not be suppressed with
4320   // static_cast since the test verifies the ability to use bare NULL as the
4321   // expected parameter to the macro.
4322   EXPECT_EQ(NULL, p);
4323 
4324   // A failure.
4325   int n = 0;
4326   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4327                           "Value of: &n\n");
4328 }
4329 #endif  // GTEST_CAN_COMPARE_NULL
4330 
4331 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4332 // treated as a null pointer by the compiler, we need to make sure
4333 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4334 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4335 TEST(ExpectTest, EXPECT_EQ_0) {
4336   int n = 0;
4337 
4338   // A success.
4339   EXPECT_EQ(0, n);
4340 
4341   // A failure.
4342   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4343                           "Expected: 0");
4344 }
4345 
4346 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4347 TEST(ExpectTest, EXPECT_NE) {
4348   EXPECT_NE(6, 7);
4349 
4350   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4351                           "Expected: ('a') != ('a'), "
4352                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4353   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4354                           "2");
4355   char* const p0 = NULL;
4356   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4357                           "p0");
4358   // Only way to get the Nokia compiler to compile the cast
4359   // is to have a separate void* variable first. Putting
4360   // the two casts on the same line doesn't work, neither does
4361   // a direct C-style to char*.
4362   void* pv1 = (void*)0x1234;  // NOLINT
4363   char* const p1 = reinterpret_cast<char*>(pv1);
4364   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4365                           "p1");
4366 }
4367 
4368 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4369 TEST(ExpectTest, EXPECT_LE) {
4370   EXPECT_LE(2, 3);
4371   EXPECT_LE(2, 2);
4372   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4373                           "Expected: (2) <= (0), actual: 2 vs 0");
4374   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4375                           "(1.1) <= (0.9)");
4376 }
4377 
4378 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4379 TEST(ExpectTest, EXPECT_LT) {
4380   EXPECT_LT(2, 3);
4381   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4382                           "Expected: (2) < (2), actual: 2 vs 2");
4383   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4384                           "(2) < (1)");
4385 }
4386 
4387 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4388 TEST(ExpectTest, EXPECT_GE) {
4389   EXPECT_GE(2, 1);
4390   EXPECT_GE(2, 2);
4391   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4392                           "Expected: (2) >= (3), actual: 2 vs 3");
4393   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4394                           "(0.9) >= (1.1)");
4395 }
4396 
4397 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4398 TEST(ExpectTest, EXPECT_GT) {
4399   EXPECT_GT(2, 1);
4400   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4401                           "Expected: (2) > (2), actual: 2 vs 2");
4402   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4403                           "(2) > (3)");
4404 }
4405 
4406 #if GTEST_HAS_EXCEPTIONS
4407 
4408 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4409 TEST(ExpectTest, EXPECT_THROW) {
4410   EXPECT_THROW(ThrowAnInteger(), int);
4411   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4412                           "Expected: ThrowAnInteger() throws an exception of "
4413                           "type bool.\n  Actual: it throws a different type.");
4414   EXPECT_NONFATAL_FAILURE(
4415       EXPECT_THROW(ThrowNothing(), bool),
4416       "Expected: ThrowNothing() throws an exception of type bool.\n"
4417       "  Actual: it throws nothing.");
4418 }
4419 
4420 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4421 TEST(ExpectTest, EXPECT_NO_THROW) {
4422   EXPECT_NO_THROW(ThrowNothing());
4423   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4424                           "Expected: ThrowAnInteger() doesn't throw an "
4425                           "exception.\n  Actual: it throws.");
4426 }
4427 
4428 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4429 TEST(ExpectTest, EXPECT_ANY_THROW) {
4430   EXPECT_ANY_THROW(ThrowAnInteger());
4431   EXPECT_NONFATAL_FAILURE(
4432       EXPECT_ANY_THROW(ThrowNothing()),
4433       "Expected: ThrowNothing() throws an exception.\n"
4434       "  Actual: it doesn't.");
4435 }
4436 
4437 #endif  // GTEST_HAS_EXCEPTIONS
4438 
4439 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4440 TEST(ExpectTest, ExpectPrecedence) {
4441   EXPECT_EQ(1 < 2, true);
4442   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4443                           "Value of: true && false");
4444 }
4445 
4446 
4447 // Tests the StreamableToString() function.
4448 
4449 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4450 TEST(StreamableToStringTest, Scalar) {
4451   EXPECT_STREQ("5", StreamableToString(5).c_str());
4452 }
4453 
4454 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4455 TEST(StreamableToStringTest, Pointer) {
4456   int n = 0;
4457   int* p = &n;
4458   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4459 }
4460 
4461 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4462 TEST(StreamableToStringTest, NullPointer) {
4463   int* p = NULL;
4464   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4465 }
4466 
4467 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4468 TEST(StreamableToStringTest, CString) {
4469   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4470 }
4471 
4472 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4473 TEST(StreamableToStringTest, NullCString) {
4474   char* p = NULL;
4475   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4476 }
4477 
4478 // Tests using streamable values as assertion messages.
4479 
4480 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4481 TEST(StreamableTest, string) {
4482   static const std::string str(
4483       "This failure message is a std::string, and is expected.");
4484   EXPECT_FATAL_FAILURE(FAIL() << str,
4485                        str.c_str());
4486 }
4487 
4488 // Tests that we can output strings containing embedded NULs.
4489 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4490 TEST(StreamableTest, stringWithEmbeddedNUL) {
4491   static const char char_array_with_nul[] =
4492       "Here's a NUL\0 and some more string";
4493   static const std::string string_with_nul(char_array_with_nul,
4494                                            sizeof(char_array_with_nul)
4495                                            - 1);  // drops the trailing NUL
4496   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4497                        "Here's a NUL\\0 and some more string");
4498 }
4499 
4500 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4501 TEST(StreamableTest, NULChar) {
4502   EXPECT_FATAL_FAILURE({  // NOLINT
4503     FAIL() << "A NUL" << '\0' << " and some more string";
4504   }, "A NUL\\0 and some more string");
4505 }
4506 
4507 // Tests using int as an assertion message.
TEST(StreamableTest,int)4508 TEST(StreamableTest, int) {
4509   EXPECT_FATAL_FAILURE(FAIL() << 900913,
4510                        "900913");
4511 }
4512 
4513 // Tests using NULL char pointer as an assertion message.
4514 //
4515 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4516 // implemented a workaround (substituting "(null)" for NULL).  This
4517 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4518 TEST(StreamableTest, NullCharPtr) {
4519   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4520                        "(null)");
4521 }
4522 
4523 // Tests that basic IO manipulators (endl, ends, and flush) can be
4524 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4525 TEST(StreamableTest, BasicIoManip) {
4526   EXPECT_FATAL_FAILURE({  // NOLINT
4527     FAIL() << "Line 1." << std::endl
4528            << "A NUL char " << std::ends << std::flush << " in line 2.";
4529   }, "Line 1.\nA NUL char \\0 in line 2.");
4530 }
4531 
4532 // Tests the macros that haven't been covered so far.
4533 
AddFailureHelper(bool * aborted)4534 void AddFailureHelper(bool* aborted) {
4535   *aborted = true;
4536   ADD_FAILURE() << "Intentional failure.";
4537   *aborted = false;
4538 }
4539 
4540 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4541 TEST(MacroTest, ADD_FAILURE) {
4542   bool aborted = true;
4543   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4544                           "Intentional failure.");
4545   EXPECT_FALSE(aborted);
4546 }
4547 
4548 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4549 TEST(MacroTest, ADD_FAILURE_AT) {
4550   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4551   // the failure message contains the user-streamed part.
4552   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4553 
4554   // Verifies that the user-streamed part is optional.
4555   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4556 
4557   // Unfortunately, we cannot verify that the failure message contains
4558   // the right file path and line number the same way, as
4559   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4560   // line number.  Instead, we do that in gtest_output_test_.cc.
4561 }
4562 
4563 // Tests FAIL.
TEST(MacroTest,FAIL)4564 TEST(MacroTest, FAIL) {
4565   EXPECT_FATAL_FAILURE(FAIL(),
4566                        "Failed");
4567   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4568                        "Intentional failure.");
4569 }
4570 
4571 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4572 TEST(MacroTest, SUCCEED) {
4573   SUCCEED();
4574   SUCCEED() << "Explicit success.";
4575 }
4576 
4577 // Tests for EXPECT_EQ() and ASSERT_EQ().
4578 //
4579 // These tests fail *intentionally*, s.t. the failure messages can be
4580 // generated and tested.
4581 //
4582 // We have different tests for different argument types.
4583 
4584 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4585 TEST(EqAssertionTest, Bool) {
4586   EXPECT_EQ(true,  true);
4587   EXPECT_FATAL_FAILURE({
4588       bool false_value = false;
4589       ASSERT_EQ(false_value, true);
4590     }, "Value of: true");
4591 }
4592 
4593 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4594 TEST(EqAssertionTest, Int) {
4595   ASSERT_EQ(32, 32);
4596   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4597                           "33");
4598 }
4599 
4600 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4601 TEST(EqAssertionTest, Time_T) {
4602   EXPECT_EQ(static_cast<time_t>(0),
4603             static_cast<time_t>(0));
4604   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4605                                  static_cast<time_t>(1234)),
4606                        "1234");
4607 }
4608 
4609 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4610 TEST(EqAssertionTest, Char) {
4611   ASSERT_EQ('z', 'z');
4612   const char ch = 'b';
4613   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4614                           "ch");
4615   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4616                           "ch");
4617 }
4618 
4619 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4620 TEST(EqAssertionTest, WideChar) {
4621   EXPECT_EQ(L'b', L'b');
4622 
4623   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4624                           "Value of: L'x'\n"
4625                           "  Actual: L'x' (120, 0x78)\n"
4626                           "Expected: L'\0'\n"
4627                           "Which is: L'\0' (0, 0x0)");
4628 
4629   static wchar_t wchar;
4630   wchar = L'b';
4631   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4632                           "wchar");
4633   wchar = 0x8119;
4634   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4635                        "Value of: wchar");
4636 }
4637 
4638 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4639 TEST(EqAssertionTest, StdString) {
4640   // Compares a const char* to an std::string that has identical
4641   // content.
4642   ASSERT_EQ("Test", ::std::string("Test"));
4643 
4644   // Compares two identical std::strings.
4645   static const ::std::string str1("A * in the middle");
4646   static const ::std::string str2(str1);
4647   EXPECT_EQ(str1, str2);
4648 
4649   // Compares a const char* to an std::string that has different
4650   // content
4651   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4652                           "\"test\"");
4653 
4654   // Compares an std::string to a char* that has different content.
4655   char* const p1 = const_cast<char*>("foo");
4656   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4657                           "p1");
4658 
4659   // Compares two std::strings that have different contents, one of
4660   // which having a NUL character in the middle.  This should fail.
4661   static ::std::string str3(str1);
4662   str3.at(2) = '\0';
4663   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4664                        "Value of: str3\n"
4665                        "  Actual: \"A \\0 in the middle\"");
4666 }
4667 
4668 #if GTEST_HAS_STD_WSTRING
4669 
4670 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4671 TEST(EqAssertionTest, StdWideString) {
4672   // Compares two identical std::wstrings.
4673   const ::std::wstring wstr1(L"A * in the middle");
4674   const ::std::wstring wstr2(wstr1);
4675   ASSERT_EQ(wstr1, wstr2);
4676 
4677   // Compares an std::wstring to a const wchar_t* that has identical
4678   // content.
4679   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4680   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4681 
4682   // Compares an std::wstring to a const wchar_t* that has different
4683   // content.
4684   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4685   EXPECT_NONFATAL_FAILURE({  // NOLINT
4686     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4687   }, "kTestX8120");
4688 
4689   // Compares two std::wstrings that have different contents, one of
4690   // which having a NUL character in the middle.
