1 /*
2 ******************************************************************************
3 *
4 *   Copyright (C) 2000-2015, International Business Machines
5 *   Corporation and others.  All Rights Reserved.
6 *
7 ******************************************************************************
8 *   file name:  ucnvmbcs.cpp
9 *   encoding:   US-ASCII
10 *   tab size:   8 (not used)
11 *   indentation:4
12 *
13 *   created on: 2000jul03
14 *   created by: Markus W. Scherer
15 *
16 *   The current code in this file replaces the previous implementation
17 *   of conversion code from multi-byte codepages to Unicode and back.
18 *   This implementation supports the following:
19 *   - legacy variable-length codepages with up to 4 bytes per character
20 *   - all Unicode code points (up to 0x10ffff)
21 *   - efficient distinction of unassigned vs. illegal byte sequences
22 *   - it is possible in fromUnicode() to directly deal with simple
23 *     stateful encodings (used for EBCDIC_STATEFUL)
24 *   - it is possible to convert Unicode code points
25 *     to a single zero byte (but not as a fallback except for SBCS)
26 *
27 *   Remaining limitations in fromUnicode:
28 *   - byte sequences must not have leading zero bytes
29 *   - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
30 *   - limitation to up to 4 bytes per character
31 *
32 *   ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
33 *   limitations and adds m:n character mappings and other features.
34 *   See ucnv_ext.h for details.
35 *
36 *   Change history:
37 *
38 *    5/6/2001       Ram       Moved  MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
39 *                             MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
40 *                             macros to ucnvmbcs.h file
41 */
42 
43 #include "unicode/utypes.h"
44 
45 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
46 
47 #include "unicode/ucnv.h"
48 #include "unicode/ucnv_cb.h"
49 #include "unicode/udata.h"
50 #include "unicode/uset.h"
51 #include "unicode/utf8.h"
52 #include "unicode/utf16.h"
53 #include "ucnv_bld.h"
54 #include "ucnvmbcs.h"
55 #include "ucnv_ext.h"
56 #include "ucnv_cnv.h"
57 #include "cmemory.h"
58 #include "cstring.h"
59 #include "umutex.h"
60 
61 /* control optimizations according to the platform */
62 #define MBCS_UNROLL_SINGLE_TO_BMP 1
63 #define MBCS_UNROLL_SINGLE_FROM_BMP 0
64 
65 /*
66  * _MBCSHeader versions 5.3 & 4.3
67  * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
68  *
69  * This version is optional. Version 5 is used for incompatible data format changes.
70  * makeconv will continue to generate version 4 files if possible.
71  *
72  * Changes from version 4:
73  *
74  * The main difference is an additional _MBCSHeader field with
75  * - the length (number of uint32_t) of the _MBCSHeader
76  * - flags for further incompatible data format changes
77  * - flags for further, backward compatible data format changes
78  *
79  * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
80  * the file and needs to be reconstituted at load time.
81  * This requires a utf8Friendly format with an additional mbcsIndex table for fast
82  * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
83  * (For details about these structures see below, and see ucnvmbcs.h.)
84  *
85  *   utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
86  *   of the Unicode code points. (This requires that the .ucm file has the |0 etc.
87  *   precision markers for all mappings.)
88  *
89  *   All fallbacks have been moved to the extension table, leaving only roundtrips in the
90  *   omitted data that can be reconstituted from the toUnicode data.
91  *
92  *   Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
93  *   With only roundtrip mappings in the base fromUnicode data, this part is fully
94  *   redundant with the mbcsIndex and will be reconstituted from that (also using the
95  *   stage 1 table which contains the information about how stage 2 was compacted).
96  *
97  *   The rest of the stage 2 table, the part for code points above maxFastUChar,
98  *   is stored in the file and will be appended to the reconstituted part.
99  *
100  *   The entire fromUBytes array is omitted from the file and will be reconstitued.
101  *   This is done by enumerating all toUnicode roundtrip mappings, performing
102  *   each mapping (using the stage 1 and reconstituted stage 2 tables) and
103  *   writing instead of reading the byte values.
104  *
105  * _MBCSHeader version 4.3
106  *
107  * Change from version 4.2:
108  * - Optional utf8Friendly data structures, with 64-entry stage 3 block
109  *   allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
110  *   files which can be used instead of stages 1 & 2.
111  *   Faster lookups for roundtrips from most commonly used characters,
112  *   and lookups from UTF-8 byte sequences with a natural bit distribution.
113  *   See ucnvmbcs.h for more details.
114  *
115  * Change from version 4.1:
116  * - Added an optional extension table structure at the end of the .cnv file.
117  *   It is present if the upper bits of the header flags field contains a non-zero
118  *   byte offset to it.
119  *   Files that contain only a conversion table and no base table
120  *   use the special outputType MBCS_OUTPUT_EXT_ONLY.
121  *   These contain the base table name between the MBCS header and the extension
122  *   data.
123  *
124  * Change from version 4.0:
125  * - Replace header.reserved with header.fromUBytesLength so that all
126  *   fields in the data have length.
127  *
128  * Changes from version 3 (for performance improvements):
129  * - new bit distribution for state table entries
130  * - reordered action codes
131  * - new data structure for single-byte fromUnicode
132  *   + stage 2 only contains indexes
133  *   + stage 3 stores 16 bits per character with classification bits 15..8
134  * - no multiplier for stage 1 entries
135  * - stage 2 for non-single-byte codepages contains the index and the flags in
136  *   one 32-bit value
137  * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
138  *
139  * For more details about old versions of the MBCS data structure, see
140  * the corresponding versions of this file.
141  *
142  * Converting stateless codepage data ---------------------------------------***
143  * (or codepage data with simple states) to Unicode.
144  *
145  * Data structure and algorithm for converting from complex legacy codepages
146  * to Unicode. (Designed before 2000-may-22.)
147  *
148  * The basic idea is that the structure of legacy codepages can be described
149  * with state tables.
150  * When reading a byte stream, each input byte causes a state transition.
151  * Some transitions result in the output of a code point, some result in
152  * "unassigned" or "illegal" output.
153  * This is used here for character conversion.
154  *
155  * The data structure begins with a state table consisting of a row
156  * per state, with 256 entries (columns) per row for each possible input
157  * byte value.
158  * Each entry is 32 bits wide, with two formats distinguished by
159  * the sign bit (bit 31):
160  *
161  * One format for transitional entries (bit 31 not set) for non-final bytes, and
162  * one format for final entries (bit 31 set).
163  * Both formats contain the number of the next state in the same bit
164  * positions.
165  * State 0 is the initial state.
166  *
167  * Most of the time, the offset values of subsequent states are added
168  * up to a scalar value. This value will eventually be the index of
169  * the Unicode code point in a table that follows the state table.
170  * The effect is that the code points for final state table rows
171  * are contiguous. The code points of final state rows follow each other
172  * in the order of the references to those final states by previous
173  * states, etc.
174  *
175  * For some terminal states, the offset is itself the output Unicode
176  * code point (16 bits for a BMP code point or 20 bits for a supplementary
177  * code point (stored as code point minus 0x10000 so that 20 bits are enough).
178  * For others, the code point in the Unicode table is stored with either
179  * one or two code units: one for BMP code points, two for a pair of
180  * surrogates.
181  * All code points for a final state entry take up the same number of code
182  * units, regardless of whether they all actually _use_ the same number
183  * of code units. This is necessary for simple array access.
184  *
185  * An additional feature comes in with what in ICU is called "fallback"
186  * mappings:
187  *
188  * In addition to round-trippable, precise, 1:1 mappings, there are often
189  * mappings defined between similar, though not the same, characters.
190  * Typically, such mappings occur only in fromUnicode mapping tables because
191  * Unicode has a superset repertoire of most other codepages. However, it
192  * is possible to provide such mappings in the toUnicode tables, too.
193  * In this case, the fallback mappings are partly integrated into the
194  * general state tables because the structure of the encoding includes their
195  * byte sequences.
196  * For final entries in an initial state, fallback mappings are stored in
197  * the entry itself like with roundtrip mappings.
198  * For other final entries, they are stored in the code units table if
199  * the entry is for a pair of code units.
200  * For single-unit results in the code units table, there is no space to
201  * alternatively hold a fallback mapping; in this case, the code unit
202  * is stored as U+fffe (unassigned), and the fallback mapping needs to
203  * be looked up by the scalar offset value in a separate table.
204  *
205  * "Unassigned" state entries really mean "structurally unassigned",
206  * i.e., such a byte sequence will never have a mapping result.
207  *
208  * The interpretation of the bits in each entry is as follows:
209  *
210  * Bit 31 not set, not a terminal entry ("transitional"):
211  * 30..24 next state
212  * 23..0  offset delta, to be added up
213  *
214  * Bit 31 set, terminal ("final") entry:
215  * 30..24 next state (regardless of action code)
216  * 23..20 action code:
217  *        action codes 0 and 1 result in precise-mapping Unicode code points
218  *        0  valid byte sequence
219  *           19..16 not used, 0
220  *           15..0  16-bit Unicode BMP code point
221  *                  never U+fffe or U+ffff
222  *        1  valid byte sequence
223  *           19..0  20-bit Unicode supplementary code point
224  *                  never U+fffe or U+ffff
225  *
226  *        action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
227  *        2  valid byte sequence (fallback)
228  *           19..16 not used, 0
229  *           15..0  16-bit Unicode BMP code point as fallback result
230  *        3  valid byte sequence (fallback)
231  *           19..0  20-bit Unicode supplementary code point as fallback result
232  *
233  *        action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
234  *        depending on the code units they result in
235  *        4  valid byte sequence
236  *           19..9  not used, 0
237  *            8..0  final offset delta
238  *                  pointing to one 16-bit code unit which may be
239  *                  fffe  unassigned -- look for a fallback for this offset
240  *                  ffff  illegal
241  *        5  valid byte sequence
242  *           19..9  not used, 0
243  *            8..0  final offset delta
244  *                  pointing to two 16-bit code units
245  *                  (typically UTF-16 surrogates)
246  *                  the result depends on the first code unit as follows:
247  *                  0000..d7ff  roundtrip BMP code point (1st alone)
248  *                  d800..dbff  roundtrip surrogate pair (1st, 2nd)
249  *                  dc00..dfff  fallback surrogate pair (1st-400, 2nd)
250  *                  e000        roundtrip BMP code point (2nd alone)
251  *                  e001        fallback BMP code point (2nd alone)
252  *                  fffe        unassigned
253  *                  ffff        illegal
254  *           (the final offset deltas are at most 255 * 2,
255  *            times 2 because of storing code unit pairs)
256  *
257  *        6  unassigned byte sequence
258  *           19..16 not used, 0
259  *           15..0  16-bit Unicode BMP code point U+fffe (new with version 2)
260  *                  this does not contain a final offset delta because the main
261  *                  purpose of this action code is to save scalar offset values;
262  *                  therefore, fallback values cannot be assigned to byte
263  *                  sequences that result in this action code
264  *        7  illegal byte sequence
265  *           19..16 not used, 0
266  *           15..0  16-bit Unicode BMP code point U+ffff (new with version 2)
267  *        8  state change only
268  *           19..0  not used, 0
269  *           useful for state changes in simple stateful encodings,
270  *           at Shift-In/Shift-Out codes
271  *
272  *
273  *        9..15 reserved for future use
274  *           current implementations will only perform a state change
275  *           and ignore bits 19..0
276  *
277  * An encoding with contiguous ranges of unassigned byte sequences, like
278  * Shift-JIS and especially EUC-TW, can be stored efficiently by having
279  * at least two states for the trail bytes:
280  * One trail byte state that results in code points, and one that only
281  * has "unassigned" and "illegal" terminal states.
282  *
283  * Note: partly by accident, this data structure supports simple stateful
284  * encodings without any additional logic.
285  * Currently, only simple Shift-In/Shift-Out schemes are handled with
286  * appropriate state tables (especially EBCDIC_STATEFUL!).
287  *
288  * MBCS version 2 added:
289  * unassigned and illegal action codes have U+fffe and U+ffff
290  * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
291  *
292  * Converting from Unicode to codepage bytes --------------------------------***
293  *
294  * The conversion data structure for fromUnicode is designed for the known
295  * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
296  * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
297  * a roundtrip mapping.
298  *
299  * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
300  * like in the character properties table.
301  * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
302  * with the resulting bytes is at offsetFromUBytes.
303  *
304  * Beginning with version 4, single-byte codepages have a significantly different
305  * trie compared to other codepages.
306  * In all cases, the entry in stage 1 is directly the index of the block of
307  * 64 entries in stage 2.
308  *
309  * Single-byte lookup:
310  *
311  * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
312  * Stage 3 contains one 16-bit word per result:
313  * Bits 15..8 indicate the kind of result:
314  *    f  roundtrip result
315  *    c  fallback result from private-use code point
316  *    8  fallback result from other code points
317  *    0  unassigned
318  * Bits 7..0 contain the codepage byte. A zero byte is always possible.
319  *
320  * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
321  * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
322  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
323  * ASCII code points can be looked up with a linear array access into stage 3.
324  * See maxFastUChar and other details in ucnvmbcs.h.
325  *
326  * Multi-byte lookup:
327  *
328  * Stage 2 contains a 32-bit word for each 16-block in stage 3:
329  * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
330  *             test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
331  *             If this test is false, then a non-zero result will be interpreted as
332  *             a fallback mapping.
333  * Bits 15..0  contain the index to stage 3, which must be multiplied by 16*(bytes per char)
334  *
335  * Stage 3 contains 2, 3, or 4 bytes per result.
336  * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
337  * while 3 bytes are stored as bytes in big-endian order.
338  * Leading zero bytes are ignored, and the number of bytes is counted.
339  * A zero byte mapping result is possible as a roundtrip result.
340  * For some output types, the actual result is processed from this;
341  * see ucnv_MBCSFromUnicodeWithOffsets().
342  *
343  * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
344  * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
345  *
346  * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
347  * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
348  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
349  * ASCII code points can be looked up with a linear array access into stage 3.
350  * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
351  *
352  * In version 3, stage 2 blocks may overlap by multiples of the multiplier
353  * for compaction.
354  * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
355  * may overlap by any number of entries.
356  *
357  * MBCS version 2 added:
358  * the converter checks for known output types, which allows
359  * adding new ones without crashing an unaware converter
360  */
361 
362 /**
363  * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
364  * consecutive sequences of bytes, starting from the one encoded in value,
365  * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
366  * Does not currently support m:n mappings or reverse fallbacks.
367  * This function will not be called for sequences of bytes with leading zeros.
368  *
369  * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
370  * @param value contains 1..4 bytes of the first byte sequence, right-aligned
371  * @param codePoints resulting Unicode code points, or negative if a byte sequence does
372  *        not map to anything
373  * @return TRUE to continue enumeration, FALSE to stop
374  */
375 typedef UBool U_CALLCONV
376 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
377 
378 static void
379 ucnv_MBCSLoad(UConverterSharedData *sharedData,
380           UConverterLoadArgs *pArgs,
381           const uint8_t *raw,
382           UErrorCode *pErrorCode);
383 
384 static void
385 ucnv_MBCSUnload(UConverterSharedData *sharedData);
386 
387 static void
388 ucnv_MBCSOpen(UConverter *cnv,
389               UConverterLoadArgs *pArgs,
390               UErrorCode *pErrorCode);
391 
392 static UChar32
393 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
394                   UErrorCode *pErrorCode);
395 
396 static void
397 ucnv_MBCSGetStarters(const UConverter* cnv,
398                  UBool starters[256],
399                  UErrorCode *pErrorCode);
400 
401 static const char *
402 ucnv_MBCSGetName(const UConverter *cnv);
403 
404 static void
405 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
406               int32_t offsetIndex,
407               UErrorCode *pErrorCode);
408 
409 static UChar32
410 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
411                   UErrorCode *pErrorCode);
412 
413 static void
414 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
415                   UConverterToUnicodeArgs *pToUArgs,
416                   UErrorCode *pErrorCode);
417 
418 static void
419 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
420                    const USetAdder *sa,
421                    UConverterUnicodeSet which,
422                    UErrorCode *pErrorCode);
423 
424 static void
425 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
426                   UConverterToUnicodeArgs *pToUArgs,
427                   UErrorCode *pErrorCode);
428 
429 static const UConverterImpl _SBCSUTF8Impl={
430     UCNV_MBCS,
431 
432     ucnv_MBCSLoad,
433     ucnv_MBCSUnload,
434 
435     ucnv_MBCSOpen,
436     NULL,
437     NULL,
438 
439     ucnv_MBCSToUnicodeWithOffsets,
440     ucnv_MBCSToUnicodeWithOffsets,
441     ucnv_MBCSFromUnicodeWithOffsets,
442     ucnv_MBCSFromUnicodeWithOffsets,
443     ucnv_MBCSGetNextUChar,
444 
445     ucnv_MBCSGetStarters,
446     ucnv_MBCSGetName,
447     ucnv_MBCSWriteSub,
448     NULL,
449     ucnv_MBCSGetUnicodeSet,
450 
451     NULL,
452     ucnv_SBCSFromUTF8
453 };
454 
455 static const UConverterImpl _DBCSUTF8Impl={
456     UCNV_MBCS,
457 
458     ucnv_MBCSLoad,
459     ucnv_MBCSUnload,
460 
461     ucnv_MBCSOpen,
462     NULL,
463     NULL,
464 
465     ucnv_MBCSToUnicodeWithOffsets,
466     ucnv_MBCSToUnicodeWithOffsets,
467     ucnv_MBCSFromUnicodeWithOffsets,
468     ucnv_MBCSFromUnicodeWithOffsets,
469     ucnv_MBCSGetNextUChar,
470 
471     ucnv_MBCSGetStarters,
472     ucnv_MBCSGetName,
473     ucnv_MBCSWriteSub,
474     NULL,
475     ucnv_MBCSGetUnicodeSet,
476 
477     NULL,
478     ucnv_DBCSFromUTF8
479 };
480 
481 static const UConverterImpl _MBCSImpl={
482     UCNV_MBCS,
483 
484     ucnv_MBCSLoad,
485     ucnv_MBCSUnload,
486 
487     ucnv_MBCSOpen,
488     NULL,
489     NULL,
490 
491     ucnv_MBCSToUnicodeWithOffsets,
492     ucnv_MBCSToUnicodeWithOffsets,
493     ucnv_MBCSFromUnicodeWithOffsets,
494     ucnv_MBCSFromUnicodeWithOffsets,
495     ucnv_MBCSGetNextUChar,
496 
497     ucnv_MBCSGetStarters,
498     ucnv_MBCSGetName,
499     ucnv_MBCSWriteSub,
500     NULL,
501     ucnv_MBCSGetUnicodeSet,
502     NULL,
503     NULL
504 };
505 
506 
507 /* Static data is in tools/makeconv/ucnvstat.c for data-based
508  * converters. Be sure to update it as well.
509  */
510 
511 const UConverterSharedData _MBCSData={
512     sizeof(UConverterSharedData), 1,
513     NULL, NULL, FALSE, TRUE, &_MBCSImpl,
514     0, UCNV_MBCS_TABLE_INITIALIZER
515 };
516 
517 
518 /* GB 18030 data ------------------------------------------------------------ */
519 
520 /* helper macros for linear values for GB 18030 four-byte sequences */
521 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
522 
523 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
524 
525 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
526 
527 /*
528  * Some ranges of GB 18030 where both the Unicode code points and the
529  * GB four-byte sequences are contiguous and are handled algorithmically by
530  * the special callback functions below.
531  * The values are start & end of Unicode & GB codes.
532  *
533  * Note that single surrogates are not mapped by GB 18030
534  * as of the re-released mapping tables from 2000-nov-30.