4691   ::std::wstring wstr3(wstr1);
4692   wstr3.at(2) = L'\0';
4693   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4694                           "wstr3");
4695 
4696   // Compares a wchar_t* to an std::wstring that has different
4697   // content.
4698   EXPECT_FATAL_FAILURE({  // NOLINT
4699     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4700   }, "");
4701 }
4702 
4703 #endif  // GTEST_HAS_STD_WSTRING
4704 
4705 #if GTEST_HAS_GLOBAL_STRING
4706 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalString)4707 TEST(EqAssertionTest, GlobalString) {
4708   // Compares a const char* to a ::string that has identical content.
4709   EXPECT_EQ("Test", ::string("Test"));
4710 
4711   // Compares two identical ::strings.
4712   const ::string str1("A * in the middle");
4713   const ::string str2(str1);
4714   ASSERT_EQ(str1, str2);
4715 
4716   // Compares a ::string to a const char* that has different content.
4717   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4718                           "test");
4719 
4720   // Compares two ::strings that have different contents, one of which
4721   // having a NUL character in the middle.
4722   ::string str3(str1);
4723   str3.at(2) = '\0';
4724   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4725                           "str3");
4726 
4727   // Compares a ::string to a char* that has different content.
4728   EXPECT_FATAL_FAILURE({  // NOLINT
4729     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4730   }, "");
4731 }
4732 
4733 #endif  // GTEST_HAS_GLOBAL_STRING
4734 
4735 #if GTEST_HAS_GLOBAL_WSTRING
4736 
4737 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalWideString)4738 TEST(EqAssertionTest, GlobalWideString) {
4739   // Compares two identical ::wstrings.
4740   static const ::wstring wstr1(L"A * in the middle");
4741   static const ::wstring wstr2(wstr1);
4742   EXPECT_EQ(wstr1, wstr2);
4743 
4744   // Compares a const wchar_t* to a ::wstring that has identical content.
4745   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4746   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4747 
4748   // Compares a const wchar_t* to a ::wstring that has different
4749   // content.
4750   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4751   EXPECT_NONFATAL_FAILURE({  // NOLINT
4752     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4753   }, "Test\\x8119");
4754 
4755   // Compares a wchar_t* to a ::wstring that has different content.
4756   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4757   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4758                           "bar");
4759 
4760   // Compares two ::wstrings that have different contents, one of which
4761   // having a NUL character in the middle.
4762   static ::wstring wstr3;
4763   wstr3 = wstr1;
4764   wstr3.at(2) = L'\0';
4765   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4766                        "wstr3");
4767 }
4768 
4769 #endif  // GTEST_HAS_GLOBAL_WSTRING
4770 
4771 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4772 TEST(EqAssertionTest, CharPointer) {
4773   char* const p0 = NULL;
4774   // Only way to get the Nokia compiler to compile the cast
4775   // is to have a separate void* variable first. Putting
4776   // the two casts on the same line doesn't work, neither does
4777   // a direct C-style to char*.
4778   void* pv1 = (void*)0x1234;  // NOLINT
4779   void* pv2 = (void*)0xABC0;  // NOLINT
4780   char* const p1 = reinterpret_cast<char*>(pv1);
4781   char* const p2 = reinterpret_cast<char*>(pv2);
4782   ASSERT_EQ(p1, p1);
4783 
4784   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4785                           "Value of: p2");
4786   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4787                           "p2");
4788   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4789                                  reinterpret_cast<char*>(0xABC0)),
4790                        "ABC0");
4791 }
4792 
4793 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4794 TEST(EqAssertionTest, WideCharPointer) {
4795   wchar_t* const p0 = NULL;
4796   // Only way to get the Nokia compiler to compile the cast
4797   // is to have a separate void* variable first. Putting
4798   // the two casts on the same line doesn't work, neither does
4799   // a direct C-style to char*.
4800   void* pv1 = (void*)0x1234;  // NOLINT
4801   void* pv2 = (void*)0xABC0;  // NOLINT
4802   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4803   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4804   EXPECT_EQ(p0, p0);
4805 
4806   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4807                           "Value of: p2");
4808   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4809                           "p2");
4810   void* pv3 = (void*)0x1234;  // NOLINT
4811   void* pv4 = (void*)0xABC0;  // NOLINT
4812   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4813   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4814   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4815                           "p4");
4816 }
4817 
4818 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4819 TEST(EqAssertionTest, OtherPointer) {
4820   ASSERT_EQ(static_cast<const int*>(NULL),
4821             static_cast<const int*>(NULL));
4822   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4823                                  reinterpret_cast<const int*>(0x1234)),
4824                        "0x1234");
4825 }
4826 
4827 // A class that supports binary comparison operators but not streaming.
4828 class UnprintableChar {
4829  public:
UnprintableChar(char ch)4830   explicit UnprintableChar(char ch) : char_(ch) {}
4831 
operator ==(const UnprintableChar & rhs) const4832   bool operator==(const UnprintableChar& rhs) const {
4833     return char_ == rhs.char_;
4834   }
operator !=(const UnprintableChar & rhs) const4835   bool operator!=(const UnprintableChar& rhs) const {
4836     return char_ != rhs.char_;
4837   }
operator <(const UnprintableChar & rhs) const4838   bool operator<(const UnprintableChar& rhs) const {
4839     return char_ < rhs.char_;
4840   }
operator <=(const UnprintableChar & rhs) const4841   bool operator<=(const UnprintableChar& rhs) const {
4842     return char_ <= rhs.char_;
4843   }
operator >(const UnprintableChar & rhs) const4844   bool operator>(const UnprintableChar& rhs) const {
4845     return char_ > rhs.char_;
4846   }
operator >=(const UnprintableChar & rhs) const4847   bool operator>=(const UnprintableChar& rhs) const {
4848     return char_ >= rhs.char_;
4849   }
4850 
4851  private:
4852   char char_;
4853 };
4854 
4855 // Tests that ASSERT_EQ() and friends don't require the arguments to
4856 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4857 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4858   const UnprintableChar x('x'), y('y');
4859   ASSERT_EQ(x, x);
4860   EXPECT_NE(x, y);
4861   ASSERT_LT(x, y);
4862   EXPECT_LE(x, y);
4863   ASSERT_GT(y, x);
4864   EXPECT_GE(x, x);
4865 
4866   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4867   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4868   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4869   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4870   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4871 
4872   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4873   // variables, so we have to write UnprintableChar('x') instead of x.
4874 #ifndef __BORLANDC__
4875   // ICE's in C++Builder.
4876   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4877                        "1-byte object <78>");
4878   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4879                        "1-byte object <78>");
4880 #endif
4881   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4882                        "1-byte object <79>");
4883   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4884                        "1-byte object <78>");
4885   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4886                        "1-byte object <79>");
4887 }
4888 
4889 // Tests the FRIEND_TEST macro.
4890 
4891 // This class has a private member we want to test.  We will test it
4892 // both in a TEST and in a TEST_F.
4893 class Foo {
4894  public:
Foo()4895   Foo() {}
4896 
4897  private:
Bar() const4898   int Bar() const { return 1; }
4899 
4900   // Declares the friend tests that can access the private member
4901   // Bar().
4902   FRIEND_TEST(FRIEND_TEST_Test, TEST);
4903   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4904 };
4905 
4906 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4907 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)4908 TEST(FRIEND_TEST_Test, TEST) {
4909   ASSERT_EQ(1, Foo().Bar());
4910 }
4911 
4912 // The fixture needed to test using FRIEND_TEST with TEST_F.
4913 class FRIEND_TEST_Test2 : public Test {
4914  protected:
4915   Foo foo;
4916 };
4917 
4918 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4919 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)4920 TEST_F(FRIEND_TEST_Test2, TEST_F) {
4921   ASSERT_EQ(1, foo.Bar());
4922 }
4923 
4924 // Tests the life cycle of Test objects.
4925 
4926 // The test fixture for testing the life cycle of Test objects.
4927 //
4928 // This class counts the number of live test objects that uses this
4929 // fixture.
4930 class TestLifeCycleTest : public Test {
4931  protected:
4932   // Constructor.  Increments the number of test objects that uses
4933   // this fixture.
TestLifeCycleTest()4934   TestLifeCycleTest() { count_++; }
4935 
4936   // Destructor.  Decrements the number of test objects that uses this
4937   // fixture.
~TestLifeCycleTest()4938   ~TestLifeCycleTest() { count_--; }
4939 
4940   // Returns the number of live test objects that uses this fixture.
count() const4941   int count() const { return count_; }
4942 
4943  private:
4944   static int count_;
4945 };
4946 
4947 int TestLifeCycleTest::count_ = 0;
4948 
4949 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)4950 TEST_F(TestLifeCycleTest, Test1) {
4951   // There should be only one test object in this test case that's
4952   // currently alive.
4953   ASSERT_EQ(1, count());
4954 }
4955 
4956 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)4957 TEST_F(TestLifeCycleTest, Test2) {
4958   // After Test1 is done and Test2 is started, there should still be
4959   // only one live test object, as the object for Test1 should've been
4960   // deleted.
4961   ASSERT_EQ(1, count());
4962 }
4963 
4964 }  // namespace
4965 
4966 // Tests that the copy constructor works when it is NOT optimized away by
4967 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)4968 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
4969   // Checks that the copy constructor doesn't try to dereference NULL pointers
4970   // in the source object.
4971   AssertionResult r1 = AssertionSuccess();
4972   AssertionResult r2 = r1;
4973   // The following line is added to prevent the compiler from optimizing
4974   // away the constructor call.
4975   r1 << "abc";
4976 
4977   AssertionResult r3 = r1;
4978   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
4979   EXPECT_STREQ("abc", r1.message());
4980 }
4981 
4982 // Tests that AssertionSuccess and AssertionFailure construct
4983 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)4984 TEST(AssertionResultTest, ConstructionWorks) {
4985   AssertionResult r1 = AssertionSuccess();
4986   EXPECT_TRUE(r1);
4987   EXPECT_STREQ("", r1.message());
4988 
4989   AssertionResult r2 = AssertionSuccess() << "abc";
4990   EXPECT_TRUE(r2);
4991   EXPECT_STREQ("abc", r2.message());
4992 
4993   AssertionResult r3 = AssertionFailure();
4994   EXPECT_FALSE(r3);
4995   EXPECT_STREQ("", r3.message());
4996 
4997   AssertionResult r4 = AssertionFailure() << "def";
4998   EXPECT_FALSE(r4);
4999   EXPECT_STREQ("def", r4.message());
5000 
5001   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5002   EXPECT_FALSE(r5);
5003   EXPECT_STREQ("ghi", r5.message());
5004 }
5005 
5006 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5007 TEST(AssertionResultTest, NegationWorks) {
5008   AssertionResult r1 = AssertionSuccess() << "abc";
5009   EXPECT_FALSE(!r1);
5010   EXPECT_STREQ("abc", (!r1).message());
5011 
5012   AssertionResult r2 = AssertionFailure() << "def";
5013   EXPECT_TRUE(!r2);
5014   EXPECT_STREQ("def", (!r2).message());
5015 }
5016 
TEST(AssertionResultTest,StreamingWorks)5017 TEST(AssertionResultTest, StreamingWorks) {
5018   AssertionResult r = AssertionSuccess();
5019   r << "abc" << 'd' << 0 << true;
5020   EXPECT_STREQ("abcd0true", r.message());
5021 }
5022 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5023 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5024   AssertionResult r = AssertionSuccess();
5025   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5026   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5027 }
5028 
5029 // Tests streaming a user type whose definition and operator << are
5030 // both in the global namespace.
5031 class Base {
5032  public:
Base(int an_x)5033   explicit Base(int an_x) : x_(an_x) {}
x() const5034   int x() const { return x_; }
5035  private:
5036   int x_;
5037 };
operator <<(std::ostream & os,const Base & val)5038 std::ostream& operator<<(std::ostream& os,
5039                          const Base& val) {
5040   return os << val.x();
5041 }
operator <<(std::ostream & os,const Base * pointer)5042 std::ostream& operator<<(std::ostream& os,
5043                          const Base* pointer) {
5044   return os << "(" << pointer->x() << ")";
5045 }
5046 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5047 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5048   Message msg;
5049   Base a(1);
5050 
5051   msg << a << &a;  // Uses ::operator<<.
5052   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5053 }
5054 
5055 // Tests streaming a user type whose definition and operator<< are
5056 // both in an unnamed namespace.
5057 namespace {
5058 class MyTypeInUnnamedNameSpace : public Base {
5059  public:
MyTypeInUnnamedNameSpace(int an_x)5060   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5061 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5062 std::ostream& operator<<(std::ostream& os,
5063                          const MyTypeInUnnamedNameSpace& val) {
5064   return os << val.x();
5065 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5066 std::ostream& operator<<(std::ostream& os,
5067                          const MyTypeInUnnamedNameSpace* pointer) {
5068   return os << "(" << pointer->x() << ")";
5069 }
5070 }  // namespace
5071 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5072 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5073   Message msg;
5074   MyTypeInUnnamedNameSpace a(1);
5075 
5076   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5077   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5078 }
5079 
5080 // Tests streaming a user type whose definition and operator<< are
5081 // both in a user namespace.
5082 namespace namespace1 {
5083 class MyTypeInNameSpace1 : public Base {
5084  public:
MyTypeInNameSpace1(int an_x)5085   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5086 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5087 std::ostream& operator<<(std::ostream& os,
5088                          const MyTypeInNameSpace1& val) {
5089   return os << val.x();
5090 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5091 std::ostream& operator<<(std::ostream& os,
5092                          const MyTypeInNameSpace1* pointer) {
5093   return os << "(" << pointer->x() << ")";
5094 }
5095 }  // namespace namespace1
5096 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5097 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5098   Message msg;
5099   namespace1::MyTypeInNameSpace1 a(1);
5100 
5101   msg << a << &a;  // Uses namespace1::operator<<.
5102   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5103 }
5104 
5105 // Tests streaming a user type whose definition is in a user namespace
5106 // but whose operator<< is in the global namespace.
5107 namespace namespace2 {
5108 class MyTypeInNameSpace2 : public ::Base {
5109  public:
MyTypeInNameSpace2(int an_x)5110   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5111 };
5112 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5113 std::ostream& operator<<(std::ostream& os,
5114                          const namespace2::MyTypeInNameSpace2& val) {
5115   return os << val.x();
5116 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5117 std::ostream& operator<<(std::ostream& os,
5118                          const namespace2::MyTypeInNameSpace2* pointer) {
5119   return os << "(" << pointer->x() << ")";
5120 }
5121 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5122 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5123   Message msg;
5124   namespace2::MyTypeInNameSpace2 a(1);
5125 
5126   msg << a << &a;  // Uses ::operator<<.
5127   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5128 }
5129 
5130 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5131 TEST(MessageTest, NullPointers) {
5132   Message msg;
5133   char* const p1 = NULL;
5134   unsigned char* const p2 = NULL;
5135   int* p3 = NULL;
5136   double* p4 = NULL;
5137   bool* p5 = NULL;
5138   Message* p6 = NULL;
5139 
5140   msg << p1 << p2 << p3 << p4 << p5 << p6;
5141   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5142                msg.GetString().c_str());
5143 }
5144 
5145 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5146 TEST(MessageTest, WideStrings) {
5147   // Streams a NULL of type const wchar_t*.
5148   const wchar_t* const_wstr = NULL;
5149   EXPECT_STREQ("(null)",
5150                (Message() << const_wstr).GetString().c_str());
5151 
5152   // Streams a NULL of type wchar_t*.
5153   wchar_t* wstr = NULL;
5154   EXPECT_STREQ("(null)",
5155                (Message() << wstr).GetString().c_str());
5156 
5157   // Streams a non-NULL of type const wchar_t*.
5158   const_wstr = L"abc\x8119";
5159   EXPECT_STREQ("abc\xe8\x84\x99",
5160                (Message() << const_wstr).GetString().c_str());
5161 
5162   // Streams a non-NULL of type wchar_t*.
5163   wstr = const_cast<wchar_t*>(const_wstr);
5164   EXPECT_STREQ("abc\xe8\x84\x99",
5165                (Message() << wstr).GetString().c_str());
5166 }
5167 
5168 
5169 // This line tests that we can define tests in the testing namespace.
5170 namespace testing {
5171 
5172 // Tests the TestInfo class.
5173 
5174 class TestInfoTest : public Test {
5175  protected:
GetTestInfo(const char * test_name)5176   static const TestInfo* GetTestInfo(const char* test_name) {
5177     const TestCase* const test_case = GetUnitTestImpl()->
5178         GetTestCase("TestInfoTest", "", NULL, NULL);
5179 
5180     for (int i = 0; i < test_case->total_test_count(); ++i) {
5181       const TestInfo* const test_info = test_case->GetTestInfo(i);
5182       if (strcmp(test_name, test_info->name()) == 0)
5183         return test_info;
5184     }
5185     return NULL;
5186   }
5187 
GetTestResult(const TestInfo * test_info)5188   static const TestResult* GetTestResult(
5189       const TestInfo* test_info) {
5190     return test_info->result();
5191   }
5192 };
5193 
5194 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5195 TEST_F(TestInfoTest, Names) {
5196   const TestInfo* const test_info = GetTestInfo("Names");
5197 
5198   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5199   ASSERT_STREQ("Names", test_info->name());
5200 }
5201 
5202 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5203 TEST_F(TestInfoTest, result) {
5204   const TestInfo* const test_info = GetTestInfo("result");
5205 
5206   // Initially, there is no TestPartResult for this test.
5207   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5208 
5209   // After the previous assertion, there is still none.
5210   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5211 }
5212 
5213 // Tests setting up and tearing down a test case.
5214 
5215 class SetUpTestCaseTest : public Test {
5216  protected:
5217   // This will be called once before the first test in this test case
5218   // is run.
SetUpTestCase()5219   static void SetUpTestCase() {
5220     printf("Setting up the test case . . .\n");
5221 
5222     // Initializes some shared resource.  In this simple example, we
5223     // just create a C string.  More complex stuff can be done if
5224     // desired.
5225     shared_resource_ = "123";
5226 
5227     // Increments the number of test cases that have been set up.
5228     counter_++;
5229 
5230     // SetUpTestCase() should be called only once.
5231     EXPECT_EQ(1, counter_);
5232   }
5233 
5234   // This will be called once after the last test in this test case is
5235   // run.
TearDownTestCase()5236   static void TearDownTestCase() {
5237     printf("Tearing down the test case . . .\n");
5238 
5239     // Decrements the number of test cases that have been set up.
5240     counter_--;
5241 
5242     // TearDownTestCase() should be called only once.
5243     EXPECT_EQ(0, counter_);
5244 
5245     // Cleans up the shared resource.
5246     shared_resource_ = NULL;
5247   }
5248 
5249   // This will be called before each test in this test case.
SetUp()5250   virtual void SetUp() {
5251     // SetUpTestCase() should be called only once, so counter_ should
5252     // always be 1.
5253     EXPECT_EQ(1, counter_);
5254   }
5255 
5256   // Number of test cases that have been set up.
5257   static int counter_;
5258 
5259   // Some resource to be shared by all tests in this test case.
5260   static const char* shared_resource_;
5261 };
5262 
5263 int SetUpTestCaseTest::counter_ = 0;
5264 const char* SetUpTestCaseTest::shared_resource_ = NULL;
5265 
5266 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5267 TEST_F(SetUpTestCaseTest, Test1) {
5268   EXPECT_STRNE(NULL, shared_resource_);
5269 }
5270 
5271 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5272 TEST_F(SetUpTestCaseTest, Test2) {
5273   EXPECT_STREQ("123", shared_resource_);
5274 }
5275 
5276 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
5277 
5278 // The Flags struct stores a copy of all Google Test flags.
5279 struct Flags {
5280   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5281   Flags() : also_run_disabled_tests(false),
5282             break_on_failure(false),
5283             catch_exceptions(false),
5284             death_test_use_fork(false),
5285             filter(""),
5286             list_tests(false),
5287             output(""),
5288             print_time(true),
5289             random_seed(0),
5290             repeat(1),
5291             shuffle(false),
5292             stack_trace_depth(kMaxStackTraceDepth),
5293             stream_result_to(""),
5294             throw_on_failure(false) {}
5295 
5296   // Factory methods.
5297 
5298   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5299   // the given value.
AlsoRunDisabledTeststesting::Flags5300   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5301     Flags flags;
5302     flags.also_run_disabled_tests = also_run_disabled_tests;
5303     return flags;
5304   }
5305 
5306   // Creates a Flags struct where the gtest_break_on_failure flag has
5307   // the given value.
BreakOnFailuretesting::Flags5308   static Flags BreakOnFailure(bool break_on_failure) {
5309     Flags flags;
5310     flags.break_on_failure = break_on_failure;
5311     return flags;
5312   }
5313 
5314   // Creates a Flags struct where the gtest_catch_exceptions flag has
5315   // the given value.
CatchExceptionstesting::Flags5316   static Flags CatchExceptions(bool catch_exceptions) {
5317     Flags flags;
5318     flags.catch_exceptions = catch_exceptions;
5319     return flags;
5320   }
5321 
5322   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5323   // the given value.
DeathTestUseForktesting::Flags5324   static Flags DeathTestUseFork(bool death_test_use_fork) {
5325     Flags flags;
5326     flags.death_test_use_fork = death_test_use_fork;
5327     return flags;
5328   }
5329 
5330   // Creates a Flags struct where the gtest_filter flag has the given
5331   // value.
Filtertesting::Flags5332   static Flags Filter(const char* filter) {
5333     Flags flags;
5334     flags.filter = filter;
5335     return flags;
5336   }
5337 
5338   // Creates a Flags struct where the gtest_list_tests flag has the
5339   // given value.
ListTeststesting::Flags5340   static Flags ListTests(bool list_tests) {
5341     Flags flags;
5342     flags.list_tests = list_tests;
5343     return flags;
5344   }
5345 
5346   // Creates a Flags struct where the gtest_output flag has the given
5347   // value.
Outputtesting::Flags5348   static Flags Output(const char* output) {
5349     Flags flags;
5350     flags.output = output;
5351     return flags;
5352   }
5353 
5354   // Creates a Flags struct where the gtest_print_time flag has the given
5355   // value.
PrintTimetesting::Flags5356   static Flags PrintTime(bool print_time) {
5357     Flags flags;
5358     flags.print_time = print_time;
5359     return flags;
5360   }
5361 
5362   // Creates a Flags struct where the gtest_random_seed flag has
5363   // the given value.
RandomSeedtesting::Flags5364   static Flags RandomSeed(Int32 random_seed) {
5365     Flags flags;
5366     flags.random_seed = random_seed;
5367     return flags;
5368   }
5369 
5370   // Creates a Flags struct where the gtest_repeat flag has the given
5371   // value.
Repeattesting::Flags5372   static Flags Repeat(Int32 repeat) {
5373     Flags flags;
5374     flags.repeat = repeat;
5375     return flags;
5376   }
5377 
5378   // Creates a Flags struct where the gtest_shuffle flag has
5379   // the given value.
Shuffletesting::Flags5380   static Flags Shuffle(bool shuffle) {
5381     Flags flags;
5382     flags.shuffle = shuffle;
5383     return flags;
5384   }
5385 
5386   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5387   // the given value.
StackTraceDepthtesting::Flags5388   static Flags StackTraceDepth(Int32 stack_trace_depth) {
5389     Flags flags;
5390     flags.stack_trace_depth = stack_trace_depth;
5391     return flags;
5392   }
5393 
5394   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5395   // the given value.