535  */
536 static const uint32_t
537 gb18030Ranges[14][4]={
538     {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
539     {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
540     {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
541     {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
542     {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
543     {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
544     {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
545     {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
546     {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
547     {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
548     {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
549     {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
550     {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
551     {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
552 };
553 
554 /* bit flag for UConverter.options indicating GB 18030 special handling */
555 #define _MBCS_OPTION_GB18030 0x8000
556 
557 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
558 #define _MBCS_OPTION_KEIS 0x01000
559 #define _MBCS_OPTION_JEF  0x02000
560 #define _MBCS_OPTION_JIPS 0x04000
561 
562 #define KEIS_SO_CHAR_1 0x0A
563 #define KEIS_SO_CHAR_2 0x42
564 #define KEIS_SI_CHAR_1 0x0A
565 #define KEIS_SI_CHAR_2 0x41
566 
567 #define JEF_SO_CHAR 0x28
568 #define JEF_SI_CHAR 0x29
569 
570 #define JIPS_SO_CHAR_1 0x1A
571 #define JIPS_SO_CHAR_2 0x70
572 #define JIPS_SI_CHAR_1 0x1A
573 #define JIPS_SI_CHAR_2 0x71
574 
575 enum SISO_Option {
576     SI,
577     SO
578 };
579 typedef enum SISO_Option SISO_Option;
580 
getSISOBytes(SISO_Option option,uint32_t cnvOption,uint8_t * value)581 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
582     int32_t SISOLength = 0;
583 
584     switch (option) {
585         case SI:
586             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
587                 value[0] = KEIS_SI_CHAR_1;
588                 value[1] = KEIS_SI_CHAR_2;
589                 SISOLength = 2;
590             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
591                 value[0] = JEF_SI_CHAR;
592                 SISOLength = 1;
593             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
594                 value[0] = JIPS_SI_CHAR_1;
595                 value[1] = JIPS_SI_CHAR_2;
596                 SISOLength = 2;
597             } else {
598                 value[0] = UCNV_SI;
599                 SISOLength = 1;
600             }
601             break;
602         case SO:
603             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
604                 value[0] = KEIS_SO_CHAR_1;
605                 value[1] = KEIS_SO_CHAR_2;
606                 SISOLength = 2;
607             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
608                 value[0] = JEF_SO_CHAR;
609                 SISOLength = 1;
610             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
611                 value[0] = JIPS_SO_CHAR_1;
612                 value[1] = JIPS_SO_CHAR_2;
613                 SISOLength = 2;
614             } else {
615                 value[0] = UCNV_SO;
616                 SISOLength = 1;
617             }
618             break;
619         default:
620             /* Should never happen. */
621             break;
622     }
623 
624     return SISOLength;
625 }
626 
627 /* Miscellaneous ------------------------------------------------------------ */
628 
629 /* similar to ucnv_MBCSGetNextUChar() but recursive */
630 static UBool
enumToU(UConverterMBCSTable * mbcsTable,int8_t stateProps[],int32_t state,uint32_t offset,uint32_t value,UConverterEnumToUCallback * callback,const void * context,UErrorCode * pErrorCode)631 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
632         int32_t state, uint32_t offset,
633         uint32_t value,
634         UConverterEnumToUCallback *callback, const void *context,
635         UErrorCode *pErrorCode) {
636     UChar32 codePoints[32];
637     const int32_t *row;
638     const uint16_t *unicodeCodeUnits;
639     UChar32 anyCodePoints;
640     int32_t b, limit;
641 
642     row=mbcsTable->stateTable[state];
643     unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
644 
645     value<<=8;
646     anyCodePoints=-1;  /* becomes non-negative if there is a mapping */
647 
648     b=(stateProps[state]&0x38)<<2;
649     if(b==0 && stateProps[state]>=0x40) {
650         /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
651         codePoints[0]=U_SENTINEL;
652         b=1;
653     }
654     limit=((stateProps[state]&7)+1)<<5;
655     while(b<limit) {
656         int32_t entry=row[b];
657         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
658             int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
659             if(stateProps[nextState]>=0) {
660                 /* recurse to a state with non-ignorable actions */
661                 if(!enumToU(
662                         mbcsTable, stateProps, nextState,
663                         offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
664                         value|(uint32_t)b,
665                         callback, context,
666                         pErrorCode)) {
667                     return FALSE;
668                 }
669             }
670             codePoints[b&0x1f]=U_SENTINEL;
671         } else {
672             UChar32 c;
673             int32_t action;
674 
675             /*
676              * An if-else-if chain provides more reliable performance for
677              * the most common cases compared to a switch.
678              */
679             action=MBCS_ENTRY_FINAL_ACTION(entry);
680             if(action==MBCS_STATE_VALID_DIRECT_16) {
681                 /* output BMP code point */
682                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
683             } else if(action==MBCS_STATE_VALID_16) {
684                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
685                 c=unicodeCodeUnits[finalOffset];
686                 if(c<0xfffe) {
687                     /* output BMP code point */
688                 } else {
689                     c=U_SENTINEL;
690                 }
691             } else if(action==MBCS_STATE_VALID_16_PAIR) {
692                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
693                 c=unicodeCodeUnits[finalOffset++];
694                 if(c<0xd800) {
695                     /* output BMP code point below 0xd800 */
696                 } else if(c<=0xdbff) {
697                     /* output roundtrip or fallback supplementary code point */
698                     c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
699                 } else if(c==0xe000) {
700                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
701                     c=unicodeCodeUnits[finalOffset];
702                 } else {
703                     c=U_SENTINEL;
704                 }
705             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
706                 /* output supplementary code point */
707                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
708             } else {
709                 c=U_SENTINEL;
710             }
711 
712             codePoints[b&0x1f]=c;
713             anyCodePoints&=c;
714         }
715         if(((++b)&0x1f)==0) {
716             if(anyCodePoints>=0) {
717                 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
718                     return FALSE;
719                 }
720                 anyCodePoints=-1;
721             }
722         }
723     }
724     return TRUE;
725 }
726 
727 /*
728  * Only called if stateProps[state]==-1.
729  * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
730  * MBCS_STATE_CHANGE_ONLY.
731  */
732 static int8_t
getStateProp(const int32_t (* stateTable)[256],int8_t stateProps[],int state)733 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
734     const int32_t *row;
735     int32_t min, max, entry, nextState;
736 
737     row=stateTable[state];
738     stateProps[state]=0;
739 
740     /* find first non-ignorable state */
741     for(min=0;; ++min) {
742         entry=row[min];
743         nextState=MBCS_ENTRY_STATE(entry);
744         if(stateProps[nextState]==-1) {
745             getStateProp(stateTable, stateProps, nextState);
746         }
747         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
748             if(stateProps[nextState]>=0) {
749                 break;
750             }
751         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
752             break;
753         }
754         if(min==0xff) {
755             stateProps[state]=-0x40;  /* (int8_t)0xc0 */
756             return stateProps[state];
757         }
758     }
759     stateProps[state]|=(int8_t)((min>>5)<<3);
760 
761     /* find last non-ignorable state */
762     for(max=0xff; min<max; --max) {
763         entry=row[max];
764         nextState=MBCS_ENTRY_STATE(entry);
765         if(stateProps[nextState]==-1) {
766             getStateProp(stateTable, stateProps, nextState);
767         }
768         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
769             if(stateProps[nextState]>=0) {
770                 break;
771             }
772         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
773             break;
774         }
775     }
776     stateProps[state]|=(int8_t)(max>>5);
777 
778     /* recurse further and collect direct-state information */
779     while(min<=max) {
780         entry=row[min];
781         nextState=MBCS_ENTRY_STATE(entry);
782         if(stateProps[nextState]==-1) {
783             getStateProp(stateTable, stateProps, nextState);
784         }
785         if(MBCS_ENTRY_IS_FINAL(entry)) {
786             stateProps[nextState]|=0x40;
787             if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
788                 stateProps[state]|=0x40;
789             }
790         }
791         ++min;
792     }
793     return stateProps[state];
794 }
795 
796 /*
797  * Internal function enumerating the toUnicode data of an MBCS converter.
798  * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
799  * table, but could also be used for a future ucnv_getUnicodeSet() option
800  * that includes reverse fallbacks (after updating this function's implementation).
801  * Currently only handles roundtrip mappings.
802  * Does not currently handle extensions.
803  */
804 static void
ucnv_MBCSEnumToUnicode(UConverterMBCSTable * mbcsTable,UConverterEnumToUCallback * callback,const void * context,UErrorCode * pErrorCode)805 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
806                        UConverterEnumToUCallback *callback, const void *context,
807                        UErrorCode *pErrorCode) {
808     /*
809      * Properties for each state, to speed up the enumeration.
810      * Ignorable actions are unassigned/illegal/state-change-only:
811      * They do not lead to mappings.
812      *
813      * Bits 7..6:
814      * 1 direct/initial state (stateful converters have multiple)
815      * 0 non-initial state with transitions or with non-ignorable result actions
816      * -1 final state with only ignorable actions
817      *
818      * Bits 5..3:
819      * The lowest byte value with non-ignorable actions is
820      * value<<5 (rounded down).
821      *
822      * Bits 2..0:
823      * The highest byte value with non-ignorable actions is
824      * (value<<5)&0x1f (rounded up).
825      */
826     int8_t stateProps[MBCS_MAX_STATE_COUNT];
827     int32_t state;
828 
829     uprv_memset(stateProps, -1, sizeof(stateProps));
830 
831     /* recurse from state 0 and set all stateProps */
832     getStateProp(mbcsTable->stateTable, stateProps, 0);
833 
834     for(state=0; state<mbcsTable->countStates; ++state) {
835         /*if(stateProps[state]==-1) {
836             printf("unused/unreachable <icu:state> %d\n", state);
837         }*/
838         if(stateProps[state]>=0x40) {
839             /* start from each direct state */
840             enumToU(
841                 mbcsTable, stateProps, state, 0, 0,
842                 callback, context,
843                 pErrorCode);
844         }
845     }
846 }
847 
848 U_CFUNC void
ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData * sharedData,const USetAdder * sa,UConverterUnicodeSet which,UConverterSetFilter filter,UErrorCode * pErrorCode)849 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
850                                          const USetAdder *sa,
851                                          UConverterUnicodeSet which,
852                                          UConverterSetFilter filter,
853                                          UErrorCode *pErrorCode) {
854     const UConverterMBCSTable *mbcsTable;
855     const uint16_t *table;
856 
857     uint32_t st3;
858     uint16_t st1, maxStage1, st2;
859 
860     UChar32 c;
861 
862     /* enumerate the from-Unicode trie table */
863     mbcsTable=&sharedData->mbcs;
864     table=mbcsTable->fromUnicodeTable;
865     if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
866         maxStage1=0x440;
867     } else {
868         maxStage1=0x40;
869     }
870 
871     c=0; /* keep track of the current code point while enumerating */
872 
873     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
874         const uint16_t *stage2, *stage3, *results;
875         uint16_t minValue;
876 
877         results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
878 
879         /*
880          * Set a threshold variable for selecting which mappings to use.
881          * See ucnv_MBCSSingleFromBMPWithOffsets() and
882          * MBCS_SINGLE_RESULT_FROM_U() for details.
883          */
884         if(which==UCNV_ROUNDTRIP_SET) {
885             /* use only roundtrips */
886             minValue=0xf00;
887         } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
888             /* use all roundtrip and fallback results */
889             minValue=0x800;
890         }
891 
892         for(st1=0; st1<maxStage1; ++st1) {
893             st2=table[st1];
894             if(st2>maxStage1) {
895                 stage2=table+st2;
896                 for(st2=0; st2<64; ++st2) {
897                     if((st3=stage2[st2])!=0) {
898                         /* read the stage 3 block */
899                         stage3=results+st3;
900 
901                         do {
902                             if(*stage3++>=minValue) {
903                                 sa->add(sa->set, c);
904                             }
905                         } while((++c&0xf)!=0);
906                     } else {
907                         c+=16; /* empty stage 3 block */
908                     }
909                 }
910             } else {
911                 c+=1024; /* empty stage 2 block */
912             }
913         }
914     } else {
915         const uint32_t *stage2;
916         const uint8_t *stage3, *bytes;
917         uint32_t st3Multiplier;
918         uint32_t value;
919         UBool useFallback;
920 
921         bytes=mbcsTable->fromUnicodeBytes;
922 
923         useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
924 
925         switch(mbcsTable->outputType) {
926         case MBCS_OUTPUT_3:
927         case MBCS_OUTPUT_4_EUC:
928             st3Multiplier=3;
929             break;
930         case MBCS_OUTPUT_4:
931             st3Multiplier=4;
932             break;
933         default:
934             st3Multiplier=2;
935             break;
936         }
937 
938         for(st1=0; st1<maxStage1; ++st1) {
939             st2=table[st1];
940             if(st2>(maxStage1>>1)) {
941                 stage2=(const uint32_t *)table+st2;
942                 for(st2=0; st2<64; ++st2) {
943                     if((st3=stage2[st2])!=0) {
944                         /* read the stage 3 block */
945                         stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
946 
947                         /* get the roundtrip flags for the stage 3 block */
948                         st3>>=16;
949 
950                         /*
951                          * Add code points for which the roundtrip flag is set,
952                          * or which map to non-zero bytes if we use fallbacks.
953                          * See ucnv_MBCSFromUnicodeWithOffsets() for details.
954                          */
955                         switch(filter) {
956                         case UCNV_SET_FILTER_NONE:
957                             do {
958                                 if(st3&1) {
959                                     sa->add(sa->set, c);
960                                     stage3+=st3Multiplier;
961                                 } else if(useFallback) {
962                                     uint8_t b=0;
963                                     switch(st3Multiplier) {
964                                     case 4:
965                                         b|=*stage3++;
966                                     case 3: /*fall through*/
967                                         b|=*stage3++;
968                                     case 2: /*fall through*/
969                                         b|=stage3[0]|stage3[1];
970                                         stage3+=2;
971                                     default:
972                                         break;
973                                     }
974                                     if(b!=0) {
975                                         sa->add(sa->set, c);
976                                     }
977                                 }
978                                 st3>>=1;
979                             } while((++c&0xf)!=0);
980                             break;
981                         case UCNV_SET_FILTER_DBCS_ONLY:
982                              /* Ignore single-byte results (<0x100). */
983                             do {
984                                 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
985                                     sa->add(sa->set, c);
986                                 }
987                                 st3>>=1;
988                                 stage3+=2;  /* +=st3Multiplier */
989                             } while((++c&0xf)!=0);
990                             break;
991                         case UCNV_SET_FILTER_2022_CN:
992                              /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
993                             do {
994                                 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
995                                     sa->add(sa->set, c);
996                                 }
997                                 st3>>=1;
998                                 stage3+=3;  /* +=st3Multiplier */
999                             } while((++c&0xf)!=0);
1000                             break;
1001                         case UCNV_SET_FILTER_SJIS:
1002                              /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
1003                             do {
1004                                 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
1005                                     sa->add(sa->set, c);
1006                                 }
1007                                 st3>>=1;
1008                                 stage3+=2;  /* +=st3Multiplier */
1009                             } while((++c&0xf)!=0);
1010                             break;
1011                         case UCNV_SET_FILTER_GR94DBCS:
1012                             /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
1013                             do {
1014                                 if( ((st3&1)!=0 || useFallback) &&
1015                                     (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
1016                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1017                                 ) {
1018                                     sa->add(sa->set, c);
1019                                 }
1020                                 st3>>=1;
1021                                 stage3+=2;  /* +=st3Multiplier */
1022                             } while((++c&0xf)!=0);
1023                             break;
1024                         case UCNV_SET_FILTER_HZ:
1025                             /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
1026                             do {
1027                                 if( ((st3&1)!=0 || useFallback) &&
1028                                     (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
1029                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1030                                 ) {
1031                                     sa->add(sa->set, c);
1032                                 }
1033                                 st3>>=1;
1034                                 stage3+=2;  /* +=st3Multiplier */
1035                             } while((++c&0xf)!=0);
1036                             break;
1037                         default:
1038                             *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
1039                             return;
1040                         }
1041                     } else {
1042                         c+=16; /* empty stage 3 block */
1043                     }
1044                 }
1045             } else {
1046                 c+=1024; /* empty stage 2 block */
1047             }
1048         }
1049     }
1050 
1051     ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
1052 }
1053 
1054 U_CFUNC void
ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData * sharedData,const USetAdder * sa,UConverterUnicodeSet which,UErrorCode * pErrorCode)1055 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
1056                                  const USetAdder *sa,
1057                                  UConverterUnicodeSet which,
1058                                  UErrorCode *pErrorCode) {
1059     ucnv_MBCSGetFilteredUnicodeSetForUnicode(
1060         sharedData, sa, which,
1061         sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
1062             UCNV_SET_FILTER_DBCS_ONLY :
1063             UCNV_SET_FILTER_NONE,
1064         pErrorCode);
1065 }
1066 
1067 static void
ucnv_MBCSGetUnicodeSet(const UConverter * cnv,const USetAdder * sa,UConverterUnicodeSet which,UErrorCode * pErrorCode)1068 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
1069                    const USetAdder *sa,
1070                    UConverterUnicodeSet which,
1071                    UErrorCode *pErrorCode) {
1072     if(cnv->options&_MBCS_OPTION_GB18030) {
1073         sa->addRange(sa->set, 0, 0xd7ff);
1074         sa->addRange(sa->set, 0xe000, 0x10ffff);
1075     } else {
1076         ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
1077     }
1078 }
1079 
1080 /* conversion extensions for input not in the main table -------------------- */
1081 
1082 /*
1083  * Hardcoded extension handling for GB 18030.
1084  * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
1085  *
1086  * In the future, conversion extensions may handle m:n mappings and delta tables,
1087  * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
1088  *
1089  * If an input character cannot be mapped, then these functions set an error
1090  * code. The framework will then call the callback function.
1091  */
1092 
1093 /*
1094  * @return if(U_FAILURE) return the code point for cnv->fromUChar32
1095  *         else return 0 after output has been written to the target
1096  */
1097 static UChar32
_extFromU(UConverter * cnv,const UConverterSharedData * sharedData,UChar32 cp,const UChar ** source,const UChar * sourceLimit,uint8_t ** target,const uint8_t * targetLimit,int32_t ** offsets,int32_t sourceIndex,UBool flush,UErrorCode * pErrorCode)1098 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
1099           UChar32 cp,
1100           const UChar **source, const UChar *sourceLimit,
1101           uint8_t **target, const uint8_t *targetLimit,
1102           int32_t **offsets, int32_t sourceIndex,
1103           UBool flush,
1104           UErrorCode *pErrorCode) {
1105     const int32_t *cx;
1106 
1107     cnv->useSubChar1=FALSE;
1108 
1109     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1110         ucnv_extInitialMatchFromU(
1111             cnv, cx,
1112             cp, source, sourceLimit,
1113             (char **)target, (char *)targetLimit,
1114             offsets, sourceIndex,
1115             flush,
1116             pErrorCode)
1117     ) {
1118         return 0; /* an extension mapping handled the input */
1119     }
1120 
1121     /* GB 18030 */
1122     if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
1123         const uint32_t *range;
1124         int32_t i;
1125 
1126         range=gb18030Ranges[0];
1127         for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
1128             if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
1129                 /* found the Unicode code point, output the four-byte sequence for it */
1130                 uint32_t linear;
1131                 char bytes[4];
1132 
1133                 /* get the linear value of the first GB 18030 code in this range */
1134                 linear=range[2]-LINEAR_18030_BASE;
1135 
1136                 /* add the offset from the beginning of the range */
1137                 linear+=((uint32_t)cp-range[0]);
1138 
1139                 /* turn this into a four-byte sequence */
1140                 bytes[3]=(char)(0x30+linear%10); linear/=10;
1141                 bytes[2]=(char)(0x81+linear%126); linear/=126;
1142                 bytes[1]=(char)(0x30+linear%10); linear/=10;
1143                 bytes[0]=(char)(0x81+linear);
1144 
1145                 /* output this sequence */
1146                 ucnv_fromUWriteBytes(cnv,
1147                                      bytes, 4, (char **)target, (char *)targetLimit,
1148                                      offsets, sourceIndex, pErrorCode);
1149                 return 0;
1150             }
1151         }
1152     }
1153 
1154     /* no mapping */
1155     *pErrorCode=U_INVALID_CHAR_FOUND;
1156     return cp;
1157 }
1158 
1159 /*
1160  * Input sequence: cnv->toUBytes[0..length[
1161  * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1162  *         else return 0 after output has been written to the target
1163  */
1164 static int8_t
_extToU(UConverter * cnv,const UConverterSharedData * sharedData,int8_t length,const uint8_t ** source,const uint8_t * sourceLimit,UChar ** target,const UChar * targetLimit,int32_t ** offsets,int32_t sourceIndex,UBool flush,UErrorCode * pErrorCode)1165 _extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1166         int8_t length,
1167         const uint8_t **source, const uint8_t *sourceLimit,
1168         UChar **target, const UChar *targetLimit,
1169         int32_t **offsets, int32_t sourceIndex,
1170         UBool flush,
1171         UErrorCode *pErrorCode) {
1172     const int32_t *cx;
1173 
1174     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1175         ucnv_extInitialMatchToU(
1176             cnv, cx,
1177             length, (const char **)source, (const char *)sourceLimit,
1178             target, targetLimit,
1179             offsets, sourceIndex,
1180             flush,
1181             pErrorCode)
1182     ) {
1183         return 0; /* an extension mapping handled the input */
1184     }
1185 
1186     /* GB 18030 */
1187     if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
1188         const uint32_t *range;
1189         uint32_t linear;
1190         int32_t i;
1191 
1192         linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
1193         range=gb18030Ranges[0];
1194         for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
1195             if(range[2]<=linear && linear<=range[3]) {
1196                 /* found the sequence, output the Unicode code point for it */
1197                 *pErrorCode=U_ZERO_ERROR;
1198 
1199                 /* add the linear difference between the input and start sequences to the start code point */
1200                 linear=range[0]+(linear-range[2]);
1201 
1202                 /* output this code point */
1203                 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1204 
1205                 return 0;
1206             }
1207         }
1208     }
1209 
1210     /* no mapping */
1211     *pErrorCode=U_INVALID_CHAR_FOUND;
1212     return length;
1213 }
1214 
1215 /* EBCDIC swap LF<->NL ------------------------------------------------------ */
1216 
1217 /*
1218  * This code modifies a standard EBCDIC<->Unicode mapping table for
1219  * OS/390 (z/OS) Unix System Services (Open Edition).
1220  * The difference is in the mapping of Line Feed and New Line control codes:
1221  * Standard EBCDIC maps
1222  *
1223  *   <U000A> \x25 |0
1224  *   <U0085> \x15 |0
1225  *
1226  * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1227  * mapping
1228  *
1229  *   <U000A> \x15 |0
1230  *   <U0085> \x25 |0
1231  *
1232  * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1233  * by copying it into allocated memory and swapping the LF and NL values.
1234  * It allows to support the same EBCDIC charset in both versions without
1235  * duplicating the entire installed table.
1236  */
1237 
1238 /* standard EBCDIC codes */
1239 #define EBCDIC_LF 0x25
1240 #define EBCDIC_NL 0x15
1241 
1242 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1243 #define EBCDIC_RT_LF 0xf25
1244 #define EBCDIC_RT_NL 0xf15
1245 
1246 /* Unicode code points */
1247 #define U_LF 0x0a
1248 #define U_NL 0x85
1249 
1250 static UBool
_EBCDICSwapLFNL(UConverterSharedData * sharedData,UErrorCode * pErrorCode)1251 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1252     UConverterMBCSTable *mbcsTable;
1253 
1254     const uint16_t *table, *results;
1255     const uint8_t *bytes;
1256 
1257     int32_t (*newStateTable)[256];
1258     uint16_t *newResults;
1259     uint8_t *p;
1260     char *name;
1261 
1262     uint32_t stage2Entry;
1263     uint32_t size, sizeofFromUBytes;
1264 
1265     mbcsTable=&sharedData->mbcs;
1266 
1267     table=mbcsTable->fromUnicodeTable;
1268     bytes=mbcsTable->fromUnicodeBytes;
1269     results=(const uint16_t *)bytes;
1270 
1271     /*
1272      * Check that this is an EBCDIC table with SBCS portion -
1273      * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1274      *
1275      * If not, ignore the option. Options are always ignored if they do not apply.
1276      */
1277     if(!(
1278          (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1279          mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
1280          mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
1281     )) {
1282         return FALSE;
1283     }
1284 
1285     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1286         if(!(
1287              EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
1288              EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
1289         )) {
1290             return FALSE;
1291         }
1292     } else /* MBCS_OUTPUT_2_SISO */ {
1293         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1294         if(!(
1295              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
1296              EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
1297         )) {
1298             return FALSE;
1299         }
1300 
1301         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1302         if(!(
1303              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
1304              EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
1305         )) {
1306             return FALSE;
1307         }
1308     }
1309 
1310     if(mbcsTable->fromUBytesLength>0) {
1311         /*
1312          * We _know_ the number of bytes in the fromUnicodeBytes array
1313          * starting with header.version 4.1.
1314          */
1315         sizeofFromUBytes=mbcsTable->fromUBytesLength;
1316     } else {
1317         /*
1318          * Otherwise:
1319          * There used to be code to enumerate the fromUnicode
1320          * trie and find the highest entry, but it was removed in ICU 3.2
1321          * because it was not tested and caused a low code coverage number.
1322          * See Jitterbug 3674.
1323          * This affects only some .cnv file formats with a header.version
1324          * below 4.1, and only when swaplfnl is requested.
1325          *
1326          * ucnvmbcs.c revision 1.99 is the last one with the
1327          * ucnv_MBCSSizeofFromUBytes() function.
1328          */
1329         *pErrorCode=U_INVALID_FORMAT_ERROR;
1330         return FALSE;
1331     }
1332 
1333     /*
1334      * The table has an appropriate format.
1335      * Allocate and build
1336      * - a modified to-Unicode state table
1337      * - a modified from-Unicode output array
1338      * - a converter name string with the swap option appended
1339      */
1340     size=
1341         mbcsTable->countStates*1024+
1342         sizeofFromUBytes+
1343         UCNV_MAX_CONVERTER_NAME_LENGTH+20;
1344     p=(uint8_t *)uprv_malloc(size);
1345     if(p==NULL) {
1346         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1347         return FALSE;
1348     }
1349 
1350     /* copy and modify the to-Unicode state table */
1351     newStateTable=(int32_t (*)[256])p;
1352     uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
1353 
1354     newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
1355     newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
1356 
1357     /* copy and modify the from-Unicode result table */
1358     newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1359     uprv_memcpy(newResults, bytes, sizeofFromUBytes);
1360 
1361     /* conveniently, the table access macros work on the left side of expressions */
1362     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1363         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
1364         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
1365     } else /* MBCS_OUTPUT_2_SISO */ {
1366         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1367         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
1368 
1369         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1370         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
1371     }
1372 
1373     /* set the canonical converter name */
1374     name=(char *)newResults+sizeofFromUBytes;
1375     uprv_strcpy(name, sharedData->staticData->name);
1376     uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
1377 
1378     /* set the pointers */
1379     umtx_lock(NULL);
1380     if(mbcsTable->swapLFNLStateTable==NULL) {
1381         mbcsTable->swapLFNLStateTable=newStateTable;
1382         mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1383         mbcsTable->swapLFNLName=name;
1384 
1385         newStateTable=NULL;
1386     }
1387     umtx_unlock(NULL);
1388 
1389     /* release the allocated memory if another thread beat us to it */
1390     if(newStateTable!=NULL) {
1391         uprv_free(newStateTable);
1392     }
1393     return TRUE;
1394 }
1395 
1396 /* reconstitute omitted fromUnicode data ------------------------------------ */
1397 
1398 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1399 static UBool U_CALLCONV
writeStage3Roundtrip(const void * context,uint32_t value,UChar32 codePoints[32])1400 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1401     UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1402     const uint16_t *table;
1403     uint32_t *stage2;
1404     uint8_t *bytes, *p;
1405     UChar32 c;
1406     int32_t i, st3;
1407 
1408     table=mbcsTable->fromUnicodeTable;
1409     bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1410 
1411     /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1412     switch(mbcsTable->outputType) {
1413     case MBCS_OUTPUT_3_EUC:
1414         if(value<=0xffff) {
1415             /* short sequences are stored directly */
1416             /* code set 0 or 1 */
1417         } else if(value<=0x8effff) {
1418             /* code set 2 */
1419             value&=0x7fff;
1420         } else /* first byte is 0x8f */ {
1421             /* code set 3 */
1422             value&=0xff7f;
1423         }
1424         break;
1425     case MBCS_OUTPUT_4_EUC:
1426         if(value<=0xffffff) {
1427             /* short sequences are stored directly */
1428             /* code set 0 or 1 */
1429         } else if(value<=0x8effffff) {
1430             /* code set 2 */
1431             value&=0x7fffff;
1432         } else /* first byte is 0x8f */ {
1433             /* code set 3 */
1434             value&=0xff7fff;
1435         }
1436         break;
1437     default:
1438         break;
1439     }
1440 
1441     for(i=0; i<=0x1f; ++value, ++i) {
1442         c=codePoints[i];
1443         if(c<0) {
1444             continue;
1445         }
1446 
1447         /* locate the stage 2 & 3 data */
1448         stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1449         p=bytes;
1450         st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1451 
1452         /* write the codepage bytes into stage 3 */
1453         switch(mbcsTable->outputType) {
1454         case MBCS_OUTPUT_3:
1455         case MBCS_OUTPUT_4_EUC:
1456             p+=st3*3;
1457             p[0]=(uint8_t)(value>>16);
1458             p[1]=(uint8_t)(value>>8);
1459             p[2]=(uint8_t)value;
1460             break;
1461         case MBCS_OUTPUT_4:
1462             ((uint32_t *)p)[st3]=value;
1463             break;
1464         default:
1465             /* 2 bytes per character */
1466             ((uint16_t *)p)[st3]=(uint16_t)value;
1467             break;
1468         }
1469 
1470         /* set the roundtrip flag */
1471         *stage2|=(1UL<<(16+(c&0xf)));
1472     }
1473     return TRUE;
1474  }
1475 
1476 static void
reconstituteData(UConverterMBCSTable * mbcsTable,uint32_t stage1Length,uint32_t stage2Length,uint32_t fullStage2Length,UErrorCode * pErrorCode)1477 reconstituteData(UConverterMBCSTable *mbcsTable,
1478                  uint32_t stage1Length, uint32_t stage2Length,
1479                  uint32_t fullStage2Length,  /* lengths are numbers of units, not bytes */
1480                  UErrorCode *pErrorCode) {
1481     uint16_t *stage1;
1482     uint32_t *stage2;
1483     uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1484     mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
1485     if(mbcsTable->reconstitutedData==NULL) {
1486         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1487         return;
1488     }
1489     uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
1490 
1491     /* copy existing data and reroute the pointers */
1492     stage1=(uint16_t *)mbcsTable->reconstitutedData;
1493     uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
1494 
1495     stage2=(uint32_t *)(stage1+stage1Length);
1496     uprv_memcpy(stage2+(fullStage2Length-stage2Length),
1497                 mbcsTable->fromUnicodeTable+stage1Length,
1498                 stage2Length*4);
1499 
1500     mbcsTable->fromUnicodeTable=stage1;
1501     mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
1502 
1503     /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1504     stage2=(uint32_t *)stage1;
1505 
1506     /* reconstitute the initial part of stage 2 from the mbcsIndex */
1507     {
1508         int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1509         int32_t stageUTF8Index=0;
1510         int32_t st1, st2, st3, i;
1511 
1512         for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1513             st2=stage1[st1];
1514             if(st2!=(int32_t)stage1Length/2) {
1515                 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1516                 for(i=0; i<16; ++i) {
1517                     st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1518                     if(st3!=0) {
1519                         /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1520                         st3>>=4;
1521                         /*
1522                          * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1523                          * allocated together as a single 64-block for access from the mbcsIndex
1524                          */
1525                         stage2[st2++]=st3++;
1526                         stage2[st2++]=st3++;
1527                         stage2[st2++]=st3++;
1528                         stage2[st2++]=st3;
1529                     } else {
1530                         /* no stage 3 block, skip */
1531                         st2+=4;
1532                     }
1533                 }
1534             } else {
1535                 /* no stage 2 block, skip */
1536                 stageUTF8Index+=16;
1537             }
1538         }
1539     }
1540 
1541     /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1542     ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1543 }
1544 
1545 /* MBCS setup functions ----------------------------------------------------- */
1546 
1547 static void
ucnv_MBCSLoad(UConverterSharedData * sharedData,UConverterLoadArgs * pArgs,const uint8_t * raw,UErrorCode * pErrorCode)1548 ucnv_MBCSLoad(UConverterSharedData *sharedData,
1549           UConverterLoadArgs *pArgs,
1550           const uint8_t *raw,
1551           UErrorCode *pErrorCode) {
1552     UDataInfo info;
1553     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1554     _MBCSHeader *header=(_MBCSHeader *)raw;
1555     uint32_t offset;
1556     uint32_t headerLength;
1557     UBool noFromU=FALSE;
1558 
1559     if(header->version[0]==4) {
1560         headerLength=MBCS_HEADER_V4_LENGTH;
1561     } else if(header->version[0]==5 && header->version[1]>=3 &&
1562               (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1563         headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1564         noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1565     } else {
1566         *pErrorCode=U_INVALID_TABLE_FORMAT;
1567         return;
1568     }
1569 
1570     mbcsTable->outputType=(uint8_t)header->flags;
1571     if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1572         *pErrorCode=U_INVALID_TABLE_FORMAT;
1573         return;
1574     }
1575 
1576     /* extension data, header version 4.2 and higher */
1577     offset=header->flags>>8;
1578     if(offset!=0) {
1579         mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1580     }
1581 
1582     if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1583         UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER;
1584         UConverterSharedData *baseSharedData;
1585         const int32_t *extIndexes;
1586         const char *baseName;
1587 
1588         /* extension-only file, load the base table and set values appropriately */
1589         if((extIndexes=mbcsTable->extIndexes)==NULL) {
1590             /* extension-only file without extension */
1591             *pErrorCode=U_INVALID_TABLE_FORMAT;
1592             return;
1593         }
1594 
1595         if(pArgs->nestedLoads!=1) {
1596             /* an extension table must not be loaded as a base table */
1597             *pErrorCode=U_INVALID_TABLE_FILE;
1598             return;
1599         }
1600 
1601         /* load the base table */
1602         baseName=(const char *)header+headerLength*4;
1603         if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
1604             /* forbid loading this same extension-only file */
1605             *pErrorCode=U_INVALID_TABLE_FORMAT;
1606             return;
1607         }
1608 
1609         /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1610         args.size=sizeof(UConverterLoadArgs);
1611         args.nestedLoads=2;
1612         args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1613         args.reserved=pArgs->reserved;
1614         args.options=pArgs->options;
1615         args.pkg=pArgs->pkg;
1616         args.name=baseName;
1617         baseSharedData=ucnv_load(&args, pErrorCode);
1618         if(U_FAILURE(*pErrorCode)) {
1619             return;
1620         }
1621         if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1622             baseSharedData->mbcs.baseSharedData!=NULL
1623         ) {
1624             ucnv_unload(baseSharedData);
1625             *pErrorCode=U_INVALID_TABLE_FORMAT;
1626             return;
1627         }
1628         if(pArgs->onlyTestIsLoadable) {
1629             /*
1630              * Exit as soon as we know that we can load the converter
1631              * and the format is valid and supported.
1632              * The worst that can happen in the following code is a memory
1633              * allocation error.
1634              */
1635             ucnv_unload(baseSharedData);
1636             return;
1637         }
1638 
1639         /* copy the base table data */
1640         uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
1641 
1642         /* overwrite values with relevant ones for the extension converter */
1643         mbcsTable->baseSharedData=baseSharedData;
1644         mbcsTable->extIndexes=extIndexes;
1645 
1646         /*
1647          * It would be possible to share the swapLFNL data with a base converter,
1648          * but the generated name would have to be different, and the memory
1649          * would have to be free'd only once.
1650          * It is easier to just create the data for the extension converter
1651          * separately when it is requested.
1652          */
1653         mbcsTable->swapLFNLStateTable=NULL;
1654         mbcsTable->swapLFNLFromUnicodeBytes=NULL;
1655         mbcsTable->swapLFNLName=NULL;
1656 
1657         /*
1658          * The reconstitutedData must be deleted only when the base converter
1659          * is unloaded.
1660          */
1661         mbcsTable->reconstitutedData=NULL;
1662 
1663         /*
1664          * Set a special, runtime-only outputType if the extension converter
1665          * is a DBCS version of a base converter that also maps single bytes.
1666          */
1667         if( sharedData->staticData->conversionType==UCNV_DBCS ||
1668                 (sharedData->staticData->conversionType==UCNV_MBCS &&
1669                  sharedData->staticData->minBytesPerChar>=2)
1670         ) {
1671             if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1672                 /* the base converter is SI/SO-stateful */
1673                 int32_t entry;
1674 
1675                 /* get the dbcs state from the state table entry for SO=0x0e */
1676                 entry=mbcsTable->stateTable[0][0xe];
1677                 if( MBCS_ENTRY_IS_FINAL(entry) &&
1678                     MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
1679                     MBCS_ENTRY_FINAL_STATE(entry)!=0
1680                 ) {
1681                     mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
1682 
1683                     mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1684                 }
1685             } else if(
1686                 baseSharedData->staticData->conversionType==UCNV_MBCS &&
1687                 baseSharedData->staticData->minBytesPerChar==1 &&
1688                 baseSharedData->staticData->maxBytesPerChar==2 &&
1689                 mbcsTable->countStates<=127
1690             ) {
1691                 /* non-stateful base converter, need to modify the state table */
1692                 int32_t (*newStateTable)[256];
1693                 int32_t *state;
1694                 int32_t i, count;
1695 
1696                 /* allocate a new state table and copy the base state table contents */
1697                 count=mbcsTable->countStates;
1698                 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
1699                 if(newStateTable==NULL) {
1700                     ucnv_unload(baseSharedData);
1701                     *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1702                     return;
1703                 }
1704 
1705                 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
1706 
1707                 /* change all final single-byte entries to go to a new all-illegal state */
1708                 state=newStateTable[0];
1709                 for(i=0; i<256; ++i) {
1710                     if(MBCS_ENTRY_IS_FINAL(state[i])) {
1711                         state[i]=MBCS_ENTRY_TRANSITION(count, 0);
1712                     }
1713                 }
1714 
1715                 /* build the new all-illegal state */
1716                 state=newStateTable[count];
1717                 for(i=0; i<256; ++i) {
1718                     state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
1719                 }
1720                 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1721                 mbcsTable->countStates=(uint8_t)(count+1);
1722                 mbcsTable->stateTableOwned=TRUE;
1723 
1724                 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1725             }
1726         }
1727 
1728         /*
1729          * unlike below for files with base tables, do not get the unicodeMask
1730          * from the sharedData; instead, use the base table's unicodeMask,
1731          * which we copied in the memcpy above;
1732          * this is necessary because the static data unicodeMask, especially
1733          * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1734          */
1735     } else {
1736         /* conversion file with a base table; an additional extension table is optional */
1737         /* make sure that the output type is known */
1738         switch(mbcsTable->outputType) {
1739         case MBCS_OUTPUT_1:
1740         case MBCS_OUTPUT_2:
1741         case MBCS_OUTPUT_3:
1742         case MBCS_OUTPUT_4:
1743         case MBCS_OUTPUT_3_EUC:
1744         case MBCS_OUTPUT_4_EUC:
1745         case MBCS_OUTPUT_2_SISO:
1746             /* OK */
1747             break;
1748         default:
1749             *pErrorCode=U_INVALID_TABLE_FORMAT;
1750             return;
1751         }
1752         if(pArgs->onlyTestIsLoadable) {
1753             /*
1754              * Exit as soon as we know that we can load the converter
1755              * and the format is valid and supported.
1756              * The worst that can happen in the following code is a memory
1757              * allocation error.
1758              */
1759             return;
1760         }
1761 
1762         mbcsTable->countStates=(uint8_t)header->countStates;
1763         mbcsTable->countToUFallbacks=header->countToUFallbacks;
1764         mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1765         mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1766         mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1767 
1768         mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1769         mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1770         mbcsTable->fromUBytesLength=header->fromUBytesLength;
1771 
1772         /*
1773          * converter versions 6.1 and up contain a unicodeMask that is
1774          * used here to select the most efficient function implementations
1775          */
1776         info.size=sizeof(UDataInfo);
1777         udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
1778         if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1779             /* mask off possible future extensions to be safe */
1780             mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1781         } else {
1782             /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1783             mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
1784         }
1785 
1786         /*
1787          * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1788          * Check for the header version, SBCS vs. MBCS, and for whether the
1789          * data structures are optimized for code points as high as what the
1790          * runtime code is designed for.
1791          * The implementation does not handle mapping tables with entries for
1792          * unpaired surrogates.
1793          */
1794         if( header->version[1]>=3 &&
1795             (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
1796             (mbcsTable->countStates==1 ?
1797                 (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1798                 (header->version[2]>=(MBCS_FAST_MAX>>8))
1799             )
1800         ) {
1801             mbcsTable->utf8Friendly=TRUE;
1802 
1803             if(mbcsTable->countStates==1) {
1804                 /*
1805                  * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1806                  * Build a table with indexes to each block, to be used instead of
1807                  * the regular stage 1/2 table.
1808                  */
1809                 int32_t i;
1810                 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1811                     mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1812                 }
1813                 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1814                 mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1815             } else {
1816                 /*
1817                  * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1818                  * The .cnv file is prebuilt with an additional stage table with indexes
1819                  * to each block.