StreamResultTotesting::Flags5396   static Flags StreamResultTo(const char* stream_result_to) {
5397     Flags flags;
5398     flags.stream_result_to = stream_result_to;
5399     return flags;
5400   }
5401 
5402   // Creates a Flags struct where the gtest_throw_on_failure flag has
5403   // the given value.
ThrowOnFailuretesting::Flags5404   static Flags ThrowOnFailure(bool throw_on_failure) {
5405     Flags flags;
5406     flags.throw_on_failure = throw_on_failure;
5407     return flags;
5408   }
5409 
5410   // These fields store the flag values.
5411   bool also_run_disabled_tests;
5412   bool break_on_failure;
5413   bool catch_exceptions;
5414   bool death_test_use_fork;
5415   const char* filter;
5416   bool list_tests;
5417   const char* output;
5418   bool print_time;
5419   Int32 random_seed;
5420   Int32 repeat;
5421   bool shuffle;
5422   Int32 stack_trace_depth;
5423   const char* stream_result_to;
5424   bool throw_on_failure;
5425 };
5426 
5427 // Fixture for testing InitGoogleTest().
5428 class InitGoogleTestTest : public Test {
5429  protected:
5430   // Clears the flags before each test.
SetUp()5431   virtual void SetUp() {
5432     GTEST_FLAG(also_run_disabled_tests) = false;
5433     GTEST_FLAG(break_on_failure) = false;
5434     GTEST_FLAG(catch_exceptions) = false;
5435     GTEST_FLAG(death_test_use_fork) = false;
5436     GTEST_FLAG(filter) = "";
5437     GTEST_FLAG(list_tests) = false;
5438     GTEST_FLAG(output) = "";
5439     GTEST_FLAG(print_time) = true;
5440     GTEST_FLAG(random_seed) = 0;
5441     GTEST_FLAG(repeat) = 1;
5442     GTEST_FLAG(shuffle) = false;
5443     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5444     GTEST_FLAG(stream_result_to) = "";
5445     GTEST_FLAG(throw_on_failure) = false;
5446   }
5447 
5448   // Asserts that two narrow or wide string arrays are equal.
5449   template <typename CharType>
AssertStringArrayEq(size_t size1,CharType ** array1,size_t size2,CharType ** array2)5450   static void AssertStringArrayEq(size_t size1, CharType** array1,
5451                                   size_t size2, CharType** array2) {
5452     ASSERT_EQ(size1, size2) << " Array sizes different.";
5453 
5454     for (size_t i = 0; i != size1; i++) {
5455       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5456     }
5457   }
5458 
5459   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5460   static void CheckFlags(const Flags& expected) {
5461     EXPECT_EQ(expected.also_run_disabled_tests,
5462               GTEST_FLAG(also_run_disabled_tests));
5463     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5464     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5465     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5466     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5467     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5468     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5469     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5470     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5471     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5472     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5473     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5474     EXPECT_STREQ(expected.stream_result_to,
5475                  GTEST_FLAG(stream_result_to).c_str());
5476     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5477   }
5478 
5479   // Parses a command line (specified by argc1 and argv1), then
5480   // verifies that the flag values are expected and that the
5481   // recognized flags are removed from the command line.
5482   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5483   static void TestParsingFlags(int argc1, const CharType** argv1,
5484                                int argc2, const CharType** argv2,
5485                                const Flags& expected, bool should_print_help) {
5486     const bool saved_help_flag = ::testing::internal::g_help_flag;
5487     ::testing::internal::g_help_flag = false;
5488 
5489 #if GTEST_HAS_STREAM_REDIRECTION
5490     CaptureStdout();
5491 #endif
5492 
5493     // Parses the command line.
5494     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5495 
5496 #if GTEST_HAS_STREAM_REDIRECTION
5497     const std::string captured_stdout = GetCapturedStdout();
5498 #endif
5499 
5500     // Verifies the flag values.
5501     CheckFlags(expected);
5502 
5503     // Verifies that the recognized flags are removed from the command
5504     // line.
5505     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5506 
5507     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5508     // help message for the flags it recognizes.
5509     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5510 
5511 #if GTEST_HAS_STREAM_REDIRECTION
5512     const char* const expected_help_fragment =
5513         "This program contains tests written using";
5514     if (should_print_help) {
5515       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5516     } else {
5517       EXPECT_PRED_FORMAT2(IsNotSubstring,
5518                           expected_help_fragment, captured_stdout);
5519     }
5520 #endif  // GTEST_HAS_STREAM_REDIRECTION
5521 
5522     ::testing::internal::g_help_flag = saved_help_flag;
5523   }
5524 
5525   // This macro wraps TestParsingFlags s.t. the user doesn't need
5526   // to specify the array sizes.
5527 
5528 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5529   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5530                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5531                    expected, should_print_help)
5532 };
5533 
5534 // Tests parsing an empty command line.
TEST_F(InitGoogleTestTest,Empty)5535 TEST_F(InitGoogleTestTest, Empty) {
5536   const char* argv[] = {
5537     NULL
5538   };
5539 
5540   const char* argv2[] = {
5541     NULL
5542   };
5543 
5544   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5545 }
5546 
5547 // Tests parsing a command line that has no flag.
TEST_F(InitGoogleTestTest,NoFlag)5548 TEST_F(InitGoogleTestTest, NoFlag) {
5549   const char* argv[] = {
5550     "foo.exe",
5551     NULL
5552   };
5553 
5554   const char* argv2[] = {
5555     "foo.exe",
5556     NULL
5557   };
5558 
5559   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5560 }
5561 
5562 // Tests parsing a bad --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterBad)5563 TEST_F(InitGoogleTestTest, FilterBad) {
5564   const char* argv[] = {
5565     "foo.exe",
5566     "--gtest_filter",
5567     NULL
5568   };
5569 
5570   const char* argv2[] = {
5571     "foo.exe",
5572     "--gtest_filter",
5573     NULL
5574   };
5575 
5576   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5577 }
5578 
5579 // Tests parsing an empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterEmpty)5580 TEST_F(InitGoogleTestTest, FilterEmpty) {
5581   const char* argv[] = {
5582     "foo.exe",
5583     "--gtest_filter=",
5584     NULL
5585   };
5586 
5587   const char* argv2[] = {
5588     "foo.exe",
5589     NULL
5590   };
5591 
5592   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5593 }
5594 
5595 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterNonEmpty)5596 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5597   const char* argv[] = {
5598     "foo.exe",
5599     "--gtest_filter=abc",
5600     NULL
5601   };
5602 
5603   const char* argv2[] = {
5604     "foo.exe",
5605     NULL
5606   };
5607 
5608   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5609 }
5610 
5611 // Tests parsing --gtest_break_on_failure.
TEST_F(InitGoogleTestTest,BreakOnFailureWithoutValue)5612 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5613   const char* argv[] = {
5614     "foo.exe",
5615     "--gtest_break_on_failure",
5616     NULL
5617 };
5618 
5619   const char* argv2[] = {
5620     "foo.exe",
5621     NULL
5622   };
5623 
5624   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5625 }
5626 
5627 // Tests parsing --gtest_break_on_failure=0.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_0)5628 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5629   const char* argv[] = {
5630     "foo.exe",
5631     "--gtest_break_on_failure=0",
5632     NULL
5633   };
5634 
5635   const char* argv2[] = {
5636     "foo.exe",
5637     NULL
5638   };
5639 
5640   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5641 }
5642 
5643 // Tests parsing --gtest_break_on_failure=f.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_f)5644 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5645   const char* argv[] = {
5646     "foo.exe",
5647     "--gtest_break_on_failure=f",
5648     NULL
5649   };
5650 
5651   const char* argv2[] = {
5652     "foo.exe",
5653     NULL
5654   };
5655 
5656   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5657 }
5658 
5659 // Tests parsing --gtest_break_on_failure=F.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_F)5660 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5661   const char* argv[] = {
5662     "foo.exe",
5663     "--gtest_break_on_failure=F",
5664     NULL
5665   };
5666 
5667   const char* argv2[] = {
5668     "foo.exe",
5669     NULL
5670   };
5671 
5672   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5673 }
5674 
5675 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5676 // definition.
TEST_F(InitGoogleTestTest,BreakOnFailureTrue)5677 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5678   const char* argv[] = {
5679     "foo.exe",
5680     "--gtest_break_on_failure=1",
5681     NULL
5682   };
5683 
5684   const char* argv2[] = {
5685     "foo.exe",
5686     NULL
5687   };
5688 
5689   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5690 }
5691 
5692 // Tests parsing --gtest_catch_exceptions.
TEST_F(InitGoogleTestTest,CatchExceptions)5693 TEST_F(InitGoogleTestTest, CatchExceptions) {
5694   const char* argv[] = {
5695     "foo.exe",
5696     "--gtest_catch_exceptions",
5697     NULL
5698   };
5699 
5700   const char* argv2[] = {
5701     "foo.exe",
5702     NULL
5703   };
5704 
5705   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5706 }
5707 
5708 // Tests parsing --gtest_death_test_use_fork.
TEST_F(InitGoogleTestTest,DeathTestUseFork)5709 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5710   const char* argv[] = {
5711     "foo.exe",
5712     "--gtest_death_test_use_fork",
5713     NULL
5714   };
5715 
5716   const char* argv2[] = {
5717     "foo.exe",
5718     NULL
5719   };
5720 
5721   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5722 }
5723 
5724 // Tests having the same flag twice with different values.  The
5725 // expected behavior is that the one coming last takes precedence.
TEST_F(InitGoogleTestTest,DuplicatedFlags)5726 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5727   const char* argv[] = {
5728     "foo.exe",
5729     "--gtest_filter=a",
5730     "--gtest_filter=b",
5731     NULL
5732   };
5733 
5734   const char* argv2[] = {
5735     "foo.exe",
5736     NULL
5737   };
5738 
5739   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5740 }
5741 
5742 // Tests having an unrecognized flag on the command line.
TEST_F(InitGoogleTestTest,UnrecognizedFlag)5743 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5744   const char* argv[] = {
5745     "foo.exe",
5746     "--gtest_break_on_failure",
5747     "bar",  // Unrecognized by Google Test.
5748     "--gtest_filter=b",
5749     NULL
5750   };
5751 
5752   const char* argv2[] = {
5753     "foo.exe",
5754     "bar",
5755     NULL
5756   };
5757 
5758   Flags flags;
5759   flags.break_on_failure = true;
5760   flags.filter = "b";
5761   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5762 }
5763 
5764 // Tests having a --gtest_list_tests flag
TEST_F(InitGoogleTestTest,ListTestsFlag)5765 TEST_F(InitGoogleTestTest, ListTestsFlag) {
5766     const char* argv[] = {
5767       "foo.exe",
5768       "--gtest_list_tests",
5769       NULL
5770     };
5771 
5772     const char* argv2[] = {
5773       "foo.exe",
5774       NULL
5775     };
5776 
5777     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5778 }
5779 
5780 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(InitGoogleTestTest,ListTestsTrue)5781 TEST_F(InitGoogleTestTest, ListTestsTrue) {
5782     const char* argv[] = {
5783       "foo.exe",
5784       "--gtest_list_tests=1",
5785       NULL
5786     };
5787 
5788     const char* argv2[] = {
5789       "foo.exe",
5790       NULL
5791     };
5792 
5793     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5794 }
5795 
5796 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(InitGoogleTestTest,ListTestsFalse)5797 TEST_F(InitGoogleTestTest, ListTestsFalse) {
5798     const char* argv[] = {
5799       "foo.exe",
5800       "--gtest_list_tests=0",
5801       NULL
5802     };
5803 
5804     const char* argv2[] = {
5805       "foo.exe",
5806       NULL
5807     };
5808 
5809     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5810 }
5811 
5812 // Tests parsing --gtest_list_tests=f.