1820                  */
1821                 mbcsTable->mbcsIndex=(const uint16_t *)
1822                     (mbcsTable->fromUnicodeBytes+
1823                      (noFromU ? 0 : mbcsTable->fromUBytesLength));
1824                 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1825             }
1826         }
1827 
1828         /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1829         {
1830             uint32_t asciiRoundtrips=0xffffffff;
1831             int32_t i;
1832 
1833             for(i=0; i<0x80; ++i) {
1834                 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
1835                     asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1836                 }
1837             }
1838             mbcsTable->asciiRoundtrips=asciiRoundtrips;
1839         }
1840 
1841         if(noFromU) {
1842             uint32_t stage1Length=
1843                 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
1844                     0x440 : 0x40;
1845             uint32_t stage2Length=
1846                 (header->offsetFromUBytes-header->offsetFromUTable)/4-
1847                 stage1Length/2;
1848             reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1849         }
1850     }
1851 
1852     /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1853     if(mbcsTable->utf8Friendly) {
1854         if(mbcsTable->countStates==1) {
1855             sharedData->impl=&_SBCSUTF8Impl;
1856         } else {
1857             if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1858                 sharedData->impl=&_DBCSUTF8Impl;
1859             }
1860         }
1861     }
1862 
1863     if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1864         /*
1865          * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1866          * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1867          */
1868         mbcsTable->asciiRoundtrips=0;
1869     }
1870 }
1871 
1872 static void
ucnv_MBCSUnload(UConverterSharedData * sharedData)1873 ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1874     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1875 
1876     if(mbcsTable->swapLFNLStateTable!=NULL) {
1877         uprv_free(mbcsTable->swapLFNLStateTable);
1878     }
1879     if(mbcsTable->stateTableOwned) {
1880         uprv_free((void *)mbcsTable->stateTable);
1881     }
1882     if(mbcsTable->baseSharedData!=NULL) {
1883         ucnv_unload(mbcsTable->baseSharedData);
1884     }
1885     if(mbcsTable->reconstitutedData!=NULL) {
1886         uprv_free(mbcsTable->reconstitutedData);
1887     }
1888 }
1889 
1890 static void
ucnv_MBCSOpen(UConverter * cnv,UConverterLoadArgs * pArgs,UErrorCode * pErrorCode)1891 ucnv_MBCSOpen(UConverter *cnv,
1892               UConverterLoadArgs *pArgs,
1893               UErrorCode *pErrorCode) {
1894     UConverterMBCSTable *mbcsTable;
1895     const int32_t *extIndexes;
1896     uint8_t outputType;
1897     int8_t maxBytesPerUChar;
1898 
1899     if(pArgs->onlyTestIsLoadable) {
1900         return;
1901     }
1902 
1903     mbcsTable=&cnv->sharedData->mbcs;
1904     outputType=mbcsTable->outputType;
1905 
1906     if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1907         /* the swaplfnl option does not apply, remove it */
1908         cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1909     }
1910 
1911     if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1912         /* do this because double-checked locking is broken */
1913         UBool isCached;
1914 
1915         umtx_lock(NULL);
1916         isCached=mbcsTable->swapLFNLStateTable!=NULL;
1917         umtx_unlock(NULL);
1918 
1919         if(!isCached) {
1920             if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1921                 if(U_FAILURE(*pErrorCode)) {
1922                     return; /* something went wrong */
1923                 }
1924 
1925                 /* the option does not apply, remove it */
1926                 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1927             }
1928         }
1929     }
1930 
1931     if(uprv_strstr(pArgs->name, "18030")!=NULL) {
1932         if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
1933             /* set a flag for GB 18030 mode, which changes the callback behavior */
1934             cnv->options|=_MBCS_OPTION_GB18030;
1935         }
1936     } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
1937         /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1938         cnv->options|=_MBCS_OPTION_KEIS;
1939     } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
1940         /* set a flag for JEF converter, which changes the SI/SO character sequence */
1941         cnv->options|=_MBCS_OPTION_JEF;
1942     } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
1943         /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1944         cnv->options|=_MBCS_OPTION_JIPS;
1945     }
1946 
1947     /* fix maxBytesPerUChar depending on outputType and options etc. */
1948     if(outputType==MBCS_OUTPUT_2_SISO) {
1949         cnv->maxBytesPerUChar=3; /* SO+DBCS */
1950     }
1951 
1952     extIndexes=mbcsTable->extIndexes;
1953     if(extIndexes!=NULL) {
1954         maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
1955         if(outputType==MBCS_OUTPUT_2_SISO) {
1956             ++maxBytesPerUChar; /* SO + multiple DBCS */
1957         }
1958 
1959         if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1960             cnv->maxBytesPerUChar=maxBytesPerUChar;
1961         }
1962     }
1963 
1964 #if 0
1965     /*
1966      * documentation of UConverter fields used for status
1967      * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1968      */
1969 
1970     /* toUnicode */
1971     cnv->toUnicodeStatus=0;     /* offset */
1972     cnv->mode=0;                /* state */
1973     cnv->toULength=0;           /* byteIndex */
1974 
1975     /* fromUnicode */
1976     cnv->fromUChar32=0;
1977     cnv->fromUnicodeStatus=1;   /* prevLength */
1978 #endif
1979 }
1980 
1981 static const char *
ucnv_MBCSGetName(const UConverter * cnv)1982 ucnv_MBCSGetName(const UConverter *cnv) {
1983     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
1984         return cnv->sharedData->mbcs.swapLFNLName;
1985     } else {
1986         return cnv->sharedData->staticData->name;
1987     }
1988 }
1989 
1990 /* MBCS-to-Unicode conversion functions ------------------------------------- */
1991 
1992 static UChar32
ucnv_MBCSGetFallback(UConverterMBCSTable * mbcsTable,uint32_t offset)1993 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
1994     const _MBCSToUFallback *toUFallbacks;
1995     uint32_t i, start, limit;
1996 
1997     limit=mbcsTable->countToUFallbacks;
1998     if(limit>0) {
1999         /* do a binary search for the fallback mapping */
2000         toUFallbacks=mbcsTable->toUFallbacks;
2001         start=0;
2002         while(start<limit-1) {
2003             i=(start+limit)/2;
2004             if(offset<toUFallbacks[i].offset) {
2005                 limit=i;
2006             } else {
2007                 start=i;
2008             }
2009         }
2010 
2011         /* did we really find it? */
2012         if(offset==toUFallbacks[start].offset) {
2013             return toUFallbacks[start].codePoint;
2014         }
2015     }
2016 
2017     return 0xfffe;
2018 }
2019 
2020 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
2021 static void
ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2022 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2023                                 UErrorCode *pErrorCode) {
2024     UConverter *cnv;
2025     const uint8_t *source, *sourceLimit;
2026     UChar *target;
2027     const UChar *targetLimit;
2028     int32_t *offsets;
2029 
2030     const int32_t (*stateTable)[256];
2031 
2032     int32_t sourceIndex;
2033 
2034     int32_t entry;
2035     UChar c;
2036     uint8_t action;
2037 
2038     /* set up the local pointers */
2039     cnv=pArgs->converter;
2040     source=(const uint8_t *)pArgs->source;
2041     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2042     target=pArgs->target;
2043     targetLimit=pArgs->targetLimit;
2044     offsets=pArgs->offsets;
2045 
2046     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2047         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2048     } else {
2049         stateTable=cnv->sharedData->mbcs.stateTable;
2050     }
2051 
2052     /* sourceIndex=-1 if the current character began in the previous buffer */
2053     sourceIndex=0;
2054 
2055     /* conversion loop */
2056     while(source<sourceLimit) {
2057         /*
2058          * This following test is to see if available input would overflow the output.
2059          * It does not catch output of more than one code unit that
2060          * overflows as a result of a surrogate pair or callback output
2061          * from the last source byte.
2062          * Therefore, those situations also test for overflows and will
2063          * then break the loop, too.
2064          */
2065         if(target>=targetLimit) {
2066             /* target is full */
2067             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2068             break;
2069         }
2070 
2071         entry=stateTable[0][*source++];
2072         /* MBCS_ENTRY_IS_FINAL(entry) */
2073 
2074         /* test the most common case first */
2075         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2076             /* output BMP code point */
2077             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2078             if(offsets!=NULL) {
2079                 *offsets++=sourceIndex;
2080             }
2081 
2082             /* normal end of action codes: prepare for a new character */
2083             ++sourceIndex;
2084             continue;
2085         }
2086 
2087         /*
2088          * An if-else-if chain provides more reliable performance for
2089          * the most common cases compared to a switch.
2090          */
2091         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2092         if(action==MBCS_STATE_VALID_DIRECT_20 ||
2093            (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2094         ) {
2095             entry=MBCS_ENTRY_FINAL_VALUE(entry);
2096             /* output surrogate pair */
2097             *target++=(UChar)(0xd800|(UChar)(entry>>10));
2098             if(offsets!=NULL) {
2099                 *offsets++=sourceIndex;
2100             }
2101             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2102             if(target<targetLimit) {
2103                 *target++=c;
2104                 if(offsets!=NULL) {
2105                     *offsets++=sourceIndex;
2106                 }
2107             } else {
2108                 /* target overflow */
2109                 cnv->UCharErrorBuffer[0]=c;
2110                 cnv->UCharErrorBufferLength=1;
2111                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2112                 break;
2113             }
2114 
2115             ++sourceIndex;
2116             continue;
2117         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2118             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2119                 /* output BMP code point */
2120                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2121                 if(offsets!=NULL) {
2122                     *offsets++=sourceIndex;
2123                 }
2124 
2125                 ++sourceIndex;
2126                 continue;
2127             }
2128         } else if(action==MBCS_STATE_UNASSIGNED) {
2129             /* just fall through */
2130         } else if(action==MBCS_STATE_ILLEGAL) {
2131             /* callback(illegal) */
2132             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2133         } else {
2134             /* reserved, must never occur */
2135             ++sourceIndex;
2136             continue;
2137         }
2138 
2139         if(U_FAILURE(*pErrorCode)) {
2140             /* callback(illegal) */
2141             break;
2142         } else /* unassigned sequences indicated with byteIndex>0 */ {
2143             /* try an extension mapping */
2144             pArgs->source=(const char *)source;
2145             cnv->toUBytes[0]=*(source-1);
2146             cnv->toULength=_extToU(cnv, cnv->sharedData,
2147                                     1, &source, sourceLimit,
2148                                     &target, targetLimit,
2149                                     &offsets, sourceIndex,
2150                                     pArgs->flush,
2151                                     pErrorCode);
2152             sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2153 
2154             if(U_FAILURE(*pErrorCode)) {
2155                 /* not mappable or buffer overflow */
2156                 break;
2157             }
2158         }
2159     }
2160 
2161     /* write back the updated pointers */
2162     pArgs->source=(const char *)source;
2163     pArgs->target=target;
2164     pArgs->offsets=offsets;
2165 }
2166 
2167 /*
2168  * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2169  * that only map to and from the BMP.
2170  * In addition to single-byte optimizations, the offset calculations
2171  * become much easier.
2172  */
2173 static void
ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2174 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2175                             UErrorCode *pErrorCode) {
2176     UConverter *cnv;
2177     const uint8_t *source, *sourceLimit, *lastSource;
2178     UChar *target;
2179     int32_t targetCapacity, length;
2180     int32_t *offsets;
2181 
2182     const int32_t (*stateTable)[256];
2183 
2184     int32_t sourceIndex;
2185 
2186     int32_t entry;
2187     uint8_t action;
2188 
2189     /* set up the local pointers */
2190     cnv=pArgs->converter;
2191     source=(const uint8_t *)pArgs->source;
2192     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2193     target=pArgs->target;
2194     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2195     offsets=pArgs->offsets;
2196 
2197     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2198         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2199     } else {
2200         stateTable=cnv->sharedData->mbcs.stateTable;
2201     }
2202 
2203     /* sourceIndex=-1 if the current character began in the previous buffer */
2204     sourceIndex=0;
2205     lastSource=source;
2206 
2207     /*
2208      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2209      * for the minimum of the sourceLength and targetCapacity
2210      */
2211     length=(int32_t)(sourceLimit-source);
2212     if(length<targetCapacity) {
2213         targetCapacity=length;
2214     }
2215 
2216 #if MBCS_UNROLL_SINGLE_TO_BMP
2217     /* unrolling makes it faster on Pentium III/Windows 2000 */
2218     /* unroll the loop with the most common case */
2219 unrolled:
2220     if(targetCapacity>=16) {
2221         int32_t count, loops, oredEntries;
2222 
2223         loops=count=targetCapacity>>4;
2224         do {
2225             oredEntries=entry=stateTable[0][*source++];
2226             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2227             oredEntries|=entry=stateTable[0][*source++];
2228             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2229             oredEntries|=entry=stateTable[0][*source++];
2230             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2231             oredEntries|=entry=stateTable[0][*source++];
2232             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2233             oredEntries|=entry=stateTable[0][*source++];
2234             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2235             oredEntries|=entry=stateTable[0][*source++];
2236             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2237             oredEntries|=entry=stateTable[0][*source++];
2238             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2239             oredEntries|=entry=stateTable[0][*source++];
2240             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2241             oredEntries|=entry=stateTable[0][*source++];
2242             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2243             oredEntries|=entry=stateTable[0][*source++];
2244             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2245             oredEntries|=entry=stateTable[0][*source++];
2246             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2247             oredEntries|=entry=stateTable[0][*source++];
2248             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2249             oredEntries|=entry=stateTable[0][*source++];
2250             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2251             oredEntries|=entry=stateTable[0][*source++];
2252             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2253             oredEntries|=entry=stateTable[0][*source++];
2254             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2255             oredEntries|=entry=stateTable[0][*source++];
2256             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2257 
2258             /* were all 16 entries really valid? */
2259             if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
2260                 /* no, return to the first of these 16 */
2261                 source-=16;
2262                 target-=16;
2263                 break;
2264             }
2265         } while(--count>0);
2266         count=loops-count;
2267         targetCapacity-=16*count;
2268 
2269         if(offsets!=NULL) {
2270             lastSource+=16*count;
2271             while(count>0) {
2272                 *offsets++=sourceIndex++;
2273                 *offsets++=sourceIndex++;
2274                 *offsets++=sourceIndex++;
2275                 *offsets++=sourceIndex++;
2276                 *offsets++=sourceIndex++;
2277                 *offsets++=sourceIndex++;
2278                 *offsets++=sourceIndex++;
2279                 *offsets++=sourceIndex++;
2280                 *offsets++=sourceIndex++;
2281                 *offsets++=sourceIndex++;
2282                 *offsets++=sourceIndex++;
2283                 *offsets++=sourceIndex++;
2284                 *offsets++=sourceIndex++;
2285                 *offsets++=sourceIndex++;
2286                 *offsets++=sourceIndex++;
2287                 *offsets++=sourceIndex++;
2288                 --count;
2289             }
2290         }
2291     }
2292 #endif
2293 
2294     /* conversion loop */
2295     while(targetCapacity > 0 && source < sourceLimit) {
2296         entry=stateTable[0][*source++];
2297         /* MBCS_ENTRY_IS_FINAL(entry) */
2298 
2299         /* test the most common case first */
2300         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2301             /* output BMP code point */
2302             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2303             --targetCapacity;
2304             continue;
2305         }
2306 
2307         /*
2308          * An if-else-if chain provides more reliable performance for
2309          * the most common cases compared to a switch.
2310          */
2311         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2312         if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2313             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2314                 /* output BMP code point */
2315                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2316                 --targetCapacity;
2317                 continue;
2318             }
2319         } else if(action==MBCS_STATE_UNASSIGNED) {
2320             /* just fall through */
2321         } else if(action==MBCS_STATE_ILLEGAL) {
2322             /* callback(illegal) */
2323             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2324         } else {
2325             /* reserved, must never occur */
2326             continue;
2327         }
2328 
2329         /* set offsets since the start or the last extension */
2330         if(offsets!=NULL) {
2331             int32_t count=(int32_t)(source-lastSource);
2332 
2333             /* predecrement: do not set the offset for the callback-causing character */
2334             while(--count>0) {
2335                 *offsets++=sourceIndex++;
2336             }
2337             /* offset and sourceIndex are now set for the current character */
2338         }
2339 
2340         if(U_FAILURE(*pErrorCode)) {
2341             /* callback(illegal) */
2342             break;
2343         } else /* unassigned sequences indicated with byteIndex>0 */ {
2344             /* try an extension mapping */
2345             lastSource=source;
2346             cnv->toUBytes[0]=*(source-1);
2347             cnv->toULength=_extToU(cnv, cnv->sharedData,
2348                                     1, &source, sourceLimit,
2349                                     &target, pArgs->targetLimit,
2350                                     &offsets, sourceIndex,
2351                                     pArgs->flush,
2352                                     pErrorCode);
2353             sourceIndex+=1+(int32_t)(source-lastSource);
2354 
2355             if(U_FAILURE(*pErrorCode)) {
2356                 /* not mappable or buffer overflow */
2357                 break;
2358             }
2359 
2360             /* recalculate the targetCapacity after an extension mapping */
2361             targetCapacity=(int32_t)(pArgs->targetLimit-target);
2362             length=(int32_t)(sourceLimit-source);
2363             if(length<targetCapacity) {
2364                 targetCapacity=length;
2365             }
2366         }
2367 
2368 #if MBCS_UNROLL_SINGLE_TO_BMP
2369         /* unrolling makes it faster on Pentium III/Windows 2000 */
2370         goto unrolled;
2371 #endif
2372     }
2373 
2374     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2375         /* target is full */
2376         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2377     }
2378 
2379     /* set offsets since the start or the last callback */
2380     if(offsets!=NULL) {
2381         size_t count=source-lastSource;
2382         while(count>0) {
2383             *offsets++=sourceIndex++;
2384             --count;
2385         }
2386     }
2387 
2388     /* write back the updated pointers */
2389     pArgs->source=(const char *)source;
2390     pArgs->target=target;
2391     pArgs->offsets=offsets;
2392 }
2393 
2394 static UBool
hasValidTrailBytes(const int32_t (* stateTable)[256],uint8_t state)2395 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2396     const int32_t *row=stateTable[state];
2397     int32_t b, entry;
2398     /* First test for final entries in this state for some commonly valid byte values. */
2399     entry=row[0xa1];
2400     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2401         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2402     ) {
2403         return TRUE;
2404     }
2405     entry=row[0x41];
2406     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2407         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2408     ) {
2409         return TRUE;
2410     }
2411     /* Then test for final entries in this state. */
2412     for(b=0; b<=0xff; ++b) {
2413         entry=row[b];
2414         if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2415             MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2416         ) {
2417             return TRUE;
2418         }
2419     }
2420     /* Then recurse for transition entries. */
2421     for(b=0; b<=0xff; ++b) {
2422         entry=row[b];
2423         if( MBCS_ENTRY_IS_TRANSITION(entry) &&
2424             hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
2425         ) {
2426             return TRUE;
2427         }
2428     }
2429     return FALSE;
2430 }
2431 
2432 /*
2433  * Is byte b a single/lead byte in this state?
2434  * Recurse for transition states, because here we don't want to say that
2435  * b is a lead byte if all byte sequences that start with b are illegal.
2436  */
2437 static UBool
isSingleOrLead(const int32_t (* stateTable)[256],uint8_t state,UBool isDBCSOnly,uint8_t b)2438 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2439     const int32_t *row=stateTable[state];
2440     int32_t entry=row[b];
2441     if(MBCS_ENTRY_IS_TRANSITION(entry)) {   /* lead byte */
2442         return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
2443     } else {
2444         uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2445         if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2446             return FALSE;   /* SI/SO are illegal for DBCS-only conversion */
2447         } else {
2448             return action!=MBCS_STATE_ILLEGAL;
2449         }
2450     }
2451 }
2452 
2453 U_CFUNC void
ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2454 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2455                           UErrorCode *pErrorCode) {
2456     UConverter *cnv;
2457     const uint8_t *source, *sourceLimit;
2458     UChar *target;
2459     const UChar *targetLimit;
2460     int32_t *offsets;
2461 
2462     const int32_t (*stateTable)[256];
2463     const uint16_t *unicodeCodeUnits;
2464 
2465     uint32_t offset;
2466     uint8_t state;
2467     int8_t byteIndex;
2468     uint8_t *bytes;
2469 
2470     int32_t sourceIndex, nextSourceIndex;
2471 
2472     int32_t entry;
2473     UChar c;
2474     uint8_t action;
2475 
2476     /* use optimized function if possible */
2477     cnv=pArgs->converter;
2478 
2479     if(cnv->preToULength>0) {
2480         /*
2481          * pass sourceIndex=-1 because we continue from an earlier buffer
2482          * in the future, this may change with continuous offsets
2483          */
2484         ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
2485 
2486         if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2487             return;
2488         }
2489     }
2490 
2491     if(cnv->sharedData->mbcs.countStates==1) {
2492         if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
2493             ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2494         } else {
2495             ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2496         }
2497         return;
2498     }
2499 
2500     /* set up the local pointers */
2501     source=(const uint8_t *)pArgs->source;
2502     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2503     target=pArgs->target;
2504     targetLimit=pArgs->targetLimit;
2505     offsets=pArgs->offsets;
2506 
2507     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2508         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2509     } else {
2510         stateTable=cnv->sharedData->mbcs.stateTable;
2511     }
2512     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2513 
2514     /* get the converter state from UConverter */
2515     offset=cnv->toUnicodeStatus;
2516     byteIndex=cnv->toULength;
2517     bytes=cnv->toUBytes;
2518 
2519     /*
2520      * if we are in the SBCS state for a DBCS-only converter,
2521      * then load the DBCS state from the MBCS data
2522      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2523      */
2524     if((state=(uint8_t)(cnv->mode))==0) {
2525         state=cnv->sharedData->mbcs.dbcsOnlyState;
2526     }
2527 
2528     /* sourceIndex=-1 if the current character began in the previous buffer */
2529     sourceIndex=byteIndex==0 ? 0 : -1;
2530     nextSourceIndex=0;
2531 
2532     /* conversion loop */
2533     while(source<sourceLimit) {
2534         /*
2535          * This following test is to see if available input would overflow the output.
2536          * It does not catch output of more than one code unit that
2537          * overflows as a result of a surrogate pair or callback output
2538          * from the last source byte.
2539          * Therefore, those situations also test for overflows and will
2540          * then break the loop, too.
2541          */
2542         if(target>=targetLimit) {
2543             /* target is full */
2544             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2545             break;
2546         }
2547 
2548         if(byteIndex==0) {
2549             /* optimized loop for 1/2-byte input and BMP output */
2550             if(offsets==NULL) {
2551                 do {
2552                     entry=stateTable[state][*source];
2553                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2554                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2555                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2556 
2557                         ++source;
2558                         if( source<sourceLimit &&
2559                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2560                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2561                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2562                         ) {
2563                             ++source;
2564                             *target++=c;
2565                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2566                             offset=0;
2567                         } else {
2568                             /* set the state and leave the optimized loop */
2569                             bytes[0]=*(source-1);
2570                             byteIndex=1;
2571                             break;
2572                         }
2573                     } else {
2574                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2575                             /* output BMP code point */
2576                             ++source;
2577                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2578                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2579                         } else {
2580                             /* leave the optimized loop */
2581                             break;
2582                         }
2583                     }
2584                 } while(source<sourceLimit && target<targetLimit);
2585             } else /* offsets!=NULL */ {
2586                 do {
2587                     entry=stateTable[state][*source];
2588                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2589                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2590                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2591 
2592                         ++source;
2593                         if( source<sourceLimit &&
2594                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2595                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2596                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2597                         ) {
2598                             ++source;
2599                             *target++=c;
2600                             if(offsets!=NULL) {
2601                                 *offsets++=sourceIndex;
2602                                 sourceIndex=(nextSourceIndex+=2);
2603                             }
2604                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2605                             offset=0;
2606                         } else {
2607                             /* set the state and leave the optimized loop */
2608                             ++nextSourceIndex;
2609                             bytes[0]=*(source-1);
2610                             byteIndex=1;
2611                             break;
2612                         }
2613                     } else {
2614                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2615                             /* output BMP code point */
2616                             ++source;
2617                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2618                             if(offsets!=NULL) {
2619                                 *offsets++=sourceIndex;
2620                                 sourceIndex=++nextSourceIndex;
2621                             }
2622                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2623                         } else {
2624                             /* leave the optimized loop */
2625                             break;
2626                         }
2627                     }
2628                 } while(source<sourceLimit && target<targetLimit);
2629             }
2630 
2631             /*
2632              * these tests and break statements could be put inside the loop
2633              * if C had "break outerLoop" like Java
2634              */
2635             if(source>=sourceLimit) {
2636                 break;
2637             }
2638             if(target>=targetLimit) {
2639                 /* target is full */
2640                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2641                 break;
2642             }
2643 
2644             ++nextSourceIndex;
2645             bytes[byteIndex++]=*source++;
2646         } else /* byteIndex>0 */ {
2647             ++nextSourceIndex;
2648             entry=stateTable[state][bytes[byteIndex++]=*source++];
2649         }
2650 
2651         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2652             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2653             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2654             continue;
2655         }
2656 
2657         /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2658         cnv->mode=state;
2659 
2660         /* set the next state early so that we can reuse the entry variable */
2661         state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2662 
2663         /*
2664          * An if-else-if chain provides more reliable performance for
2665          * the most common cases compared to a switch.
2666          */
2667         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2668         if(action==MBCS_STATE_VALID_16) {
2669             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2670             c=unicodeCodeUnits[offset];
2671             if(c<0xfffe) {
2672                 /* output BMP code point */
2673                 *target++=c;
2674                 if(offsets!=NULL) {
2675                     *offsets++=sourceIndex;
2676                 }
2677                 byteIndex=0;
2678             } else if(c==0xfffe) {
2679                 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2680                     /* output fallback BMP code point */
2681                     *target++=(UChar)entry;
2682                     if(offsets!=NULL) {
2683                         *offsets++=sourceIndex;
2684                     }
2685                     byteIndex=0;
2686                 }
2687             } else {
2688                 /* callback(illegal) */
2689                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2690             }
2691         } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2692             /* output BMP code point */
2693             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2694             if(offsets!=NULL) {
2695                 *offsets++=sourceIndex;
2696             }
2697             byteIndex=0;
2698         } else if(action==MBCS_STATE_VALID_16_PAIR) {
2699             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2700             c=unicodeCodeUnits[offset++];
2701             if(c<0xd800) {
2702                 /* output BMP code point below 0xd800 */
2703                 *target++=c;
2704                 if(offsets!=NULL) {
2705                     *offsets++=sourceIndex;
2706                 }
2707                 byteIndex=0;
2708             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2709                 /* output roundtrip or fallback surrogate pair */
2710                 *target++=(UChar)(c&0xdbff);
2711                 if(offsets!=NULL) {
2712                     *offsets++=sourceIndex;
2713                 }
2714                 byteIndex=0;
2715                 if(target<targetLimit) {
2716                     *target++=unicodeCodeUnits[offset];
2717                     if(offsets!=NULL) {
2718                         *offsets++=sourceIndex;
2719                     }
2720                 } else {
2721                     /* target overflow */
2722                     cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2723                     cnv->UCharErrorBufferLength=1;
2724                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2725 
2726                     offset=0;
2727                     break;
2728                 }
2729             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2730                 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2731                 *target++=unicodeCodeUnits[offset];
2732                 if(offsets!=NULL) {
2733                     *offsets++=sourceIndex;
2734                 }
2735                 byteIndex=0;
2736             } else if(c==0xffff) {
2737                 /* callback(illegal) */
2738                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2739             }
2740         } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2741                   (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2742         ) {
2743             entry=MBCS_ENTRY_FINAL_VALUE(entry);
2744             /* output surrogate pair */
2745             *target++=(UChar)(0xd800|(UChar)(entry>>10));
2746             if(offsets!=NULL) {
2747                 *offsets++=sourceIndex;
2748             }
2749             byteIndex=0;
2750             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2751             if(target<targetLimit) {
2752                 *target++=c;
2753                 if(offsets!=NULL) {
2754                     *offsets++=sourceIndex;
2755                 }
2756             } else {
2757                 /* target overflow */
2758                 cnv->UCharErrorBuffer[0]=c;
2759                 cnv->UCharErrorBufferLength=1;
2760                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2761 
2762                 offset=0;
2763                 break;
2764             }
2765         } else if(action==MBCS_STATE_CHANGE_ONLY) {
2766             /*
2767              * This serves as a state change without any output.
2768              * It is useful for reading simple stateful encodings,
2769              * for example using just Shift-In/Shift-Out codes.
2770              * The 21 unused bits may later be used for more sophisticated
2771              * state transitions.
2772              */
2773             if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2774                 byteIndex=0;
2775             } else {
2776                 /* SI/SO are illegal for DBCS-only conversion */
2777                 state=(uint8_t)(cnv->mode); /* restore the previous state */
2778 
2779                 /* callback(illegal) */
2780                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2781             }
2782         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2783             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2784                 /* output BMP code point */
2785                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2786                 if(offsets!=NULL) {
2787                     *offsets++=sourceIndex;
2788                 }
2789                 byteIndex=0;
2790             }
2791         } else if(action==MBCS_STATE_UNASSIGNED) {
2792             /* just fall through */
2793         } else if(action==MBCS_STATE_ILLEGAL) {
2794             /* callback(illegal) */
2795             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2796         } else {
2797             /* reserved, must never occur */
2798             byteIndex=0;
2799         }
2800 
2801         /* end of action codes: prepare for a new character */
2802         offset=0;
2803 
2804         if(byteIndex==0) {
2805             sourceIndex=nextSourceIndex;
2806         } else if(U_FAILURE(*pErrorCode)) {
2807             /* callback(illegal) */
2808             if(byteIndex>1) {
2809                 /*
2810                  * Ticket 5691: consistent illegal sequences:
2811                  * - We include at least the first byte in the illegal sequence.
2812                  * - If any of the non-initial bytes could be the start of a character,
2813                  *   we stop the illegal sequence before the first one of those.
2814                  */
2815                 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2816                 int8_t i;
2817                 for(i=1;
2818                     i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2819                     ++i) {}
2820                 if(i<byteIndex) {
2821                     /* Back out some bytes. */
2822                     int8_t backOutDistance=byteIndex-i;
2823                     int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2824                     byteIndex=i;  /* length of reported illegal byte sequence */
2825                     if(backOutDistance<=bytesFromThisBuffer) {
2826                         source-=backOutDistance;
2827                     } else {
2828                         /* Back out bytes from the previous buffer: Need to replay them. */
2829                         cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2830                         /* preToULength is negative! */
2831                         uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
2832                         source=(const uint8_t *)pArgs->source;
2833                     }
2834                 }
2835             }
2836             break;
2837         } else /* unassigned sequences indicated with byteIndex>0 */ {
2838             /* try an extension mapping */
2839             pArgs->source=(const char *)source;
2840             byteIndex=_extToU(cnv, cnv->sharedData,
2841                               byteIndex, &source, sourceLimit,
2842                               &target, targetLimit,
2843                               &offsets, sourceIndex,
2844                               pArgs->flush,
2845                               pErrorCode);
2846             sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2847 
2848             if(U_FAILURE(*pErrorCode)) {
2849                 /* not mappable or buffer overflow */
2850                 break;
2851             }
2852         }
2853     }
2854 
2855     /* set the converter state back into UConverter */
2856     cnv->toUnicodeStatus=offset;
2857     cnv->mode=state;
2858     cnv->toULength=byteIndex;
2859 
2860     /* write back the updated pointers */
2861     pArgs->source=(const char *)source;
2862     pArgs->target=target;
2863     pArgs->offsets=offsets;
2864 }
2865 
2866 /*
2867  * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2868  * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2869  */
2870 static UChar32
ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2871 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2872                         UErrorCode *pErrorCode) {
2873     UConverter *cnv;
2874     const int32_t (*stateTable)[256];
2875     const uint8_t *source, *sourceLimit;
2876 
2877     int32_t entry;
2878     uint8_t action;
2879 
2880     /* set up the local pointers */
2881     cnv=pArgs->converter;
2882     source=(const uint8_t *)pArgs->source;
2883     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2884     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2885         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2886     } else {
2887         stateTable=cnv->sharedData->mbcs.stateTable;
2888     }
2889 
2890     /* conversion loop */
2891     while(source<sourceLimit) {
2892         entry=stateTable[0][*source++];
2893         /* MBCS_ENTRY_IS_FINAL(entry) */
2894 
2895         /* write back the updated pointer early so that we can return directly */
2896         pArgs->source=(const char *)source;
2897 
2898         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2899             /* output BMP code point */
2900             return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2901         }
2902 
2903         /*
2904          * An if-else-if chain provides more reliable performance for
2905          * the most common cases compared to a switch.
2906          */
2907         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2908         if( action==MBCS_STATE_VALID_DIRECT_20 ||
2909             (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2910         ) {
2911             /* output supplementary code point */
2912             return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2913         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2914             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2915                 /* output BMP code point */
2916                 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2917             }
2918         } else if(action==MBCS_STATE_UNASSIGNED) {
2919             /* just fall through */
2920         } else if(action==MBCS_STATE_ILLEGAL) {
2921             /* callback(illegal) */
2922             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2923         } else {
2924             /* reserved, must never occur */
2925             continue;
2926         }
2927 
2928         if(U_FAILURE(*pErrorCode)) {
2929             /* callback(illegal) */
2930             break;
2931         } else /* unassigned sequence */ {
2932             /* defer to the generic implementation */
2933             pArgs->source=(const char *)source-1;
2934             return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2935         }
2936     }
2937 
2938     /* no output because of empty input or only state changes */
2939     *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2940     return 0xffff;
2941 }
2942 
2943 /*
2944  * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2945  * conversion without offset handling.
2946  *
2947  * When a character does not have a mapping to Unicode, then we return to the
2948  * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2949  * handling.
2950  * We also defer to the generic code in other complicated cases and have them
2951  * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2952  *
2953  * All normal mappings and errors are handled here.
2954  */
2955 static UChar32
ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs * pArgs,UErrorCode * pErrorCode)2956 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2957                   UErrorCode *pErrorCode) {
2958     UConverter *cnv;
2959     const uint8_t *source, *sourceLimit, *lastSource;
2960 
2961     const int32_t (*stateTable)[256];
2962     const uint16_t *unicodeCodeUnits;
2963 
2964     uint32_t offset;
2965     uint8_t state;
2966 
2967     int32_t entry;
2968     UChar32 c;
2969     uint8_t action;
2970 
2971     /* use optimized function if possible */
2972     cnv=pArgs->converter;
2973 
2974     if(cnv->preToULength>0) {
2975         /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2976         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2977     }
2978 
2979     if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
2980         /*
2981          * Using the generic ucnv_getNextUChar() code lets us deal correctly
2982          * with the rare case of a codepage that maps single surrogates
2983          * without adding the complexity to this already complicated function here.
2984          */
2985         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2986     } else if(cnv->sharedData->mbcs.countStates==1) {
2987         return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2988     }
2989 
2990     /* set up the local pointers */
2991     source=lastSource=(const uint8_t *)pArgs->source;
2992     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2993 
2994     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2995         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2996     } else {
2997         stateTable=cnv->sharedData->mbcs.stateTable;
2998     }
2999     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
3000 
3001     /* get the converter state from UConverter */
3002     offset=cnv->toUnicodeStatus;
3003 
3004     /*
3005      * if we are in the SBCS state for a DBCS-only converter,
3006      * then load the DBCS state from the MBCS data
3007      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
3008      */
3009     if((state=(uint8_t)(cnv->mode))==0) {
3010         state=cnv->sharedData->mbcs.dbcsOnlyState;
3011     }
3012 
3013     /* conversion loop */
3014     c=U_SENTINEL;
3015     while(source<sourceLimit) {
3016         entry=stateTable[state][*source++];
3017         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3018             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3019             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3020 
3021             /* optimization for 1/2-byte input and BMP output */
3022             if( source<sourceLimit &&
3023                 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
3024                 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
3025                 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
3026             ) {
3027                 ++source;
3028                 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
3029                 /* output BMP code point */
3030                 break;
3031             }
3032         } else {
3033             /* save the previous state for proper extension mapping with SI/SO-stateful converters */
3034             cnv->mode=state;
3035 
3036             /* set the next state early so that we can reuse the entry variable */
3037             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
3038 
3039             /*
3040              * An if-else-if chain provides more reliable performance for
3041              * the most common cases compared to a switch.
3042              */
3043             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3044             if(action==MBCS_STATE_VALID_DIRECT_16) {
3045                 /* output BMP code point */
3046                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3047                 break;
3048             } else if(action==MBCS_STATE_VALID_16) {
3049                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3050                 c=unicodeCodeUnits[offset];
3051                 if(c<0xfffe) {
3052                     /* output BMP code point */
3053                     break;
3054                 } else if(c==0xfffe) {
3055                     if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
3056                         break;
3057                     }
3058                 } else {
3059                     /* callback(illegal) */
3060                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3061                 }
3062             } else if(action==MBCS_STATE_VALID_16_PAIR) {
3063                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3064                 c=unicodeCodeUnits[offset++];
3065                 if(c<0xd800) {
3066                     /* output BMP code point below 0xd800 */
3067                     break;
3068                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3069                     /* output roundtrip or fallback supplementary code point */
3070                     c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
3071                     break;
3072                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3073                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3074                     c=unicodeCodeUnits[offset];
3075                     break;
3076                 } else if(c==0xffff) {
3077                     /* callback(illegal) */
3078                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3079                 }
3080             } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
3081                       (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
3082             ) {
3083                 /* output supplementary code point */
3084                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
3085                 break;
3086             } else if(action==MBCS_STATE_CHANGE_ONLY) {
3087                 /*
3088                  * This serves as a state change without any output.
3089                  * It is useful for reading simple stateful encodings,
3090                  * for example using just Shift-In/Shift-Out codes.
3091                  * The 21 unused bits may later be used for more sophisticated
3092                  * state transitions.
3093                  */
3094                 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
3095                     /* SI/SO are illegal for DBCS-only conversion */
3096                     state=(uint8_t)(cnv->mode); /* restore the previous state */
3097 
3098                     /* callback(illegal) */
3099                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3100                 }
3101             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3102                 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3103                     /* output BMP code point */
3104                     c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3105                     break;
3106                 }
3107             } else if(action==MBCS_STATE_UNASSIGNED) {
3108                 /* just fall through */
3109             } else if(action==MBCS_STATE_ILLEGAL) {
3110                 /* callback(illegal) */
3111                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3112             } else {
3113                 /* reserved (must never occur), or only state change */
3114                 offset=0;
3115                 lastSource=source;
3116                 continue;
3117             }
3118 
3119             /* end of action codes: prepare for a new character */
3120             offset=0;
3121 
3122             if(U_FAILURE(*pErrorCode)) {
3123                 /* callback(illegal) */
3124                 break;
3125             } else /* unassigned sequence */ {
3126                 /* defer to the generic implementation */
3127                 cnv->toUnicodeStatus=0;
3128                 cnv->mode=state;
3129                 pArgs->source=(const char *)lastSource;
3130                 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
3131             }
3132         }
3133     }
3134 
3135     if(c<0) {
3136         if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
3137             /* incomplete character byte sequence */
3138             uint8_t *bytes=cnv->toUBytes;
3139             cnv->toULength=(int8_t)(source-lastSource);
3140             do {
3141                 *bytes++=*lastSource++;
3142             } while(lastSource<source);
3143             *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3144         } else if(U_FAILURE(*pErrorCode)) {
3145             /* callback(illegal) */
3146             /*
3147              * Ticket 5691: consistent illegal sequences:
3148              * - We include at least the first byte in the illegal sequence.
3149              * - If any of the non-initial bytes could be the start of a character,
3150              *   we stop the illegal sequence before the first one of those.
3151              */
3152             UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3153             uint8_t *bytes=cnv->toUBytes;
3154             *bytes++=*lastSource++;     /* first byte */
3155             if(lastSource==source) {
3156                 cnv->toULength=1;
3157             } else /* lastSource<source: multi-byte character */ {
3158                 int8_t i;
3159                 for(i=1;
3160                     lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3161                     ++i
3162                 ) {
3163                     *bytes++=*lastSource++;
3164                 }
3165                 cnv->toULength=i;
3166                 source=lastSource;
3167             }
3168         } else {
3169             /* no output because of empty input or only state changes */
3170             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3171         }
3172         c=0xffff;
3173     }
3174 
3175     /* set the converter state back into UConverter, ready for a new character */
3176     cnv->toUnicodeStatus=0;
3177     cnv->mode=state;
3178 
3179     /* write back the updated pointer */
3180     pArgs->source=(const char *)source;
3181     return c;
3182 }
3183 
3184 #if 0
3185 /*
3186  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3187  * Removal improves code coverage.
3188  */
3189 /**
3190  * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3191  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3192  * It does not handle conversion extensions (_extToU()).
3193  */
3194 U_CFUNC UChar32
3195 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3196                               uint8_t b, UBool useFallback) {
3197     int32_t entry;
3198     uint8_t action;
3199 
3200     entry=sharedData->mbcs.stateTable[0][b];
3201     /* MBCS_ENTRY_IS_FINAL(entry) */
3202 
3203     if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
3204         /* output BMP code point */
3205         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3206     }
3207 
3208     /*
3209      * An if-else-if chain provides more reliable performance for
3210      * the most common cases compared to a switch.
3211      */
3212     action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3213     if(action==MBCS_STATE_VALID_DIRECT_20) {
3214         /* output supplementary code point */
3215         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3216     } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3217         if(!TO_U_USE_FALLBACK(useFallback)) {
3218             return 0xfffe;
3219         }
3220         /* output BMP code point */
3221         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3222     } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3223         if(!TO_U_USE_FALLBACK(useFallback)) {
3224             return 0xfffe;
3225         }
3226         /* output supplementary code point */
3227         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3228     } else if(action==MBCS_STATE_UNASSIGNED) {
3229         return 0xfffe;
3230     } else if(action==MBCS_STATE_ILLEGAL) {
3231         return 0xffff;
3232     } else {
3233         /* reserved, must never occur */
3234         return 0xffff;
3235     }
3236 }
3237 #endif
3238 
3239 /*
3240  * This is a simple version of _MBCSGetNextUChar() that is used
3241  * by other converter implementations.