TEST_F(InitGoogleTestTest,ListTestsFalse_f)5813 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5814   const char* argv[] = {
5815     "foo.exe",
5816     "--gtest_list_tests=f",
5817     NULL
5818   };
5819 
5820   const char* argv2[] = {
5821     "foo.exe",
5822     NULL
5823   };
5824 
5825   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5826 }
5827 
5828 // Tests parsing --gtest_list_tests=F.
TEST_F(InitGoogleTestTest,ListTestsFalse_F)5829 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5830   const char* argv[] = {
5831     "foo.exe",
5832     "--gtest_list_tests=F",
5833     NULL
5834   };
5835 
5836   const char* argv2[] = {
5837     "foo.exe",
5838     NULL
5839   };
5840 
5841   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5842 }
5843 
5844 // Tests parsing --gtest_output (invalid).
TEST_F(InitGoogleTestTest,OutputEmpty)5845 TEST_F(InitGoogleTestTest, OutputEmpty) {
5846   const char* argv[] = {
5847     "foo.exe",
5848     "--gtest_output",
5849     NULL
5850   };
5851 
5852   const char* argv2[] = {
5853     "foo.exe",
5854     "--gtest_output",
5855     NULL
5856   };
5857 
5858   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
5859 }
5860 
5861 // Tests parsing --gtest_output=xml
TEST_F(InitGoogleTestTest,OutputXml)5862 TEST_F(InitGoogleTestTest, OutputXml) {
5863   const char* argv[] = {
5864     "foo.exe",
5865     "--gtest_output=xml",
5866     NULL
5867   };
5868 
5869   const char* argv2[] = {
5870     "foo.exe",
5871     NULL
5872   };
5873 
5874   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5875 }
5876 
5877 // Tests parsing --gtest_output=xml:file
TEST_F(InitGoogleTestTest,OutputXmlFile)5878 TEST_F(InitGoogleTestTest, OutputXmlFile) {
5879   const char* argv[] = {
5880     "foo.exe",
5881     "--gtest_output=xml:file",
5882     NULL
5883   };
5884 
5885   const char* argv2[] = {
5886     "foo.exe",
5887     NULL
5888   };
5889 
5890   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5891 }
5892 
5893 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(InitGoogleTestTest,OutputXmlDirectory)5894 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
5895   const char* argv[] = {
5896     "foo.exe",
5897     "--gtest_output=xml:directory/path/",
5898     NULL
5899   };
5900 
5901   const char* argv2[] = {
5902     "foo.exe",
5903     NULL
5904   };
5905 
5906   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5907                             Flags::Output("xml:directory/path/"), false);
5908 }
5909 
5910 // Tests having a --gtest_print_time flag
TEST_F(InitGoogleTestTest,PrintTimeFlag)5911 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
5912     const char* argv[] = {
5913       "foo.exe",
5914       "--gtest_print_time",
5915       NULL
5916     };
5917 
5918     const char* argv2[] = {
5919       "foo.exe",
5920       NULL
5921     };
5922 
5923     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5924 }
5925 
5926 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(InitGoogleTestTest,PrintTimeTrue)5927 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
5928     const char* argv[] = {
5929       "foo.exe",
5930       "--gtest_print_time=1",
5931       NULL
5932     };
5933 
5934     const char* argv2[] = {
5935       "foo.exe",
5936       NULL
5937     };
5938 
5939     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5940 }
5941 
5942 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(InitGoogleTestTest,PrintTimeFalse)5943 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
5944     const char* argv[] = {
5945       "foo.exe",
5946       "--gtest_print_time=0",
5947       NULL
5948     };
5949 
5950     const char* argv2[] = {
5951       "foo.exe",
5952       NULL
5953     };
5954 
5955     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5956 }
5957 
5958 // Tests parsing --gtest_print_time=f.
TEST_F(InitGoogleTestTest,PrintTimeFalse_f)5959 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
5960   const char* argv[] = {
5961     "foo.exe",
5962     "--gtest_print_time=f",
5963     NULL
5964   };
5965 
5966   const char* argv2[] = {
5967     "foo.exe",
5968     NULL
5969   };
5970 
5971   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5972 }
5973 
5974 // Tests parsing --gtest_print_time=F.
TEST_F(InitGoogleTestTest,PrintTimeFalse_F)5975 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
5976   const char* argv[] = {
5977     "foo.exe",
5978     "--gtest_print_time=F",
5979     NULL
5980   };
5981 
5982   const char* argv2[] = {
5983     "foo.exe",
5984     NULL
5985   };
5986 
5987   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5988 }
5989 
5990 // Tests parsing --gtest_random_seed=number
TEST_F(InitGoogleTestTest,RandomSeed)5991 TEST_F(InitGoogleTestTest, RandomSeed) {
5992   const char* argv[] = {
5993     "foo.exe",
5994     "--gtest_random_seed=1000",
5995     NULL
5996   };
5997 
5998   const char* argv2[] = {
5999     "foo.exe",
6000     NULL
6001   };
6002 
6003   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6004 }
6005 
6006 // Tests parsing --gtest_repeat=number
TEST_F(InitGoogleTestTest,Repeat)6007 TEST_F(InitGoogleTestTest, Repeat) {
6008   const char* argv[] = {
6009     "foo.exe",
6010     "--gtest_repeat=1000",
6011     NULL
6012   };
6013 
6014   const char* argv2[] = {
6015     "foo.exe",
6016     NULL
6017   };
6018 
6019   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6020 }
6021 
6022 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFlag)6023 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6024     const char* argv[] = {
6025       "foo.exe",
6026       "--gtest_also_run_disabled_tests",
6027       NULL
6028     };
6029 
6030     const char* argv2[] = {
6031       "foo.exe",
6032       NULL
6033     };
6034 
6035     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6036                               Flags::AlsoRunDisabledTests(true), false);
6037 }
6038 
6039 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsTrue)6040 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6041     const char* argv[] = {
6042       "foo.exe",
6043       "--gtest_also_run_disabled_tests=1",
6044       NULL
6045     };
6046 
6047     const char* argv2[] = {
6048       "foo.exe",
6049       NULL
6050     };
6051 
6052     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6053                               Flags::AlsoRunDisabledTests(true), false);
6054 }
6055 
6056 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFalse)6057 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6058     const char* argv[] = {
6059       "foo.exe",
6060       "--gtest_also_run_disabled_tests=0",
6061       NULL
6062     };
6063 
6064     const char* argv2[] = {
6065       "foo.exe",
6066       NULL
6067     };
6068 
6069     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6070                               Flags::AlsoRunDisabledTests(false), false);
6071 }
6072 
6073 // Tests parsing --gtest_shuffle.
TEST_F(InitGoogleTestTest,ShuffleWithoutValue)6074 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6075   const char* argv[] = {
6076     "foo.exe",
6077     "--gtest_shuffle",
6078     NULL
6079 };
6080 
6081   const char* argv2[] = {
6082     "foo.exe",
6083     NULL
6084   };
6085 
6086   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6087 }
6088 
6089 // Tests parsing --gtest_shuffle=0.
TEST_F(InitGoogleTestTest,ShuffleFalse_0)6090 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6091   const char* argv[] = {
6092     "foo.exe",
6093     "--gtest_shuffle=0",
6094     NULL
6095   };
6096 
6097   const char* argv2[] = {
6098     "foo.exe",
6099     NULL
6100   };
6101 
6102   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6103 }
6104 
6105 // Tests parsing a --gtest_shuffle flag that has a "true"
6106 // definition.
TEST_F(InitGoogleTestTest,ShuffleTrue)6107 TEST_F(InitGoogleTestTest, ShuffleTrue) {
6108   const char* argv[] = {
6109     "foo.exe",
6110     "--gtest_shuffle=1",
6111     NULL
6112   };
6113 
6114   const char* argv2[] = {
6115     "foo.exe",
6116     NULL
6117   };
6118 
6119   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6120 }
6121 
6122 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(InitGoogleTestTest,StackTraceDepth)6123 TEST_F(InitGoogleTestTest, StackTraceDepth) {
6124   const char* argv[] = {
6125     "foo.exe",
6126     "--gtest_stack_trace_depth=5",
6127     NULL
6128   };
6129 
6130   const char* argv2[] = {
6131     "foo.exe",
6132     NULL
6133   };
6134 
6135   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6136 }
6137 
TEST_F(InitGoogleTestTest,StreamResultTo)6138 TEST_F(InitGoogleTestTest, StreamResultTo) {
6139   const char* argv[] = {
6140     "foo.exe",
6141     "--gtest_stream_result_to=localhost:1234",
6142     NULL
6143   };
6144 
6145   const char* argv2[] = {
6146     "foo.exe",
6147     NULL
6148   };
6149 
6150   GTEST_TEST_PARSING_FLAGS_(
6151       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6152 }
6153 
6154 // Tests parsing --gtest_throw_on_failure.
TEST_F(InitGoogleTestTest,ThrowOnFailureWithoutValue)6155 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6156   const char* argv[] = {
6157     "foo.exe",
6158     "--gtest_throw_on_failure",
6159     NULL
6160 };
6161 
6162   const char* argv2[] = {
6163     "foo.exe",
6164     NULL
6165   };
6166 
6167   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6168 }
6169 
6170 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(InitGoogleTestTest,ThrowOnFailureFalse_0)6171 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6172   const char* argv[] = {
6173     "foo.exe",
6174     "--gtest_throw_on_failure=0",
6175     NULL
6176   };
6177 
6178   const char* argv2[] = {
6179     "foo.exe",
6180     NULL
6181   };
6182 
6183   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6184 }
6185 
6186 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6187 // definition.
TEST_F(InitGoogleTestTest,ThrowOnFailureTrue)6188 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6189   const char* argv[] = {
6190     "foo.exe",
6191     "--gtest_throw_on_failure=1",
6192     NULL
6193   };
6194 
6195   const char* argv2[] = {
6196     "foo.exe",
6197     NULL
6198   };
6199 
6200   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6201 }
6202 
6203 #if GTEST_OS_WINDOWS
6204 // Tests parsing wide strings.
TEST_F(InitGoogleTestTest,WideStrings)6205 TEST_F(InitGoogleTestTest, WideStrings) {
6206   const wchar_t* argv[] = {
6207     L"foo.exe",
6208     L"--gtest_filter=Foo*",
6209     L"--gtest_list_tests=1",
6210     L"--gtest_break_on_failure",
6211     L"--non_gtest_flag",
6212     NULL
6213   };
6214 
6215   const wchar_t* argv2[] = {
6216     L"foo.exe",
6217     L"--non_gtest_flag",
6218     NULL
6219   };
6220 
6221   Flags expected_flags;
6222   expected_flags.break_on_failure = true;
6223   expected_flags.filter = "Foo*";
6224   expected_flags.list_tests = true;
6225 
6226   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6227 }
6228 #endif  // GTEST_OS_WINDOWS
6229 
6230 // Tests current_test_info() in UnitTest.
6231 class CurrentTestInfoTest : public Test {
6232  protected:
6233   // Tests that current_test_info() returns NULL before the first test in
6234   // the test case is run.
SetUpTestCase()6235   static void SetUpTestCase() {
6236     // There should be no tests running at this point.
6237     const TestInfo* test_info =
6238       UnitTest::GetInstance()->current_test_info();
6239     EXPECT_TRUE(test_info == NULL)
6240         << "There should be no tests running at this point.";
6241   }
6242 
6243   // Tests that current_test_info() returns NULL after the last test in
6244   // the test case has run.
TearDownTestCase()6245   static void TearDownTestCase() {
6246     const TestInfo* test_info =
6247       UnitTest::GetInstance()->current_test_info();
6248     EXPECT_TRUE(test_info == NULL)
6249         << "There should be no tests running at this point.";
6250   }
6251 };
6252 
6253 // Tests that current_test_info() returns TestInfo for currently running
6254 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestCase)6255 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6256   const TestInfo* test_info =
6257     UnitTest::GetInstance()->current_test_info();
6258   ASSERT_TRUE(NULL != test_info)
6259       << "There is a test running so we should have a valid TestInfo.";
6260   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6261       << "Expected the name of the currently running test case.";
6262   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6263       << "Expected the name of the currently running test.";
6264 }
6265 
6266 // Tests that current_test_info() returns TestInfo for currently running
6267 // test by checking the expected test name against the actual one.  We
6268 // use this test to see that the TestInfo object actually changed from
6269 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestCase)6270 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6271   const TestInfo* test_info =
6272     UnitTest::GetInstance()->current_test_info();
6273   ASSERT_TRUE(NULL != test_info)
6274       << "There is a test running so we should have a valid TestInfo.";
6275   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6276       << "Expected the name of the currently running test case.";
6277   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6278       << "Expected the name of the currently running test.";
6279 }
6280 
6281 }  // namespace testing
6282 
6283 // These two lines test that we can define tests in a namespace that
6284 // has the name "testing" and is nested in another namespace.
6285 namespace my_namespace {
6286 namespace testing {
6287 
6288 // Makes sure that TEST knows to use ::testing::Test instead of
6289 // ::my_namespace::testing::Test.
6290 class Test {};
6291 
6292 // Makes sure that an assertion knows to use ::testing::Message instead of
6293 // ::my_namespace::testing::Message.
6294 class Message {};
6295 
6296 // Makes sure that an assertion knows to use
6297 // ::testing::AssertionResult instead of
6298 // ::my_namespace::testing::AssertionResult.
6299 class AssertionResult {};
6300 
6301 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6302 TEST(NestedTestingNamespaceTest, Success) {
6303   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6304 }
6305 
6306 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6307 TEST(NestedTestingNamespaceTest, Failure) {
6308   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6309                        "This failure is expected.");
6310 }
6311 
6312 }  // namespace testing
6313 }  // namespace my_namespace
6314 
6315 // Tests that one can call superclass SetUp and TearDown methods--
6316 // that is, that they are not private.
6317 // No tests are based on this fixture; the test "passes" if it compiles
6318 // successfully.
6319 class ProtectedFixtureMethodsTest : public Test {
6320  protected:
SetUp()6321   virtual void SetUp() {
6322     Test::SetUp();
6323   }
TearDown()6324   virtual void TearDown() {
6325     Test::TearDown();
6326   }
6327 };
6328 
6329 // StreamingAssertionsTest tests the streaming versions of a representative
6330 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6331 TEST(StreamingAssertionsTest, Unconditional) {
6332   SUCCEED() << "expected success";
6333   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6334                           "expected failure");
6335   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6336                        "expected failure");
6337 }
6338 
6339 #ifdef __BORLANDC__
6340 // Silences warnings: "Condition is always true", "Unreachable code"
6341 # pragma option push -w-ccc -w-rch
6342 #endif
6343 
TEST(StreamingAssertionsTest,Truth)6344 TEST(StreamingAssertionsTest, Truth) {
6345   EXPECT_TRUE(true) << "unexpected failure";
6346   ASSERT_TRUE(true) << "unexpected failure";
6347   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6348                           "expected failure");
6349   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6350                        "expected failure");
6351 }
6352 
TEST(StreamingAssertionsTest,Truth2)6353 TEST(StreamingAssertionsTest, Truth2) {
6354   EXPECT_FALSE(false) << "unexpected failure";
6355   ASSERT_FALSE(false) << "unexpected failure";
6356   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6357                           "expected failure");
6358   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6359                        "expected failure");
6360 }
6361 
6362 #ifdef __BORLANDC__
6363 // Restores warnings after previous "#pragma option push" supressed them
6364 # pragma option pop
6365 #endif
6366 
TEST(StreamingAssertionsTest,IntegerEquals)6367 TEST(StreamingAssertionsTest, IntegerEquals) {
6368   EXPECT_EQ(1, 1) << "unexpected failure";
6369   ASSERT_EQ(1, 1) << "unexpected failure";
6370   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6371                           "expected failure");
6372   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6373                        "expected failure");
6374 }
6375 
TEST(StreamingAssertionsTest,IntegerLessThan)6376 TEST(StreamingAssertionsTest, IntegerLessThan) {
6377   EXPECT_LT(1, 2) << "unexpected failure";
6378   ASSERT_LT(1, 2) << "unexpected failure";
6379   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6380                           "expected failure");
6381   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6382                        "expected failure");
6383 }
6384 
TEST(StreamingAssertionsTest,StringsEqual)6385 TEST(StreamingAssertionsTest, StringsEqual) {
6386   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6387   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6388   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6389                           "expected failure");
6390   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6391                        "expected failure");
6392 }
6393 
TEST(StreamingAssertionsTest,StringsNotEqual)6394 TEST(StreamingAssertionsTest, StringsNotEqual) {
6395   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6396   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6397   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6398                           "expected failure");
6399   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6400                        "expected failure");
6401 }
6402 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6403 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6404   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6405   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6406   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6407                           "expected failure");
6408   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6409                        "expected failure");
6410 }
6411 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6412 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6413   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6414   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6415   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6416                           "expected failure");
6417   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6418                        "expected failure");
6419 }
6420 
TEST(StreamingAssertionsTest,FloatingPointEquals)6421 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6422   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6423   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6424   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6425                           "expected failure");
6426   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6427                        "expected failure");
6428 }
6429 
6430 #if GTEST_HAS_EXCEPTIONS
6431 
TEST(StreamingAssertionsTest,Throw)6432 TEST(StreamingAssertionsTest, Throw) {
6433   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6434   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6435   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6436                           "expected failure", "expected failure");
6437   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6438                        "expected failure", "expected failure");
6439 }
6440 
TEST(StreamingAssertionsTest,NoThrow)6441 TEST(StreamingAssertionsTest, NoThrow) {
6442   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6443   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6444   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6445                           "expected failure", "expected failure");
6446   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6447                        "expected failure", "expected failure");
6448 }
6449 
TEST(StreamingAssertionsTest,AnyThrow)6450 TEST(StreamingAssertionsTest, AnyThrow) {
6451   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6452   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6453   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6454                           "expected failure", "expected failure");
6455   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6456                        "expected failure", "expected failure");
6457 }
6458 
6459 #endif  // GTEST_HAS_EXCEPTIONS
6460 
6461 // Tests that Google Test correctly decides whether to use colors in the output.
6462 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6463 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6464   GTEST_FLAG(color) = "yes";
6465 
6466   SetEnv("TERM", "xterm");  // TERM supports colors.
6467   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6468   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6469 
6470   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6471   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6472   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6473 }
6474 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6475 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6476   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6477 
6478   GTEST_FLAG(color) = "True";
6479   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6480 
6481   GTEST_FLAG(color) = "t";
6482   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6483 
6484   GTEST_FLAG(color) = "1";
6485   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6486 }
6487 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6488 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6489   GTEST_FLAG(color) = "no";
6490 
6491   SetEnv("TERM", "xterm");  // TERM supports colors.
6492   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6493   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6494 
6495   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6496   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6497   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6498 }
6499 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6500 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6501   SetEnv("TERM", "xterm");  // TERM supports colors.
6502 
6503   GTEST_FLAG(color) = "F";
6504   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6505 
6506   GTEST_FLAG(color) = "0";
6507   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6508 
6509   GTEST_FLAG(color) = "unknown";
6510   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6511 }
6512 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6513 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6514   GTEST_FLAG(color) = "auto";
6515 
6516   SetEnv("TERM", "xterm");  // TERM supports colors.
6517   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6518   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6519 }
6520 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6521 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6522   GTEST_FLAG(color) = "auto";
6523 
6524 #if GTEST_OS_WINDOWS
6525   // On Windows, we ignore the TERM variable as it's usually not set.
6526 
6527   SetEnv("TERM", "dumb");
6528   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6529 
6530   SetEnv("TERM", "");
6531   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6532 
6533   SetEnv("TERM", "xterm");
6534   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6535 #else
6536   // On non-Windows platforms, we rely on TERM to determine if the
6537   // terminal supports colors.
6538 
6539   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6540   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6541 
6542   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6543   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6544 
6545   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6546   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6547 
6548   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6549   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6550 
6551   SetEnv("TERM", "xterm");  // TERM supports colors.
6552   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6553 
6554   SetEnv("TERM", "xterm-color");  // TERM supports colors.
6555   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6556 
6557   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6558   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6559 
6560   SetEnv("TERM", "screen");  // TERM supports colors.
6561   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6562 
6563   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6564   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6565 
6566   SetEnv("TERM", "linux");  // TERM supports colors.
6567   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6568 
6569   SetEnv("TERM", "cygwin");  // TERM supports colors.
6570   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6571 #endif  // GTEST_OS_WINDOWS
6572 }
6573 
6574 // Verifies that StaticAssertTypeEq works in a namespace scope.
6575 
6576 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6577 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6578     StaticAssertTypeEq<const int, const int>();
6579 
6580 // Verifies that StaticAssertTypeEq works in a class.
6581 
6582 template <typename T>
6583 class StaticAssertTypeEqTestHelper {
6584  public:
StaticAssertTypeEqTestHelper()6585   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6586 };
6587 
TEST(StaticAssertTypeEqTest,WorksInClass)6588 TEST(StaticAssertTypeEqTest, WorksInClass) {
6589   StaticAssertTypeEqTestHelper<bool>();
6590 }
6591 
6592 // Verifies that StaticAssertTypeEq works inside a function.
6593 
6594 typedef int IntAlias;
6595 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6596 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6597   StaticAssertTypeEq<int, IntAlias>();
6598   StaticAssertTypeEq<int*, IntAlias*>();
6599 }
6600 
TEST(GetCurrentOsStackTraceExceptTopTest,ReturnsTheStackTrace)6601 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6602   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
6603 
6604   // We don't have a stack walker in Google Test yet.
6605   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6606   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6607 }
6608 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6609 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6610   EXPECT_FALSE(HasNonfatalFailure());
6611 }
6612 
FailFatally()6613 static void FailFatally() { FAIL(); }
6614 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6615 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6616   FailFatally();
6617   const bool has_nonfatal_failure = HasNonfatalFailure();
6618   ClearCurrentTestPartResults();
6619   EXPECT_FALSE(has_nonfatal_failure);
6620 }
6621 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6622 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6623   ADD_FAILURE();
6624   const bool has_nonfatal_failure = HasNonfatalFailure();
6625   ClearCurrentTestPartResults();
6626   EXPECT_TRUE(has_nonfatal_failure);
6627 }
6628 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6629 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6630   FailFatally();
6631   ADD_FAILURE();
6632   const bool has_nonfatal_failure = HasNonfatalFailure();
6633   ClearCurrentTestPartResults();
6634   EXPECT_TRUE(has_nonfatal_failure);
6635 }
6636 
6637 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6638 static bool HasNonfatalFailureHelper() {
6639   return testing::Test::HasNonfatalFailure();
6640 }
6641 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6642 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6643   EXPECT_FALSE(HasNonfatalFailureHelper());
6644 }
6645 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6646 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6647   ADD_FAILURE();
6648   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6649   ClearCurrentTestPartResults();
6650   EXPECT_TRUE(has_nonfatal_failure);
6651 }
6652 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6653 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6654   EXPECT_FALSE(HasFailure());
6655 }
6656 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6657 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6658   FailFatally();
6659   const bool has_failure = HasFailure();
6660   ClearCurrentTestPartResults();
6661   EXPECT_TRUE(has_failure);
6662 }
6663 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6664 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6665   ADD_FAILURE();
6666   const bool has_failure = HasFailure();
6667   ClearCurrentTestPartResults();
6668   EXPECT_TRUE(has_failure);
6669 }
6670 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6671 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6672   FailFatally();
6673   ADD_FAILURE();
6674   const bool has_failure = HasFailure();
6675   ClearCurrentTestPartResults();
6676   EXPECT_TRUE(has_failure);
6677 }
6678 
6679 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6680 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6681 
TEST(HasFailureTest,WorksOutsideOfTestBody)6682 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6683   EXPECT_FALSE(HasFailureHelper());
6684 }
6685 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6686 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6687   ADD_FAILURE();
6688   const bool has_failure = HasFailureHelper();
6689   ClearCurrentTestPartResults();
6690   EXPECT_TRUE(has_failure);
6691 }
6692 
6693 class TestListener : public EmptyTestEventListener {
6694  public:
TestListener()6695   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
TestListener(int * on_start_counter,bool * is_destroyed)6696   TestListener(int* on_start_counter, bool* is_destroyed)
6697       : on_start_counter_(on_start_counter),
6698         is_destroyed_(is_destroyed) {}
6699 
~TestListener()6700   virtual ~TestListener() {
6701     if (is_destroyed_)
6702       *is_destroyed_ = true;
6703   }
6704 
6705  protected:
OnTestProgramStart(const UnitTest &)6706   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6707     if (on_start_counter_ != NULL)
6708       (*on_start_counter_)++;
6709   }
6710 
6711  private:
6712   int* on_start_counter_;
6713   bool* is_destroyed_;
6714 };
6715 
6716 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6717 TEST(TestEventListenersTest, ConstructionWorks) {
6718   TestEventListeners listeners;
6719 
6720   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
6721   EXPECT_TRUE(listeners.default_result_printer() == NULL);
6722   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6723 }
6724 
6725 // Tests that the TestEventListeners destructor deletes all the listeners it
6726 // owns.