3242  * It only returns an "assigned" result if it consumes the entire input.
3243  * It does not use state from the converter, nor error codes.
3244  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3245  * It handles conversion extensions but not GB 18030.
3246  *
3247  * Return value:
3248  * U+fffe   unassigned
3249  * U+ffff   illegal
3250  * otherwise the Unicode code point
3251  */
3252 U_CFUNC UChar32
ucnv_MBCSSimpleGetNextUChar(UConverterSharedData * sharedData,const char * source,int32_t length,UBool useFallback)3253 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
3254                         const char *source, int32_t length,
3255                         UBool useFallback) {
3256     const int32_t (*stateTable)[256];
3257     const uint16_t *unicodeCodeUnits;
3258 
3259     uint32_t offset;
3260     uint8_t state, action;
3261 
3262     UChar32 c;
3263     int32_t i, entry;
3264 
3265     if(length<=0) {
3266         /* no input at all: "illegal" */
3267         return 0xffff;
3268     }
3269 
3270 #if 0
3271 /*
3272  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3273  * TODO In future releases, verify that this function is never called for SBCS
3274  * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3275  * Removal improves code coverage.
3276  */
3277     /* use optimized function if possible */
3278     if(sharedData->mbcs.countStates==1) {
3279         if(length==1) {
3280             return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3281         } else {
3282             return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3283         }
3284     }
3285 #endif
3286 
3287     /* set up the local pointers */
3288     stateTable=sharedData->mbcs.stateTable;
3289     unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3290 
3291     /* converter state */
3292     offset=0;
3293     state=sharedData->mbcs.dbcsOnlyState;
3294 
3295     /* conversion loop */
3296     for(i=0;;) {
3297         entry=stateTable[state][(uint8_t)source[i++]];
3298         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3299             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3300             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3301 
3302             if(i==length) {
3303                 return 0xffff; /* truncated character */
3304             }
3305         } else {
3306             /*
3307              * An if-else-if chain provides more reliable performance for
3308              * the most common cases compared to a switch.
3309              */
3310             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3311             if(action==MBCS_STATE_VALID_16) {
3312                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3313                 c=unicodeCodeUnits[offset];
3314                 if(c!=0xfffe) {
3315                     /* done */
3316                 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3317                     c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3318                 /* else done with 0xfffe */
3319                 }
3320                 break;
3321             } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3322                 /* output BMP code point */
3323                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3324                 break;
3325             } else if(action==MBCS_STATE_VALID_16_PAIR) {
3326                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3327                 c=unicodeCodeUnits[offset++];
3328                 if(c<0xd800) {
3329                     /* output BMP code point below 0xd800 */
3330                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3331                     /* output roundtrip or fallback supplementary code point */
3332                     c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3333                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3334                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3335                     c=unicodeCodeUnits[offset];
3336                 } else if(c==0xffff) {
3337                     return 0xffff;
3338                 } else {
3339                     c=0xfffe;
3340                 }
3341                 break;
3342             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3343                 /* output supplementary code point */
3344                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3345                 break;
3346             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3347                 if(!TO_U_USE_FALLBACK(useFallback)) {
3348                     c=0xfffe;
3349                     break;
3350                 }
3351                 /* output BMP code point */
3352                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3353                 break;
3354             } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3355                 if(!TO_U_USE_FALLBACK(useFallback)) {
3356                     c=0xfffe;
3357                     break;
3358                 }
3359                 /* output supplementary code point */
3360                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3361                 break;
3362             } else if(action==MBCS_STATE_UNASSIGNED) {
3363                 c=0xfffe;
3364                 break;
3365             }
3366 
3367             /*
3368              * forbid MBCS_STATE_CHANGE_ONLY for this function,
3369              * and MBCS_STATE_ILLEGAL and reserved action codes
3370              */
3371             return 0xffff;
3372         }
3373     }
3374 
3375     if(i!=length) {
3376         /* illegal for this function: not all input consumed */
3377         return 0xffff;
3378     }
3379 
3380     if(c==0xfffe) {
3381         /* try an extension mapping */
3382         const int32_t *cx=sharedData->mbcs.extIndexes;
3383         if(cx!=NULL) {
3384             return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
3385         }
3386     }
3387 
3388     return c;
3389 }
3390 
3391 /* MBCS-from-Unicode conversion functions ----------------------------------- */
3392 
3393 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3394 static void
ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3395 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3396                                   UErrorCode *pErrorCode) {
3397     UConverter *cnv;
3398     const UChar *source, *sourceLimit;
3399     uint8_t *target;
3400     int32_t targetCapacity;
3401     int32_t *offsets;
3402 
3403     const uint16_t *table;
3404     const uint16_t *mbcsIndex;
3405     const uint8_t *bytes;
3406 
3407     UChar32 c;
3408 
3409     int32_t sourceIndex, nextSourceIndex;
3410 
3411     uint32_t stage2Entry;
3412     uint32_t asciiRoundtrips;
3413     uint32_t value;
3414     uint8_t unicodeMask;
3415 
3416     /* use optimized function if possible */
3417     cnv=pArgs->converter;
3418     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3419 
3420     /* set up the local pointers */
3421     source=pArgs->source;
3422     sourceLimit=pArgs->sourceLimit;
3423     target=(uint8_t *)pArgs->target;
3424     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3425     offsets=pArgs->offsets;
3426 
3427     table=cnv->sharedData->mbcs.fromUnicodeTable;
3428     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3429     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3430         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3431     } else {
3432         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3433     }
3434     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3435 
3436     /* get the converter state from UConverter */
3437     c=cnv->fromUChar32;
3438 
3439     /* sourceIndex=-1 if the current character began in the previous buffer */
3440     sourceIndex= c==0 ? 0 : -1;
3441     nextSourceIndex=0;
3442 
3443     /* conversion loop */
3444     if(c!=0 && targetCapacity>0) {
3445         goto getTrail;
3446     }
3447 
3448     while(source<sourceLimit) {
3449         /*
3450          * This following test is to see if available input would overflow the output.
3451          * It does not catch output of more than one byte that
3452          * overflows as a result of a multi-byte character or callback output
3453          * from the last source character.
3454          * Therefore, those situations also test for overflows and will
3455          * then break the loop, too.
3456          */
3457         if(targetCapacity>0) {
3458             /*
3459              * Get a correct Unicode code point:
3460              * a single UChar for a BMP code point or
3461              * a matched surrogate pair for a "supplementary code point".
3462              */
3463             c=*source++;
3464             ++nextSourceIndex;
3465             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3466                 *target++=(uint8_t)c;
3467                 if(offsets!=NULL) {
3468                     *offsets++=sourceIndex;
3469                     sourceIndex=nextSourceIndex;
3470                 }
3471                 --targetCapacity;
3472                 c=0;
3473                 continue;
3474             }
3475             /*
3476              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3477              * to avoid dealing with surrogates.
3478              * MBCS_FAST_MAX must be >=0xd7ff.
3479              */
3480             if(c<=0xd7ff) {
3481                 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
3482                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3483                 if(value==0) {
3484                     goto unassigned;
3485                 }
3486                 /* output the value */
3487             } else {
3488                 /*
3489                  * This also tests if the codepage maps single surrogates.
3490                  * If it does, then surrogates are not paired but mapped separately.
3491                  * Note that in this case unmatched surrogates are not detected.
3492                  */
3493                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3494                     if(U16_IS_SURROGATE_LEAD(c)) {
3495 getTrail:
3496                         if(source<sourceLimit) {
3497                             /* test the following code unit */
3498                             UChar trail=*source;
3499                             if(U16_IS_TRAIL(trail)) {
3500                                 ++source;
3501                                 ++nextSourceIndex;
3502                                 c=U16_GET_SUPPLEMENTARY(c, trail);
3503                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3504                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3505                                     /* callback(unassigned) */
3506                                     goto unassigned;
3507                                 }
3508                                 /* convert this supplementary code point */
3509                                 /* exit this condition tree */
3510                             } else {
3511                                 /* this is an unmatched lead code unit (1st surrogate) */
3512                                 /* callback(illegal) */
3513                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3514                                 break;
3515                             }
3516                         } else {
3517                             /* no more input */
3518                             break;
3519                         }
3520                     } else {
3521                         /* this is an unmatched trail code unit (2nd surrogate) */
3522                         /* callback(illegal) */
3523                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3524                         break;
3525                     }
3526                 }
3527 
3528                 /* convert the Unicode code point in c into codepage bytes */
3529                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
3530 
3531                 /* get the bytes and the length for the output */
3532                 /* MBCS_OUTPUT_2 */
3533                 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
3534 
3535                 /* is this code point assigned, or do we use fallbacks? */
3536                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
3537                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
3538                 ) {
3539                     /*
3540                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
3541                      * There is no way with this data structure for fallback output
3542                      * to be a zero byte.
3543                      */
3544 
3545 unassigned:
3546                     /* try an extension mapping */
3547                     pArgs->source=source;
3548                     c=_extFromU(cnv, cnv->sharedData,
3549                                 c, &source, sourceLimit,
3550                                 &target, target+targetCapacity,
3551                                 &offsets, sourceIndex,
3552                                 pArgs->flush,
3553                                 pErrorCode);
3554                     nextSourceIndex+=(int32_t)(source-pArgs->source);
3555 
3556                     if(U_FAILURE(*pErrorCode)) {
3557                         /* not mappable or buffer overflow */
3558                         break;
3559                     } else {
3560                         /* a mapping was written to the target, continue */
3561 
3562                         /* recalculate the targetCapacity after an extension mapping */
3563                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3564 
3565                         /* normal end of conversion: prepare for a new character */
3566                         sourceIndex=nextSourceIndex;
3567                         continue;
3568                     }
3569                 }
3570             }
3571 
3572             /* write the output character bytes from value and length */
3573             /* from the first if in the loop we know that targetCapacity>0 */
3574             if(value<=0xff) {
3575                 /* this is easy because we know that there is enough space */
3576                 *target++=(uint8_t)value;
3577                 if(offsets!=NULL) {
3578                     *offsets++=sourceIndex;
3579                 }
3580                 --targetCapacity;
3581             } else /* length==2 */ {
3582                 *target++=(uint8_t)(value>>8);
3583                 if(2<=targetCapacity) {
3584                     *target++=(uint8_t)value;
3585                     if(offsets!=NULL) {
3586                         *offsets++=sourceIndex;
3587                         *offsets++=sourceIndex;
3588                     }
3589                     targetCapacity-=2;
3590                 } else {
3591                     if(offsets!=NULL) {
3592                         *offsets++=sourceIndex;
3593                     }
3594                     cnv->charErrorBuffer[0]=(char)value;
3595                     cnv->charErrorBufferLength=1;
3596 
3597                     /* target overflow */
3598                     targetCapacity=0;
3599                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3600                     c=0;
3601                     break;
3602                 }
3603             }
3604 
3605             /* normal end of conversion: prepare for a new character */
3606             c=0;
3607             sourceIndex=nextSourceIndex;
3608             continue;
3609         } else {
3610             /* target is full */
3611             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3612             break;
3613         }
3614     }
3615 
3616     /* set the converter state back into UConverter */
3617     cnv->fromUChar32=c;
3618 
3619     /* write back the updated pointers */
3620     pArgs->source=source;
3621     pArgs->target=(char *)target;
3622     pArgs->offsets=offsets;
3623 }
3624 
3625 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3626 static void
ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3627 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3628                                   UErrorCode *pErrorCode) {
3629     UConverter *cnv;
3630     const UChar *source, *sourceLimit;
3631     uint8_t *target;
3632     int32_t targetCapacity;
3633     int32_t *offsets;
3634 
3635     const uint16_t *table;
3636     const uint16_t *results;
3637 
3638     UChar32 c;
3639 
3640     int32_t sourceIndex, nextSourceIndex;
3641 
3642     uint16_t value, minValue;
3643     UBool hasSupplementary;
3644 
3645     /* set up the local pointers */
3646     cnv=pArgs->converter;
3647     source=pArgs->source;
3648     sourceLimit=pArgs->sourceLimit;
3649     target=(uint8_t *)pArgs->target;
3650     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3651     offsets=pArgs->offsets;
3652 
3653     table=cnv->sharedData->mbcs.fromUnicodeTable;
3654     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3655         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3656     } else {
3657         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3658     }
3659 
3660     if(cnv->useFallback) {
3661         /* use all roundtrip and fallback results */
3662         minValue=0x800;
3663     } else {
3664         /* use only roundtrips and fallbacks from private-use characters */
3665         minValue=0xc00;
3666     }
3667     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
3668 
3669     /* get the converter state from UConverter */
3670     c=cnv->fromUChar32;
3671 
3672     /* sourceIndex=-1 if the current character began in the previous buffer */
3673     sourceIndex= c==0 ? 0 : -1;
3674     nextSourceIndex=0;
3675 
3676     /* conversion loop */
3677     if(c!=0 && targetCapacity>0) {
3678         goto getTrail;
3679     }
3680 
3681     while(source<sourceLimit) {
3682         /*
3683          * This following test is to see if available input would overflow the output.
3684          * It does not catch output of more than one byte that
3685          * overflows as a result of a multi-byte character or callback output
3686          * from the last source character.
3687          * Therefore, those situations also test for overflows and will
3688          * then break the loop, too.
3689          */
3690         if(targetCapacity>0) {
3691             /*
3692              * Get a correct Unicode code point:
3693              * a single UChar for a BMP code point or
3694              * a matched surrogate pair for a "supplementary code point".
3695              */
3696             c=*source++;
3697             ++nextSourceIndex;
3698             if(U16_IS_SURROGATE(c)) {
3699                 if(U16_IS_SURROGATE_LEAD(c)) {
3700 getTrail:
3701                     if(source<sourceLimit) {
3702                         /* test the following code unit */
3703                         UChar trail=*source;
3704                         if(U16_IS_TRAIL(trail)) {
3705                             ++source;
3706                             ++nextSourceIndex;
3707                             c=U16_GET_SUPPLEMENTARY(c, trail);
3708                             if(!hasSupplementary) {
3709                                 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3710                                 /* callback(unassigned) */
3711                                 goto unassigned;
3712                             }
3713                             /* convert this supplementary code point */
3714                             /* exit this condition tree */
3715                         } else {
3716                             /* this is an unmatched lead code unit (1st surrogate) */
3717                             /* callback(illegal) */
3718                             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3719                             break;
3720                         }
3721                     } else {
3722                         /* no more input */
3723                         break;
3724                     }
3725                 } else {
3726                     /* this is an unmatched trail code unit (2nd surrogate) */
3727                     /* callback(illegal) */
3728                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3729                     break;
3730                 }
3731             }
3732 
3733             /* convert the Unicode code point in c into codepage bytes */
3734             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3735 
3736             /* is this code point assigned, or do we use fallbacks? */
3737             if(value>=minValue) {
3738                 /* assigned, write the output character bytes from value and length */
3739                 /* length==1 */
3740                 /* this is easy because we know that there is enough space */
3741                 *target++=(uint8_t)value;
3742                 if(offsets!=NULL) {
3743                     *offsets++=sourceIndex;
3744                 }
3745                 --targetCapacity;
3746 
3747                 /* normal end of conversion: prepare for a new character */
3748                 c=0;
3749                 sourceIndex=nextSourceIndex;
3750             } else { /* unassigned */
3751 unassigned:
3752                 /* try an extension mapping */
3753                 pArgs->source=source;
3754                 c=_extFromU(cnv, cnv->sharedData,
3755                             c, &source, sourceLimit,
3756                             &target, target+targetCapacity,
3757                             &offsets, sourceIndex,
3758                             pArgs->flush,
3759                             pErrorCode);
3760                 nextSourceIndex+=(int32_t)(source-pArgs->source);
3761 
3762                 if(U_FAILURE(*pErrorCode)) {
3763                     /* not mappable or buffer overflow */
3764                     break;
3765                 } else {
3766                     /* a mapping was written to the target, continue */
3767 
3768                     /* recalculate the targetCapacity after an extension mapping */
3769                     targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3770 
3771                     /* normal end of conversion: prepare for a new character */
3772                     sourceIndex=nextSourceIndex;
3773                 }
3774             }
3775         } else {
3776             /* target is full */
3777             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3778             break;
3779         }
3780     }
3781 
3782     /* set the converter state back into UConverter */
3783     cnv->fromUChar32=c;
3784 
3785     /* write back the updated pointers */
3786     pArgs->source=source;
3787     pArgs->target=(char *)target;
3788     pArgs->offsets=offsets;
3789 }
3790 
3791 /*
3792  * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3793  * that map only to and from the BMP.
3794  * In addition to single-byte/state optimizations, the offset calculations
3795  * become much easier.
3796  * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3797  * but measurements have shown that this diminishes performance
3798  * in more cases than it improves it.
3799  * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3800  * for various MBCS and SBCS optimizations.
3801  */
3802 static void
ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)3803 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3804                               UErrorCode *pErrorCode) {
3805     UConverter *cnv;
3806     const UChar *source, *sourceLimit, *lastSource;
3807     uint8_t *target;
3808     int32_t targetCapacity, length;
3809     int32_t *offsets;
3810 
3811     const uint16_t *table;
3812     const uint16_t *results;
3813 
3814     UChar32 c;
3815 
3816     int32_t sourceIndex;
3817 
3818     uint32_t asciiRoundtrips;
3819     uint16_t value, minValue;
3820 
3821     /* set up the local pointers */
3822     cnv=pArgs->converter;
3823     source=pArgs->source;
3824     sourceLimit=pArgs->sourceLimit;
3825     target=(uint8_t *)pArgs->target;
3826     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3827     offsets=pArgs->offsets;
3828 
3829     table=cnv->sharedData->mbcs.fromUnicodeTable;
3830     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3831         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3832     } else {
3833         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3834     }
3835     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3836 
3837     if(cnv->useFallback) {
3838         /* use all roundtrip and fallback results */
3839         minValue=0x800;
3840     } else {
3841         /* use only roundtrips and fallbacks from private-use characters */
3842         minValue=0xc00;
3843     }
3844 
3845     /* get the converter state from UConverter */
3846     c=cnv->fromUChar32;
3847 
3848     /* sourceIndex=-1 if the current character began in the previous buffer */
3849     sourceIndex= c==0 ? 0 : -1;
3850     lastSource=source;
3851 
3852     /*
3853      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3854      * for the minimum of the sourceLength and targetCapacity
3855      */
3856     length=(int32_t)(sourceLimit-source);
3857     if(length<targetCapacity) {
3858         targetCapacity=length;
3859     }
3860 
3861     /* conversion loop */
3862     if(c!=0 && targetCapacity>0) {
3863         goto getTrail;
3864     }
3865 
3866 #if MBCS_UNROLL_SINGLE_FROM_BMP
3867     /* unrolling makes it slower on Pentium III/Windows 2000?! */
3868     /* unroll the loop with the most common case */
3869 unrolled:
3870     if(targetCapacity>=4) {
3871         int32_t count, loops;
3872         uint16_t andedValues;
3873 
3874         loops=count=targetCapacity>>2;
3875         do {
3876             c=*source++;
3877             andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3878             *target++=(uint8_t)value;
3879             c=*source++;
3880             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3881             *target++=(uint8_t)value;
3882             c=*source++;
3883             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3884             *target++=(uint8_t)value;
3885             c=*source++;
3886             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3887             *target++=(uint8_t)value;
3888 
3889             /* were all 4 entries really valid? */
3890             if(andedValues<minValue) {
3891                 /* no, return to the first of these 4 */
3892                 source-=4;
3893                 target-=4;
3894                 break;
3895             }
3896         } while(--count>0);
3897         count=loops-count;
3898         targetCapacity-=4*count;
3899 
3900         if(offsets!=NULL) {
3901             lastSource+=4*count;
3902             while(count>0) {
3903                 *offsets++=sourceIndex++;
3904                 *offsets++=sourceIndex++;
3905                 *offsets++=sourceIndex++;
3906                 *offsets++=sourceIndex++;
3907                 --count;
3908             }
3909         }
3910 
3911         c=0;
3912     }
3913 #endif
3914 
3915     while(targetCapacity>0) {
3916         /*
3917          * Get a correct Unicode code point:
3918          * a single UChar for a BMP code point or
3919          * a matched surrogate pair for a "supplementary code point".
3920          */
3921         c=*source++;
3922         /*
3923          * Do not immediately check for single surrogates:
3924          * Assume that they are unassigned and check for them in that case.
3925          * This speeds up the conversion of assigned characters.