TEST(TestEventListenersTest,DestructionWorks)6727 TEST(TestEventListenersTest, DestructionWorks) {
6728   bool default_result_printer_is_destroyed = false;
6729   bool default_xml_printer_is_destroyed = false;
6730   bool extra_listener_is_destroyed = false;
6731   TestListener* default_result_printer = new TestListener(
6732       NULL, &default_result_printer_is_destroyed);
6733   TestListener* default_xml_printer = new TestListener(
6734       NULL, &default_xml_printer_is_destroyed);
6735   TestListener* extra_listener = new TestListener(
6736       NULL, &extra_listener_is_destroyed);
6737 
6738   {
6739     TestEventListeners listeners;
6740     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6741                                                         default_result_printer);
6742     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6743                                                        default_xml_printer);
6744     listeners.Append(extra_listener);
6745   }
6746   EXPECT_TRUE(default_result_printer_is_destroyed);
6747   EXPECT_TRUE(default_xml_printer_is_destroyed);
6748   EXPECT_TRUE(extra_listener_is_destroyed);
6749 }
6750 
6751 // Tests that a listener Append'ed to a TestEventListeners list starts
6752 // receiving events.
TEST(TestEventListenersTest,Append)6753 TEST(TestEventListenersTest, Append) {
6754   int on_start_counter = 0;
6755   bool is_destroyed = false;
6756   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6757   {
6758     TestEventListeners listeners;
6759     listeners.Append(listener);
6760     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6761         *UnitTest::GetInstance());
6762     EXPECT_EQ(1, on_start_counter);
6763   }
6764   EXPECT_TRUE(is_destroyed);
6765 }
6766 
6767 // Tests that listeners receive events in the order they were appended to
6768 // the list, except for *End requests, which must be received in the reverse
6769 // order.
6770 class SequenceTestingListener : public EmptyTestEventListener {
6771  public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6772   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6773       : vector_(vector), id_(id) {}
6774 
6775  protected:
OnTestProgramStart(const UnitTest &)6776   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6777     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6778   }
6779 
OnTestProgramEnd(const UnitTest &)6780   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
6781     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6782   }
6783 
OnTestIterationStart(const UnitTest &,int)6784   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
6785                                     int /*iteration*/) {
6786     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6787   }
6788 
OnTestIterationEnd(const UnitTest &,int)6789   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6790                                   int /*iteration*/) {
6791     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6792   }
6793 
6794  private:
GetEventDescription(const char * method)6795   std::string GetEventDescription(const char* method) {
6796     Message message;
6797     message << id_ << "." << method;
6798     return message.GetString();
6799   }
6800 
6801   std::vector<std::string>* vector_;
6802   const char* const id_;
6803 
6804   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6805 };
6806 
TEST(EventListenerTest,AppendKeepsOrder)6807 TEST(EventListenerTest, AppendKeepsOrder) {
6808   std::vector<std::string> vec;
6809   TestEventListeners listeners;
6810   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6811   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6812   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6813 
6814   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6815       *UnitTest::GetInstance());
6816   ASSERT_EQ(3U, vec.size());
6817   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6818   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6819   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6820 
6821   vec.clear();
6822   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6823       *UnitTest::GetInstance());
6824   ASSERT_EQ(3U, vec.size());
6825   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6826   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6827   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6828 
6829   vec.clear();
6830   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6831       *UnitTest::GetInstance(), 0);
6832   ASSERT_EQ(3U, vec.size());
6833   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6834   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6835   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6836 
6837   vec.clear();
6838   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
6839       *UnitTest::GetInstance(), 0);
6840   ASSERT_EQ(3U, vec.size());
6841   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6842   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6843   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6844 }
6845 
6846 // Tests that a listener removed from a TestEventListeners list stops receiving
6847 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)6848 TEST(TestEventListenersTest, Release) {
6849   int on_start_counter = 0;
6850   bool is_destroyed = false;
6851   // Although Append passes the ownership of this object to the list,
6852   // the following calls release it, and we need to delete it before the
6853   // test ends.
6854   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6855   {
6856     TestEventListeners listeners;
6857     listeners.Append(listener);
6858     EXPECT_EQ(listener, listeners.Release(listener));
6859     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6860         *UnitTest::GetInstance());
6861     EXPECT_TRUE(listeners.Release(listener) == NULL);
6862   }
6863   EXPECT_EQ(0, on_start_counter);
6864   EXPECT_FALSE(is_destroyed);
6865   delete listener;
6866 }
6867 
6868 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)6869 TEST(EventListenerTest, SuppressEventForwarding) {
6870   int on_start_counter = 0;
6871   TestListener* listener = new TestListener(&on_start_counter, NULL);
6872 
6873   TestEventListeners listeners;
6874   listeners.Append(listener);
6875   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6876   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6877   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6878   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6879       *UnitTest::GetInstance());
6880   EXPECT_EQ(0, on_start_counter);
6881 }
6882 
6883 // Tests that events generated by Google Test are not forwarded in
6884 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprecesses)6885 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6886   EXPECT_DEATH_IF_SUPPORTED({
6887       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
6888           *GetUnitTestImpl()->listeners())) << "expected failure";},
6889       "expected failure");
6890 }
6891 
6892 // Tests that a listener installed via SetDefaultResultPrinter() starts
6893 // receiving events and is returned via default_result_printer() and that
6894 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)6895 TEST(EventListenerTest, default_result_printer) {
6896   int on_start_counter = 0;
6897   bool is_destroyed = false;
6898   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6899 
6900   TestEventListeners listeners;
6901   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6902 
6903   EXPECT_EQ(listener, listeners.default_result_printer());
6904 
6905   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6906       *UnitTest::GetInstance());
6907 
6908   EXPECT_EQ(1, on_start_counter);
6909 
6910   // Replacing default_result_printer with something else should remove it
6911   // from the list and destroy it.
6912   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
6913 
6914   EXPECT_TRUE(listeners.default_result_printer() == NULL);
6915   EXPECT_TRUE(is_destroyed);
6916 
6917   // After broadcasting an event the counter is still the same, indicating
6918   // the listener is not in the list anymore.
6919   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6920       *UnitTest::GetInstance());
6921   EXPECT_EQ(1, on_start_counter);
6922 }
6923 
6924 // Tests that the default_result_printer listener stops receiving events
6925 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)6926 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
6927   int on_start_counter = 0;
6928   bool is_destroyed = false;
6929   // Although Append passes the ownership of this object to the list,
6930   // the following calls release it, and we need to delete it before the
6931   // test ends.
6932   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6933   {
6934     TestEventListeners listeners;
6935     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6936 
6937     EXPECT_EQ(listener, listeners.Release(listener));
6938     EXPECT_TRUE(listeners.default_result_printer() == NULL);
6939     EXPECT_FALSE(is_destroyed);
6940 
6941     // Broadcasting events now should not affect default_result_printer.
6942     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6943         *UnitTest::GetInstance());
6944     EXPECT_EQ(0, on_start_counter);
6945   }
6946   // Destroying the list should not affect the listener now, too.
6947   EXPECT_FALSE(is_destroyed);
6948   delete listener;
6949 }
6950 
6951 // Tests that a listener installed via SetDefaultXmlGenerator() starts
6952 // receiving events and is returned via default_xml_generator() and that
6953 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)6954 TEST(EventListenerTest, default_xml_generator) {
6955   int on_start_counter = 0;
6956   bool is_destroyed = false;
6957   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6958 
6959   TestEventListeners listeners;
6960   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
6961 
6962   EXPECT_EQ(listener, listeners.default_xml_generator());
6963 
6964   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6965       *UnitTest::GetInstance());
6966 
6967   EXPECT_EQ(1, on_start_counter);
6968 
6969   // Replacing default_xml_generator with something else should remove it
6970   // from the list and destroy it.
6971   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
6972 
6973   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6974   EXPECT_TRUE(is_destroyed);
6975 
6976   // After broadcasting an event the counter is still the same, indicating
6977   // the listener is not in the list anymore.
6978   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6979       *UnitTest::GetInstance());
6980   EXPECT_EQ(1, on_start_counter);
6981 }
6982 
6983 // Tests that the default_xml_generator listener stops receiving events
6984 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)6985 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
6986   int on_start_counter = 0;
6987   bool is_destroyed = false;
6988   // Although Append passes the ownership of this object to the list,
6989   // the following calls release it, and we need to delete it before the
6990   // test ends.
6991   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6992   {
6993     TestEventListeners listeners;
6994     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
6995 
6996     EXPECT_EQ(listener, listeners.Release(listener));
6997     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6998     EXPECT_FALSE(is_destroyed);
6999 
7000     // Broadcasting events now should not affect default_xml_generator.
7001     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7002         *UnitTest::GetInstance());
7003     EXPECT_EQ(0, on_start_counter);
7004   }
7005   // Destroying the list should not affect the listener now, too.
7006   EXPECT_FALSE(is_destroyed);
7007   delete listener;
7008 }
7009 
7010 // Sanity tests to ensure that the alternative, verbose spellings of
7011 // some of the macros work.  We don't test them thoroughly as that
7012 // would be quite involved.  Since their implementations are
7013 // straightforward, and they are rarely used, we'll just rely on the
7014 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7015 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7016   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7017 
7018   // GTEST_FAIL is the same as FAIL.
7019   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7020                        "An expected failure");
7021 
7022   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7023 
7024   GTEST_ASSERT_EQ(0, 0);
7025   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7026                        "An expected failure");
7027   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7028                        "An expected failure");
7029 
7030   GTEST_ASSERT_NE(0, 1);
7031   GTEST_ASSERT_NE(1, 0);
7032   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7033                        "An expected failure");
7034 
7035   GTEST_ASSERT_LE(0, 0);
7036   GTEST_ASSERT_LE(0, 1);
7037   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7038                        "An expected failure");
7039 
7040   GTEST_ASSERT_LT(0, 1);
7041   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7042                        "An expected failure");
7043   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7044                        "An expected failure");
7045 
7046   GTEST_ASSERT_GE(0, 0);
7047   GTEST_ASSERT_GE(1, 0);
7048   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7049                        "An expected failure");
7050 
7051   GTEST_ASSERT_GT(1, 0);
7052   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7053                        "An expected failure");
7054   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7055                        "An expected failure");
7056 }
7057 
7058 // Tests for internal utilities necessary for implementation of the universal
7059 // printing.
7060 // TODO(vladl@google.com): Find a better home for them.
7061 
7062 class ConversionHelperBase {};
7063 class ConversionHelperDerived : public ConversionHelperBase {};
7064 
7065 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest,ValueIsCompileTimeConstant)7066 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7067   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
7068                         const_true);
7069   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
7070 }
7071 
7072 // Tests that IsAProtocolMessage<T>::value is true when T is
7073 // proto2::Message or a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsTrueWhenTypeIsAProtocolMessage)7074 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7075   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
7076   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7077 }
7078 
7079 // Tests that IsAProtocolMessage<T>::value is false when T is neither
7080 // ProtocolMessage nor a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7081 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7082   EXPECT_FALSE(IsAProtocolMessage<int>::value);
7083   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7084 }
7085 
7086 // Tests that CompileAssertTypesEqual compiles when the type arguments are
7087 // equal.
TEST(CompileAssertTypesEqual,CompilesWhenTypesAreEqual)7088 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7089   CompileAssertTypesEqual<void, void>();
7090   CompileAssertTypesEqual<int*, int*>();
7091 }
7092 
7093 // Tests that RemoveReference does not affect non-reference types.
TEST(RemoveReferenceTest,DoesNotAffectNonReferenceType)7094 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7095   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7096   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7097 }
7098 
7099 // Tests that RemoveReference removes reference from reference types.
TEST(RemoveReferenceTest,RemovesReference)7100 TEST(RemoveReferenceTest, RemovesReference) {
7101   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7102   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7103 }
7104 
7105 // Tests GTEST_REMOVE_REFERENCE_.
7106 
7107 template <typename T1, typename T2>
TestGTestRemoveReference()7108 void TestGTestRemoveReference() {
7109   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7110 }
7111 
TEST(RemoveReferenceTest,MacroVersion)7112 TEST(RemoveReferenceTest, MacroVersion) {
7113   TestGTestRemoveReference<int, int>();
7114   TestGTestRemoveReference<const char, const char&>();
7115 }
7116 
7117 
7118 // Tests that RemoveConst does not affect non-const types.
TEST(RemoveConstTest,DoesNotAffectNonConstType)7119 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7120   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7121   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7122 }
7123 
7124 // Tests that RemoveConst removes const from const types.
TEST(RemoveConstTest,RemovesConst)7125 TEST(RemoveConstTest, RemovesConst) {
7126   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7127   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7128   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7129 }
7130 
7131 // Tests GTEST_REMOVE_CONST_.
7132 
7133 template <typename T1, typename T2>
TestGTestRemoveConst()7134 void TestGTestRemoveConst() {
7135   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7136 }
7137 
TEST(RemoveConstTest,MacroVersion)7138 TEST(RemoveConstTest, MacroVersion) {
7139   TestGTestRemoveConst<int, int>();
7140   TestGTestRemoveConst<double&, double&>();
7141   TestGTestRemoveConst<char, const char>();
7142 }
7143 
7144 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7145 
7146 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7147 void TestGTestRemoveReferenceAndConst() {
7148   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7149 }
7150 
TEST(RemoveReferenceToConstTest,Works)7151 TEST(RemoveReferenceToConstTest, Works) {
7152   TestGTestRemoveReferenceAndConst<int, int>();
7153   TestGTestRemoveReferenceAndConst<double, double&>();
7154   TestGTestRemoveReferenceAndConst<char, const char>();
7155   TestGTestRemoveReferenceAndConst<char, const char&>();
7156   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7157 }
7158 
7159 // Tests that AddReference does not affect reference types.
TEST(AddReferenceTest,DoesNotAffectReferenceType)7160 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7161   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7162   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7163 }
7164 
7165 // Tests that AddReference adds reference to non-reference types.
TEST(AddReferenceTest,AddsReference)7166 TEST(AddReferenceTest, AddsReference) {
7167   CompileAssertTypesEqual<int&, AddReference<int>::type>();
7168   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7169 }
7170 
7171 // Tests GTEST_ADD_REFERENCE_.
7172 
7173 template <typename T1, typename T2>
TestGTestAddReference()7174 void TestGTestAddReference() {
7175   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7176 }
7177 
TEST(AddReferenceTest,MacroVersion)7178 TEST(AddReferenceTest, MacroVersion) {
7179   TestGTestAddReference<int&, int>();
7180   TestGTestAddReference<const char&, const char&>();
7181 }
7182 
7183 // Tests GTEST_REFERENCE_TO_CONST_.
7184 
7185 template <typename T1, typename T2>
TestGTestReferenceToConst()7186 void TestGTestReferenceToConst() {
7187   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7188 }
7189 
TEST(GTestReferenceToConstTest,Works)7190 TEST(GTestReferenceToConstTest, Works) {
7191   TestGTestReferenceToConst<const char&, char>();
7192   TestGTestReferenceToConst<const int&, const int>();
7193   TestGTestReferenceToConst<const double&, double>();
7194   TestGTestReferenceToConst<const std::string&, const std::string&>();
7195 }
7196 
7197 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
TEST(ImplicitlyConvertibleTest,ValueIsCompileTimeConstant)7198 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7199   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
7200   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
7201                         const_false);
7202 }
7203 
7204 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7205 // be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsTrueWhenConvertible)7206 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7207   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
7208   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
7209   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
7210   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
7211   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
7212                                      const ConversionHelperBase&>::value));
7213   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
7214                                      ConversionHelperBase>::value));
7215 }
7216 
7217 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7218 // cannot be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsFalseWhenNotConvertible)7219 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7220   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
7221   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
7222   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
7223   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
7224                                       ConversionHelperDerived&>::value));
7225 }
7226 
7227 // Tests IsContainerTest.
7228 
7229 class NonContainer {};
7230 
TEST(IsContainerTestTest,WorksForNonContainer)7231 TEST(IsContainerTestTest, WorksForNonContainer) {
7232   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7233   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7234   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7235 }
7236 
TEST(IsContainerTestTest,WorksForContainer)7237 TEST(IsContainerTestTest, WorksForContainer) {
7238   EXPECT_EQ(sizeof(IsContainer),
7239             sizeof(IsContainerTest<std::vector<bool> >(0)));
7240   EXPECT_EQ(sizeof(IsContainer),
7241             sizeof(IsContainerTest<std::map<int, double> >(0)));
7242 }
7243 
7244 // Tests ArrayEq().
7245 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7246 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7247   EXPECT_TRUE(ArrayEq(5, 5L));
7248   EXPECT_FALSE(ArrayEq('a', 0));
7249 }
7250 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7251 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7252   // Note that a and b are distinct but compatible types.
7253   const int a[] = { 0, 1 };
7254   long b[] = { 0, 1 };
7255   EXPECT_TRUE(ArrayEq(a, b));
7256   EXPECT_TRUE(ArrayEq(a, 2, b));
7257 
7258   b[0] = 2;
7259   EXPECT_FALSE(ArrayEq(a, b));
7260   EXPECT_FALSE(ArrayEq(a, 1, b));
7261 }
7262 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7263 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7264   const char a[][3] = { "hi", "lo" };
7265   const char b[][3] = { "hi", "lo" };
7266   const char c[][3] = { "hi", "li" };
7267 
7268   EXPECT_TRUE(ArrayEq(a, b));
7269   EXPECT_TRUE(ArrayEq(a, 2, b));
7270 
7271   EXPECT_FALSE(ArrayEq(a, c));
7272   EXPECT_FALSE(ArrayEq(a, 2, c));
7273 }
7274 
7275 // Tests ArrayAwareFind().
7276 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7277 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7278   const char a[] = "hello";
7279   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7280   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7281 }
7282 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7283 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7284   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7285   const int b[2] = { 2, 3 };
7286   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7287 
7288   const int c[2] = { 6, 7 };
7289   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7290 }
7291 
7292 // Tests CopyArray().
7293 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7294 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7295   int n = 0;
7296   CopyArray('a', &n);
7297   EXPECT_EQ('a', n);
7298 }
7299 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7300 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7301   const char a[3] = "hi";
7302   int b[3];
7303 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7304   CopyArray(a, &b);
7305   EXPECT_TRUE(ArrayEq(a, b));
7306 #endif
7307 
7308   int c[3];
7309   CopyArray(a, 3, c);
7310   EXPECT_TRUE(ArrayEq(a, c));
7311 }
7312 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7313 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7314   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7315   int b[2][3];
7316 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7317   CopyArray(a, &b);
7318   EXPECT_TRUE(ArrayEq(a, b));
7319 #endif
7320 
7321   int c[2][3];
7322   CopyArray(a, 2, c);
7323   EXPECT_TRUE(ArrayEq(a, c));
7324 }
7325 
7326 // Tests NativeArray.
7327 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7328 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7329   const int a[3] = { 0, 1, 2 };
7330   NativeArray<int> na(a, 3, kReference);
7331   EXPECT_EQ(3U, na.size());
7332   EXPECT_EQ(a, na.begin());
7333 }
7334 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7335 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7336   typedef int Array[2];
7337   Array* a = new Array[1];
7338   (*a)[0] = 0;
7339   (*a)[1] = 1;
7340   NativeArray<int> na(*a, 2, kCopy);
7341   EXPECT_NE(*a, na.begin());
7342   delete[] a;
7343   EXPECT_EQ(0, na.begin()[0]);
7344   EXPECT_EQ(1, na.begin()[1]);
7345 
7346   // We rely on the heap checker to verify that na deletes the copy of
7347   // array.
7348 }
7349 
TEST(NativeArrayTest,TypeMembersAreCorrect)7350 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7351   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7352   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7353 
7354   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7355   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7356 }
7357 
TEST(NativeArrayTest,MethodsWork)7358 TEST(NativeArrayTest, MethodsWork) {
7359   const int a[3] = { 0, 1, 2 };
7360   NativeArray<int> na(a, 3, kCopy);
7361   ASSERT_EQ(3U, na.size());
7362   EXPECT_EQ(3, na.end() - na.begin());
7363 
7364   NativeArray<int>::const_iterator it = na.begin();
7365   EXPECT_EQ(0, *it);
7366   ++it;
7367   EXPECT_EQ(1, *it);
7368   it++;
7369   EXPECT_EQ(2, *it);
7370   ++it;
7371   EXPECT_EQ(na.end(), it);
7372 
7373   EXPECT_TRUE(na == na);
7374 
7375   NativeArray<int> na2(a, 3, kReference);
7376   EXPECT_TRUE(na == na2);
7377 
7378   const int b1[3] = { 0, 1, 1 };
7379   const int b2[4] = { 0, 1, 2, 3 };
7380   EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
7381   EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
7382 }
7383 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7384 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7385   const char a[2][3] = { "hi", "lo" };
7386   NativeArray<char[3]> na(a, 2, kReference);
7387   ASSERT_EQ(2U, na.size());
7388   EXPECT_EQ(a, na.begin());
7389 }
7390 
7391 // Tests SkipPrefix().
7392 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7393 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7394   const char* const str = "hello";
7395 
7396   const char* p = str;
7397   EXPECT_TRUE(SkipPrefix("", &p));
7398   EXPECT_EQ(str, p);
7399 
7400   p = str;
7401   EXPECT_TRUE(SkipPrefix("hell", &p));
7402   EXPECT_EQ(str + 4, p);
7403 }
7404 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7405 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7406   const char* const str = "world";
7407 
7408   const char* p = str;
7409   EXPECT_FALSE(SkipPrefix("W", &p));
7410   EXPECT_EQ(str, p);
7411 
7412   p = str;
7413   EXPECT_FALSE(SkipPrefix("world!", &p));
7414   EXPECT_EQ(str, p);
7415 }
7416