3926          */
3927         /* convert the Unicode code point in c into codepage bytes */
3928         if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3929             *target++=(uint8_t)c;
3930             --targetCapacity;
3931             c=0;
3932             continue;
3933         }
3934         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3935         /* is this code point assigned, or do we use fallbacks? */
3936         if(value>=minValue) {
3937             /* assigned, write the output character bytes from value and length */
3938             /* length==1 */
3939             /* this is easy because we know that there is enough space */
3940             *target++=(uint8_t)value;
3941             --targetCapacity;
3942 
3943             /* normal end of conversion: prepare for a new character */
3944             c=0;
3945             continue;
3946         } else if(!U16_IS_SURROGATE(c)) {
3947             /* normal, unassigned BMP character */
3948         } else if(U16_IS_SURROGATE_LEAD(c)) {
3949 getTrail:
3950             if(source<sourceLimit) {
3951                 /* test the following code unit */
3952                 UChar trail=*source;
3953                 if(U16_IS_TRAIL(trail)) {
3954                     ++source;
3955                     c=U16_GET_SUPPLEMENTARY(c, trail);
3956                     /* this codepage does not map supplementary code points */
3957                     /* callback(unassigned) */
3958                 } else {
3959                     /* this is an unmatched lead code unit (1st surrogate) */
3960                     /* callback(illegal) */
3961                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3962                     break;
3963                 }
3964             } else {
3965                 /* no more input */
3966                 if (pArgs->flush) {
3967                     *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3968                 }
3969                 break;
3970             }
3971         } else {
3972             /* this is an unmatched trail code unit (2nd surrogate) */
3973             /* callback(illegal) */
3974             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3975             break;
3976         }
3977 
3978         /* c does not have a mapping */
3979 
3980         /* get the number of code units for c to correctly advance sourceIndex */
3981         length=U16_LENGTH(c);
3982 
3983         /* set offsets since the start or the last extension */
3984         if(offsets!=NULL) {
3985             int32_t count=(int32_t)(source-lastSource);
3986 
3987             /* do not set the offset for this character */
3988             count-=length;
3989 
3990             while(count>0) {
3991                 *offsets++=sourceIndex++;
3992                 --count;
3993             }
3994             /* offsets and sourceIndex are now set for the current character */
3995         }
3996 
3997         /* try an extension mapping */
3998         lastSource=source;
3999         c=_extFromU(cnv, cnv->sharedData,
4000                     c, &source, sourceLimit,
4001                     &target, (const uint8_t *)(pArgs->targetLimit),
4002                     &offsets, sourceIndex,
4003                     pArgs->flush,
4004                     pErrorCode);
4005         sourceIndex+=length+(int32_t)(source-lastSource);
4006         lastSource=source;
4007 
4008         if(U_FAILURE(*pErrorCode)) {
4009             /* not mappable or buffer overflow */
4010             break;
4011         } else {
4012             /* a mapping was written to the target, continue */
4013 
4014             /* recalculate the targetCapacity after an extension mapping */
4015             targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4016             length=(int32_t)(sourceLimit-source);
4017             if(length<targetCapacity) {
4018                 targetCapacity=length;
4019             }
4020         }
4021 
4022 #if MBCS_UNROLL_SINGLE_FROM_BMP
4023         /* unrolling makes it slower on Pentium III/Windows 2000?! */
4024         goto unrolled;
4025 #endif
4026     }
4027 
4028     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
4029         /* target is full */
4030         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4031     }
4032 
4033     /* set offsets since the start or the last callback */
4034     if(offsets!=NULL) {
4035         size_t count=source-lastSource;
4036         if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
4037             /*
4038             Caller gave us a partial supplementary character,
4039             which this function couldn't convert in any case.
4040             The callback will handle the offset.
4041             */
4042             count--;
4043         }
4044         while(count>0) {
4045             *offsets++=sourceIndex++;
4046             --count;
4047         }
4048     }
4049 
4050     /* set the converter state back into UConverter */
4051     cnv->fromUChar32=c;
4052 
4053     /* write back the updated pointers */
4054     pArgs->source=source;
4055     pArgs->target=(char *)target;
4056     pArgs->offsets=offsets;
4057 }
4058 
4059 U_CFUNC void
ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs * pArgs,UErrorCode * pErrorCode)4060 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
4061                             UErrorCode *pErrorCode) {
4062     UConverter *cnv;
4063     const UChar *source, *sourceLimit;
4064     uint8_t *target;
4065     int32_t targetCapacity;
4066     int32_t *offsets;
4067 
4068     const uint16_t *table;
4069     const uint16_t *mbcsIndex;
4070     const uint8_t *p, *bytes;
4071     uint8_t outputType;
4072 
4073     UChar32 c;
4074 
4075     int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
4076 
4077     uint32_t stage2Entry;
4078     uint32_t asciiRoundtrips;
4079     uint32_t value;
4080     /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
4081     uint8_t siBytes[2] = {0, 0};
4082     uint8_t soBytes[2] = {0, 0};
4083     uint8_t siLength, soLength;
4084     int32_t length = 0, prevLength;
4085     uint8_t unicodeMask;
4086 
4087     cnv=pArgs->converter;
4088 
4089     if(cnv->preFromUFirstCP>=0) {
4090         /*
4091          * pass sourceIndex=-1 because we continue from an earlier buffer
4092          * in the future, this may change with continuous offsets
4093          */
4094         ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
4095 
4096         if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
4097             return;
4098         }
4099     }
4100 
4101     /* use optimized function if possible */
4102     outputType=cnv->sharedData->mbcs.outputType;
4103     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
4104     if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4105         if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4106             ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
4107         } else {
4108             ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
4109         }
4110         return;
4111     } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
4112         ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
4113         return;
4114     }
4115 
4116     /* set up the local pointers */
4117     source=pArgs->source;
4118     sourceLimit=pArgs->sourceLimit;
4119     target=(uint8_t *)pArgs->target;
4120     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
4121     offsets=pArgs->offsets;
4122 
4123     table=cnv->sharedData->mbcs.fromUnicodeTable;
4124     if(cnv->sharedData->mbcs.utf8Friendly) {
4125         mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
4126     } else {
4127         mbcsIndex=NULL;
4128     }
4129     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
4130         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4131     } else {
4132         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
4133     }
4134     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4135 
4136     /* get the converter state from UConverter */
4137     c=cnv->fromUChar32;
4138 
4139     if(outputType==MBCS_OUTPUT_2_SISO) {
4140         prevLength=cnv->fromUnicodeStatus;
4141         if(prevLength==0) {
4142             /* set the real value */
4143             prevLength=1;
4144         }
4145     } else {
4146         /* prevent fromUnicodeStatus from being set to something non-0 */
4147         prevLength=0;
4148     }
4149 
4150     /* sourceIndex=-1 if the current character began in the previous buffer */
4151     prevSourceIndex=-1;
4152     sourceIndex= c==0 ? 0 : -1;
4153     nextSourceIndex=0;
4154 
4155     /* Get the SI/SO character for the converter */
4156     siLength = getSISOBytes(SI, cnv->options, siBytes);
4157     soLength = getSISOBytes(SO, cnv->options, soBytes);
4158 
4159     /* conversion loop */
4160     /*
4161      * This is another piece of ugly code:
4162      * A goto into the loop if the converter state contains a first surrogate
4163      * from the previous function call.
4164      * It saves me to check in each loop iteration a check of if(c==0)
4165      * and duplicating the trail-surrogate-handling code in the else
4166      * branch of that check.
4167      * I could not find any other way to get around this other than
4168      * using a function call for the conversion and callback, which would
4169      * be even more inefficient.
4170      *
4171      * Markus Scherer 2000-jul-19
4172      */
4173     if(c!=0 && targetCapacity>0) {
4174         goto getTrail;
4175     }
4176 
4177     while(source<sourceLimit) {
4178         /*
4179          * This following test is to see if available input would overflow the output.
4180          * It does not catch output of more than one byte that
4181          * overflows as a result of a multi-byte character or callback output
4182          * from the last source character.
4183          * Therefore, those situations also test for overflows and will
4184          * then break the loop, too.
4185          */
4186         if(targetCapacity>0) {
4187             /*
4188              * Get a correct Unicode code point:
4189              * a single UChar for a BMP code point or
4190              * a matched surrogate pair for a "supplementary code point".
4191              */
4192             c=*source++;
4193             ++nextSourceIndex;
4194             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
4195                 *target++=(uint8_t)c;
4196                 if(offsets!=NULL) {
4197                     *offsets++=sourceIndex;
4198                     prevSourceIndex=sourceIndex;
4199                     sourceIndex=nextSourceIndex;
4200                 }
4201                 --targetCapacity;
4202                 c=0;
4203                 continue;
4204             }
4205             /*
4206              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4207              * to avoid dealing with surrogates.
4208              * MBCS_FAST_MAX must be >=0xd7ff.
4209              */
4210             if(c<=0xd7ff && mbcsIndex!=NULL) {
4211                 value=mbcsIndex[c>>6];
4212 
4213                 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4214                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4215                 switch(outputType) {
4216                 case MBCS_OUTPUT_2:
4217                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4218                     if(value<=0xff) {
4219                         if(value==0) {
4220                             goto unassigned;
4221                         } else {
4222                             length=1;
4223                         }
4224                     } else {
4225                         length=2;
4226                     }
4227                     break;
4228                 case MBCS_OUTPUT_2_SISO:
4229                     /* 1/2-byte stateful with Shift-In/Shift-Out */
4230                     /*
4231                      * Save the old state in the converter object
4232                      * right here, then change the local prevLength state variable if necessary.
4233                      * Then, if this character turns out to be unassigned or a fallback that
4234                      * is not taken, the callback code must not save the new state in the converter
4235                      * because the new state is for a character that is not output.
4236                      * However, the callback must still restore the state from the converter
4237                      * in case the callback function changed it for its output.
4238                      */
4239                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4240                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4241                     if(value<=0xff) {
4242                         if(value==0) {
4243                             goto unassigned;
4244                         } else if(prevLength<=1) {
4245                             length=1;
4246                         } else {
4247                             /* change from double-byte mode to single-byte */
4248                             if (siLength == 1) {
4249                                 value|=(uint32_t)siBytes[0]<<8;
4250                                 length = 2;
4251                             } else if (siLength == 2) {
4252                                 value|=(uint32_t)siBytes[1]<<8;
4253                                 value|=(uint32_t)siBytes[0]<<16;
4254                                 length = 3;
4255                             }
4256                             prevLength=1;
4257                         }
4258                     } else {
4259                         if(prevLength==2) {
4260                             length=2;
4261                         } else {
4262                             /* change from single-byte mode to double-byte */
4263                             if (soLength == 1) {
4264                                 value|=(uint32_t)soBytes[0]<<16;
4265                                 length = 3;
4266                             } else if (soLength == 2) {
4267                                 value|=(uint32_t)soBytes[1]<<16;
4268                                 value|=(uint32_t)soBytes[0]<<24;
4269                                 length = 4;
4270                             }
4271                             prevLength=2;
4272                         }
4273                     }
4274                     break;
4275                 case MBCS_OUTPUT_DBCS_ONLY:
4276                     /* table with single-byte results, but only DBCS mappings used */
4277                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4278                     if(value<=0xff) {
4279                         /* no mapping or SBCS result, not taken for DBCS-only */
4280                         goto unassigned;
4281                     } else {
4282                         length=2;
4283                     }
4284                     break;
4285                 case MBCS_OUTPUT_3:
4286                     p=bytes+(value+(c&0x3f))*3;
4287                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4288                     if(value<=0xff) {
4289                         if(value==0) {
4290                             goto unassigned;
4291                         } else {
4292                             length=1;
4293                         }
4294                     } else if(value<=0xffff) {
4295                         length=2;
4296                     } else {
4297                         length=3;
4298                     }
4299                     break;
4300                 case MBCS_OUTPUT_4:
4301                     value=((const uint32_t *)bytes)[value +(c&0x3f)];
4302                     if(value<=0xff) {
4303                         if(value==0) {
4304                             goto unassigned;
4305                         } else {
4306                             length=1;
4307                         }
4308                     } else if(value<=0xffff) {
4309                         length=2;
4310                     } else if(value<=0xffffff) {
4311                         length=3;
4312                     } else {
4313                         length=4;
4314                     }
4315                     break;
4316                 case MBCS_OUTPUT_3_EUC:
4317                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4318                     /* EUC 16-bit fixed-length representation */
4319                     if(value<=0xff) {
4320                         if(value==0) {
4321                             goto unassigned;
4322                         } else {
4323                             length=1;
4324                         }
4325                     } else if((value&0x8000)==0) {
4326                         value|=0x8e8000;
4327                         length=3;
4328                     } else if((value&0x80)==0) {
4329                         value|=0x8f0080;
4330                         length=3;
4331                     } else {
4332                         length=2;
4333                     }
4334                     break;
4335                 case MBCS_OUTPUT_4_EUC:
4336                     p=bytes+(value+(c&0x3f))*3;
4337                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4338                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
4339                     if(value<=0xff) {
4340                         if(value==0) {
4341                             goto unassigned;
4342                         } else {
4343                             length=1;
4344                         }
4345                     } else if(value<=0xffff) {
4346                         length=2;
4347                     } else if((value&0x800000)==0) {
4348                         value|=0x8e800000;
4349                         length=4;
4350                     } else if((value&0x8000)==0) {
4351                         value|=0x8f008000;
4352                         length=4;
4353                     } else {
4354                         length=3;
4355                     }
4356                     break;
4357                 default:
4358                     /* must not occur */
4359                     /*
4360                      * To avoid compiler warnings that value & length may be
4361                      * used without having been initialized, we set them here.
4362                      * In reality, this is unreachable code.
4363                      * Not having a default branch also causes warnings with
4364                      * some compilers.
4365                      */
4366                     value=0;
4367                     length=0;
4368                     break;
4369                 }
4370                 /* output the value */
4371             } else {
4372                 /*
4373                  * This also tests if the codepage maps single surrogates.
4374                  * If it does, then surrogates are not paired but mapped separately.
4375                  * Note that in this case unmatched surrogates are not detected.
4376                  */
4377                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4378                     if(U16_IS_SURROGATE_LEAD(c)) {
4379 getTrail:
4380                         if(source<sourceLimit) {
4381                             /* test the following code unit */
4382                             UChar trail=*source;
4383                             if(U16_IS_TRAIL(trail)) {
4384                                 ++source;
4385                                 ++nextSourceIndex;
4386                                 c=U16_GET_SUPPLEMENTARY(c, trail);
4387                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4388                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4389                                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4390                                     /* callback(unassigned) */
4391                                     goto unassigned;
4392                                 }
4393                                 /* convert this supplementary code point */
4394                                 /* exit this condition tree */
4395                             } else {
4396                                 /* this is an unmatched lead code unit (1st surrogate) */
4397                                 /* callback(illegal) */
4398                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4399                                 break;
4400                             }
4401                         } else {
4402                             /* no more input */
4403                             break;
4404                         }
4405                     } else {
4406                         /* this is an unmatched trail code unit (2nd surrogate) */
4407                         /* callback(illegal) */
4408                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4409                         break;
4410                     }
4411                 }
4412 
4413                 /* convert the Unicode code point in c into codepage bytes */
4414 
4415                 /*
4416                  * The basic lookup is a triple-stage compact array (trie) lookup.
4417                  * For details see the beginning of this file.
4418                  *
4419                  * Single-byte codepages are handled with a different data structure
4420                  * by _MBCSSingle... functions.
4421                  *
4422                  * The result consists of a 32-bit value from stage 2 and
4423                  * a pointer to as many bytes as are stored per character.
4424                  * The pointer points to the character's bytes in stage 3.
4425                  * Bits 15..0 of the stage 2 entry contain the stage 3 index
4426                  * for that pointer, while bits 31..16 are flags for which of
4427                  * the 16 characters in the block are roundtrip-assigned.
4428                  *
4429                  * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4430                  * respectively as uint32_t, in the platform encoding.
4431                  * For 3-byte codepages, the bytes are always stored in big-endian order.
4432                  *
4433                  * For EUC encodings that use only either 0x8e or 0x8f as the first
4434                  * byte of their longest byte sequences, the first two bytes in
4435                  * this third stage indicate with their 7th bits whether these bytes
4436                  * are to be written directly or actually need to be preceeded by
4437                  * one of the two Single-Shift codes. With this, the third stage
4438                  * stores one byte fewer per character than the actual maximum length of
4439                  * EUC byte sequences.
4440                  *
4441                  * Other than that, leading zero bytes are removed and the other
4442                  * bytes output. A single zero byte may be output if the "assigned"
4443                  * bit in stage 2 was on.
4444                  * The data structure does not support zero byte output as a fallback,
4445                  * and also does not allow output of leading zeros.
4446                  */
4447                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4448 
4449                 /* get the bytes and the length for the output */
4450                 switch(outputType) {
4451                 case MBCS_OUTPUT_2:
4452                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4453                     if(value<=0xff) {
4454                         length=1;
4455                     } else {
4456                         length=2;
4457                     }
4458                     break;
4459                 case MBCS_OUTPUT_2_SISO:
4460                     /* 1/2-byte stateful with Shift-In/Shift-Out */
4461                     /*
4462                      * Save the old state in the converter object
4463                      * right here, then change the local prevLength state variable if necessary.
4464                      * Then, if this character turns out to be unassigned or a fallback that
4465                      * is not taken, the callback code must not save the new state in the converter
4466                      * because the new state is for a character that is not output.
4467                      * However, the callback must still restore the state from the converter
4468                      * in case the callback function changed it for its output.
4469                      */
4470                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4471                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4472                     if(value<=0xff) {
4473                         if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
4474                             /* no mapping, leave value==0 */
4475                             length=0;
4476                         } else if(prevLength<=1) {
4477                             length=1;
4478                         } else {
4479                             /* change from double-byte mode to single-byte */
4480                             if (siLength == 1) {
4481                                 value|=(uint32_t)siBytes[0]<<8;
4482                                 length = 2;
4483                             } else if (siLength == 2) {
4484                                 value|=(uint32_t)siBytes[1]<<8;
4485                                 value|=(uint32_t)siBytes[0]<<16;
4486                                 length = 3;
4487                             }
4488                             prevLength=1;
4489                         }
4490                     } else {
4491                         if(prevLength==2) {
4492                             length=2;
4493                         } else {
4494                             /* change from single-byte mode to double-byte */
4495                             if (soLength == 1) {
4496                                 value|=(uint32_t)soBytes[0]<<16;
4497                                 length = 3;
4498                             } else if (soLength == 2) {
4499                                 value|=(uint32_t)soBytes[1]<<16;
4500                                 value|=(uint32_t)soBytes[0]<<24;
4501                                 length = 4;
4502                             }
4503                             prevLength=2;
4504                         }
4505                     }
4506                     break;
4507                 case MBCS_OUTPUT_DBCS_ONLY:
4508                     /* table with single-byte results, but only DBCS mappings used */
4509                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4510                     if(value<=0xff) {
4511                         /* no mapping or SBCS result, not taken for DBCS-only */
4512                         value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4513                         length=0;
4514                     } else {
4515                         length=2;
4516                     }
4517                     break;
4518                 case MBCS_OUTPUT_3:
4519                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4520                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4521                     if(value<=0xff) {
4522                         length=1;
4523                     } else if(value<=0xffff) {
4524                         length=2;
4525                     } else {
4526                         length=3;
4527                     }
4528                     break;
4529                 case MBCS_OUTPUT_4:
4530                     value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
4531                     if(value<=0xff) {
4532                         length=1;
4533                     } else if(value<=0xffff) {
4534                         length=2;
4535                     } else if(value<=0xffffff) {
4536                         length=3;
4537                     } else {
4538                         length=4;
4539                     }
4540                     break;
4541                 case MBCS_OUTPUT_3_EUC:
4542                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4543                     /* EUC 16-bit fixed-length representation */
4544                     if(value<=0xff) {
4545                         length=1;
4546                     } else if((value&0x8000)==0) {
4547                         value|=0x8e8000;
4548                         length=3;
4549                     } else if((value&0x80)==0) {
4550                         value|=0x8f0080;
4551                         length=3;
4552                     } else {
4553                         length=2;
4554                     }
4555                     break;
4556                 case MBCS_OUTPUT_4_EUC:
4557                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4558                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4559                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
4560                     if(value<=0xff) {
4561                         length=1;
4562                     } else if(value<=0xffff) {
4563                         length=2;
4564                     } else if((value&0x800000)==0) {
4565                         value|=0x8e800000;
4566                         length=4;
4567                     } else if((value&0x8000)==0) {
4568                         value|=0x8f008000;
4569                         length=4;
4570                     } else {
4571                         length=3;
4572                     }
4573                     break;
4574                 default:
4575                     /* must not occur */
4576                     /*
4577                      * To avoid compiler warnings that value & length may be
4578                      * used without having been initialized, we set them here.
4579                      * In reality, this is unreachable code.
4580                      * Not having a default branch also causes warnings with
4581                      * some compilers.
4582                      */
4583                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4584                     length=0;
4585                     break;
4586                 }
4587 
4588                 /* is this code point assigned, or do we use fallbacks? */
4589                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
4590                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
4591                 ) {
4592                     /*
4593                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
4594                      * There is no way with this data structure for fallback output
4595                      * to be a zero byte.
4596                      */
4597 
4598 unassigned:
4599                     /* try an extension mapping */
4600                     pArgs->source=source;
4601                     c=_extFromU(cnv, cnv->sharedData,
4602                                 c, &source, sourceLimit,
4603                                 &target, target+targetCapacity,
4604                                 &offsets, sourceIndex,
4605                                 pArgs->flush,
4606                                 pErrorCode);
4607                     nextSourceIndex+=(int32_t)(source-pArgs->source);
4608                     prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4609 
4610                     if(U_FAILURE(*pErrorCode)) {
4611                         /* not mappable or buffer overflow */
4612                         break;
4613                     } else {
4614                         /* a mapping was written to the target, continue */
4615 
4616                         /* recalculate the targetCapacity after an extension mapping */
4617                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4618 
4619                         /* normal end of conversion: prepare for a new character */
4620                         if(offsets!=NULL) {
4621                             prevSourceIndex=sourceIndex;
4622                             sourceIndex=nextSourceIndex;
4623                         }
4624                         continue;
4625                     }
4626                 }
4627             }
4628 
4629             /* write the output character bytes from value and length */
4630             /* from the first if in the loop we know that targetCapacity>0 */
4631             if(length<=targetCapacity) {
4632                 if(offsets==NULL) {
4633                     switch(length) {
4634                         /* each branch falls through to the next one */
4635                     case 4:
4636                         *target++=(uint8_t)(value>>24);
4637                     case 3: /*fall through*/
4638                         *target++=(uint8_t)(value>>16);
4639                     case 2: /*fall through*/
4640                         *target++=(uint8_t)(value>>8);
4641                     case 1: /*fall through*/
4642                         *target++=(uint8_t)value;
4643                     default:
4644                         /* will never occur */
4645                         break;
4646                     }
4647                 } else {
4648                     switch(length) {
4649                         /* each branch falls through to the next one */
4650                     case 4:
4651                         *target++=(uint8_t)(value>>24);
4652                         *offsets++=sourceIndex;
4653                     case 3: /*fall through*/
4654                         *target++=(uint8_t)(value>>16);
4655                         *offsets++=sourceIndex;
4656                     case 2: /*fall through*/
4657                         *target++=(uint8_t)(value>>8);
4658                         *offsets++=sourceIndex;
4659                     case 1: /*fall through*/
4660                         *target++=(uint8_t)value;
4661                         *offsets++=sourceIndex;
4662                     default:
4663                         /* will never occur */
4664                         break;
4665                     }
4666                 }
4667                 targetCapacity-=length;
4668             } else {
4669                 uint8_t *charErrorBuffer;
4670 
4671                 /*
4672                  * We actually do this backwards here:
4673                  * In order to save an intermediate variable, we output
4674                  * first to the overflow buffer what does not fit into the
4675                  * regular target.
4676                  */
4677                 /* we know that 1<=targetCapacity<length<=4 */
4678                 length-=targetCapacity;
4679                 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4680                 switch(length) {
4681                     /* each branch falls through to the next one */
4682                 case 3:
4683                     *charErrorBuffer++=(uint8_t)(value>>16);
4684                 case 2: /*fall through*/
4685                     *charErrorBuffer++=(uint8_t)(value>>8);
4686                 case 1: /*fall through*/
4687                     *charErrorBuffer=(uint8_t)value;
4688                 default:
4689                     /* will never occur */
4690                     break;
4691                 }
4692                 cnv->charErrorBufferLength=(int8_t)length;
4693 
4694                 /* now output what fits into the regular target */
4695                 value>>=8*length; /* length was reduced by targetCapacity */
4696                 switch(targetCapacity) {
4697                     /* each branch falls through to the next one */
4698                 case 3:
4699                     *target++=(uint8_t)(value>>16);
4700                     if(offsets!=NULL) {
4701                         *offsets++=sourceIndex;
4702                     }
4703                 case 2: /*fall through*/
4704                     *target++=(uint8_t)(value>>8);
4705                     if(offsets!=NULL) {
4706                         *offsets++=sourceIndex;
4707                     }
4708                 case 1: /*fall through*/
4709                     *target++=(uint8_t)value;
4710                     if(offsets!=NULL) {
4711                         *offsets++=sourceIndex;
4712                     }
4713                 default:
4714                     /* will never occur */
4715                     break;
4716                 }
4717 
4718                 /* target overflow */
4719                 targetCapacity=0;
4720                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4721                 c=0;
4722                 break;
4723             }
4724 
4725             /* normal end of conversion: prepare for a new character */
4726             c=0;
4727             if(offsets!=NULL) {
4728                 prevSourceIndex=sourceIndex;
4729                 sourceIndex=nextSourceIndex;
4730             }
4731             continue;
4732         } else {
4733             /* target is full */
4734             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4735             break;
4736         }
4737     }
4738 
4739     /*
4740      * the end of the input stream and detection of truncated input
4741      * are handled by the framework, but for EBCDIC_STATEFUL conversion
4742      * we need to emit an SI at the very end
4743      *
4744      * conditions:
4745      *   successful
4746      *   EBCDIC_STATEFUL in DBCS mode
4747      *   end of input and no truncated input
4748      */
4749     if( U_SUCCESS(*pErrorCode) &&
4750         outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4751         pArgs->flush && source>=sourceLimit && c==0
4752     ) {
4753         /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4754         if(targetCapacity>0) {
4755             *target++=(uint8_t)siBytes[0];
4756             if (siLength == 2) {
4757                 if (targetCapacity<2) {
4758                     cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
4759                     cnv->charErrorBufferLength=1;
4760                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4761                 } else {
4762                     *target++=(uint8_t)siBytes[1];
4763                 }
4764             }
4765             if(offsets!=NULL) {
4766                 /* set the last source character's index (sourceIndex points at sourceLimit now) */
4767                 *offsets++=prevSourceIndex;
4768             }
4769         } else {
4770             /* target is full */
4771             cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
4772             if (siLength == 2) {
4773                 cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
4774             }
4775             cnv->charErrorBufferLength=siLength;
4776             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4777         }
4778         prevLength=1; /* we switched into SBCS */
4779     }
4780 
4781     /* set the converter state back into UConverter */
4782     cnv->fromUChar32=c;
4783     cnv->fromUnicodeStatus=prevLength;
4784 
4785     /* write back the updated pointers */
4786     pArgs->source=source;
4787     pArgs->target=(char *)target;
4788     pArgs->offsets=offsets;
4789 }
4790 
4791 /*
4792  * This is another simple conversion function for internal use by other
4793  * conversion implementations.
4794  * It does not use the converter state nor call callbacks.
4795  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4796  * It handles conversion extensions but not GB 18030.
4797  *
4798  * It converts one single Unicode code point into codepage bytes, encoded
4799  * as one 32-bit value. The function returns the number of bytes in *pValue:
4800  * 1..4 the number of bytes in *pValue
4801  * 0    unassigned (*pValue undefined)
4802  * -1   illegal (currently not used, *pValue undefined)
4803  *
4804  * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4805  * the second to last byte in bits 15..8, etc.
4806  * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4807  */
4808 U_CFUNC int32_t
ucnv_MBCSFromUChar32(UConverterSharedData * sharedData,UChar32 c,uint32_t * pValue,UBool useFallback)4809 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
4810                  UChar32 c, uint32_t *pValue,
4811                  UBool useFallback) {
4812     const int32_t *cx;
4813     const uint16_t *table;
4814 #if 0
4815 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4816     const uint8_t *p;
4817 #endif
4818     uint32_t stage2Entry;
4819     uint32_t value;
4820     int32_t length;
4821 
4822     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4823     if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4824         table=sharedData->mbcs.fromUnicodeTable;
4825 
4826         /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4827         if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4828             value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4829             /* is this code point assigned, or do we use fallbacks? */
4830             if(useFallback ? value>=0x800 : value>=0xc00) {
4831                 *pValue=value&0xff;
4832                 return 1;
4833             }
4834         } else /* outputType!=MBCS_OUTPUT_1 */ {
4835             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4836 
4837             /* get the bytes and the length for the output */
4838             switch(sharedData->mbcs.outputType) {
4839             case MBCS_OUTPUT_2:
4840                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4841                 if(value<=0xff) {
4842                     length=1;
4843                 } else {
4844                     length=2;
4845                 }
4846                 break;
4847 #if 0
4848 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4849             case MBCS_OUTPUT_DBCS_ONLY:
4850                 /* table with single-byte results, but only DBCS mappings used */
4851                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4852                 if(value<=0xff) {
4853                     /* no mapping or SBCS result, not taken for DBCS-only */
4854                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4855                     length=0;
4856                 } else {
4857                     length=2;
4858                 }
4859                 break;
4860             case MBCS_OUTPUT_3:
4861                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4862                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4863                 if(value<=0xff) {
4864                     length=1;
4865                 } else if(value<=0xffff) {
4866                     length=2;
4867                 } else {
4868                     length=3;
4869                 }
4870                 break;
4871             case MBCS_OUTPUT_4:
4872                 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4873                 if(value<=0xff) {
4874                     length=1;
4875                 } else if(value<=0xffff) {
4876                     length=2;
4877                 } else if(value<=0xffffff) {
4878                     length=3;
4879                 } else {
4880                     length=4;
4881                 }
4882                 break;
4883             case MBCS_OUTPUT_3_EUC:
4884                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4885                 /* EUC 16-bit fixed-length representation */
4886                 if(value<=0xff) {
4887                     length=1;
4888                 } else if((value&0x8000)==0) {
4889                     value|=0x8e8000;
4890                     length=3;
4891                 } else if((value&0x80)==0) {
4892                     value|=0x8f0080;
4893                     length=3;
4894                 } else {
4895                     length=2;
4896                 }
4897                 break;
4898             case MBCS_OUTPUT_4_EUC:
4899                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4900                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4901                 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4902                 if(value<=0xff) {
4903                     length=1;
4904                 } else if(value<=0xffff) {
4905                     length=2;
4906                 } else if((value&0x800000)==0) {
4907                     value|=0x8e800000;
4908                     length=4;
4909                 } else if((value&0x8000)==0) {
4910                     value|=0x8f008000;
4911                     length=4;
4912                 } else {
4913                     length=3;
4914                 }
4915                 break;
4916 #endif
4917             default:
4918                 /* must not occur */
4919                 return -1;
4920             }
4921 
4922             /* is this code point assigned, or do we use fallbacks? */
4923             if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
4924                 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
4925             ) {
4926                 /*
4927                  * We allow a 0 byte output if the "assigned" bit is set for this entry.
4928                  * There is no way with this data structure for fallback output
4929                  * to be a zero byte.
4930                  */
4931                 /* assigned */
4932                 *pValue=value;
4933                 return length;
4934             }
4935         }
4936     }
4937 
4938     cx=sharedData->mbcs.extIndexes;
4939     if(cx!=NULL) {
4940         length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
4941         return length>=0 ? length : -length;  /* return abs(length); */
4942     }
4943 
4944     /* unassigned */
4945     return 0;
4946 }
4947 
4948 
4949 #if 0
4950 /*
4951  * This function has been moved to ucnv2022.c for inlining.
4952  * This implementation is here only for documentation purposes
4953  */
4954 
4955 /**
4956  * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4957  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4958  * It does not handle conversion extensions (_extFromU()).
4959  *
4960  * It returns the codepage byte for the code point, or -1 if it is unassigned.
4961  */
4962 U_CFUNC int32_t
4963 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4964                        UChar32 c,
4965                        UBool useFallback) {
4966     const uint16_t *table;
4967     int32_t value;
4968 
4969     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4970     if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4971         return -1;
4972     }
4973 
4974     /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4975     table=sharedData->mbcs.fromUnicodeTable;
4976 
4977     /* get the byte for the output */
4978     value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4979     /* is this code point assigned, or do we use fallbacks? */
4980     if(useFallback ? value>=0x800 : value>=0xc00) {
4981         return value&0xff;
4982     } else {
4983         return -1;
4984     }
4985 }
4986 #endif
4987 
4988 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */
4989 
4990 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
4991 static const UChar32
4992 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
4993 
4994 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
4995 static const UChar32
4996 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
4997 
4998 static void
ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs * pFromUArgs,UConverterToUnicodeArgs * pToUArgs,UErrorCode * pErrorCode)4999 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5000                   UConverterToUnicodeArgs *pToUArgs,
5001                   UErrorCode *pErrorCode) {
5002     UConverter *utf8, *cnv;
5003     const uint8_t *source, *sourceLimit;
5004     uint8_t *target;
5005     int32_t targetCapacity;
5006 
5007     const uint16_t *table, *sbcsIndex;
5008     const uint16_t *results;
5009 
5010     int8_t oldToULength, toULength, toULimit;
5011 
5012     UChar32 c;
5013     uint8_t b, t1, t2;
5014 
5015     uint32_t asciiRoundtrips;
5016     uint16_t value, minValue;
5017     UBool hasSupplementary;
5018 
5019     /* set up the local pointers */
5020     utf8=pToUArgs->converter;
5021     cnv=pFromUArgs->converter;
5022     source=(uint8_t *)pToUArgs->source;
5023     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5024     target=(uint8_t *)pFromUArgs->target;
5025     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5026 
5027     table=cnv->sharedData->mbcs.fromUnicodeTable;
5028     sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
5029     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5030         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5031     } else {
5032         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5033     }
5034     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5035 
5036     if(cnv->useFallback) {
5037         /* use all roundtrip and fallback results */
5038         minValue=0x800;
5039     } else {
5040         /* use only roundtrips and fallbacks from private-use characters */
5041         minValue=0xc00;
5042     }
5043     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5044 
5045     /* get the converter state from the UTF-8 UConverter */
5046     c=(UChar32)utf8->toUnicodeStatus;
5047     if(c!=0) {
5048         toULength=oldToULength=utf8->toULength;
5049         toULimit=(int8_t)utf8->mode;
5050     } else {
5051         toULength=oldToULength=toULimit=0;
5052     }
5053 
5054     /*
5055      * Make sure that the last byte sequence before sourceLimit is complete
5056      * or runs into a lead byte.
5057      * Do not go back into the bytes that will be read for finishing a partial
5058      * sequence from the previous buffer.
5059      * In the conversion loop compare source with sourceLimit only once
5060      * per multi-byte character.
5061      */
5062     {
5063         int32_t i, length;
5064 
5065         length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5066         for(i=0; i<3 && i<length;) {
5067             b=*(sourceLimit-i-1);
5068             if(U8_IS_TRAIL(b)) {
5069                 ++i;
5070             } else {
5071                 if(i<U8_COUNT_TRAIL_BYTES(b)) {
5072                     /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5073                     sourceLimit-=i+1;
5074                 }
5075                 break;
5076             }
5077         }
5078     }
5079 
5080     if(c!=0 && targetCapacity>0) {
5081         utf8->toUnicodeStatus=0;
5082         utf8->toULength=0;
5083         goto moreBytes;
5084         /*
5085          * Note: We could avoid the goto by duplicating some of the moreBytes
5086          * code, but only up to the point of collecting a complete UTF-8
5087          * sequence; then recurse for the toUBytes[toULength]
5088          * and then continue with normal conversion.
5089          *
5090          * If so, move this code to just after initializing the minimum
5091          * set of local variables for reading the UTF-8 input
5092          * (utf8, source, target, limits but not cnv, table, minValue, etc.).
5093          *
5094          * Potential advantages:
5095          * - avoid the goto
5096          * - oldToULength could become a local variable in just those code blocks
5097          *   that deal with buffer boundaries
5098          * - possibly faster if the goto prevents some compiler optimizations
5099          *   (this would need measuring to confirm)
5100          * Disadvantage:
5101          * - code duplication
5102          */
5103     }
5104 
5105     /* conversion loop */
5106     while(source<sourceLimit) {
5107         if(targetCapacity>0) {
5108             b=*source++;
5109             if((int8_t)b>=0) {
5110                 /* convert ASCII */
5111                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5112                     *target++=(uint8_t)b;
5113                     --targetCapacity;
5114                     continue;
5115                 } else {
5116                     c=b;
5117                     value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
5118                 }
5119             } else {
5120                 if(b<0xe0) {
5121                     if( /* handle U+0080..U+07FF inline */
5122                         b>=0xc2 &&
5123                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
5124                     ) {
5125                         c=b&0x1f;
5126                         ++source;
5127                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
5128                         if(value>=minValue) {
5129                             *target++=(uint8_t)value;
5130                             --targetCapacity;
5131                             continue;
5132                         } else {
5133                             c=(c<<6)|t1;
5134                         }
5135                     } else {
5136                         c=-1;
5137                     }
5138                 } else if(b==0xe0) {
5139                     if( /* handle U+0800..U+0FFF inline */
5140                         (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5141                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5142                     ) {
5143                         c=t1;
5144                         source+=2;
5145                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
5146                         if(value>=minValue) {
5147                             *target++=(uint8_t)value;
5148                             --targetCapacity;
5149                             continue;
5150                         } else {
5151                             c=(c<<6)|t2;
5152                         }
5153                     } else {
5154                         c=-1;
5155                     }
5156                 } else {
5157                     c=-1;
5158                 }
5159 
5160                 if(c<0) {
5161                     /* handle "complicated" and error cases, and continuing partial characters */
5162                     oldToULength=0;
5163                     toULength=1;
5164                     toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5165                     c=b;
5166 moreBytes:
5167                     while(toULength<toULimit) {
5168                         /*
5169                          * The sourceLimit may have been adjusted before the conversion loop
5170                          * to stop before a truncated sequence.
5171                          * Here we need to use the real limit in case we have two truncated
5172                          * sequences at the end.
5173                          * See ticket #7492.
5174                          */
5175                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
5176                             b=*source;
5177                             if(U8_IS_TRAIL(b)) {
5178                                 ++source;
5179                                 ++toULength;
5180                                 c=(c<<6)+b;
5181                             } else {
5182                                 break; /* sequence too short, stop with toULength<toULimit */
5183                             }
5184                         } else {
5185                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5186                             source-=(toULength-oldToULength);
5187                             while(oldToULength<toULength) {
5188                                 utf8->toUBytes[oldToULength++]=*source++;
5189                             }
5190                             utf8->toUnicodeStatus=c;
5191                             utf8->toULength=toULength;
5192                             utf8->mode=toULimit;
5193                             pToUArgs->source=(char *)source;
5194                             pFromUArgs->target=(char *)target;
5195                             return;
5196                         }
5197                     }
5198 
5199                     if( toULength==toULimit &&      /* consumed all trail bytes */
5200                         (toULength==3 || toULength==2) &&             /* BMP */
5201                         (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5202                         (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5203                     ) {
5204                         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5205                     } else if(
5206                         toULength==toULimit && toULength==4 &&
5207                         (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5208                     ) {
5209                         /* supplementary code point */
5210                         if(!hasSupplementary) {
5211                             /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5212                             value=0;
5213                         } else {
5214                             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5215                         }
5216                     } else {
5217                         /* error handling: illegal UTF-8 byte sequence */
5218                         source-=(toULength-oldToULength);
5219                         while(oldToULength<toULength) {
5220                             utf8->toUBytes[oldToULength++]=*source++;
5221                         }
5222                         utf8->toULength=toULength;
5223                         pToUArgs->source=(char *)source;
5224                         pFromUArgs->target=(char *)target;
5225                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5226                         return;
5227                     }
5228                 }
5229             }
5230 
5231             if(value>=minValue) {
5232                 /* output the mapping for c */
5233                 *target++=(uint8_t)value;
5234                 --targetCapacity;
5235             } else {
5236                 /* value<minValue means c is unassigned (unmappable) */
5237                 /*
5238                  * Try an extension mapping.
5239                  * Pass in no source because we don't have UTF-16 input.
5240                  * If we have a partial match on c, we will return and revert
5241                  * to UTF-8->UTF-16->charset conversion.
5242                  */
5243                 static const UChar nul=0;
5244                 const UChar *noSource=&nul;
5245                 c=_extFromU(cnv, cnv->sharedData,
5246                             c, &noSource, noSource,
5247                             &target, target+targetCapacity,
5248                             NULL, -1,
5249                             pFromUArgs->flush,
5250                             pErrorCode);
5251 
5252                 if(U_FAILURE(*pErrorCode)) {
5253                     /* not mappable or buffer overflow */
5254                     cnv->fromUChar32=c;
5255                     break;
5256                 } else if(cnv->preFromUFirstCP>=0) {
5257                     /*
5258                      * Partial match, return and revert to pivoting.
5259                      * In normal from-UTF-16 conversion, we would just continue
5260                      * but then exit the loop because the extension match would
5261                      * have consumed the source.
5262                      */
5263                     *pErrorCode=U_USING_DEFAULT_WARNING;
5264                     break;
5265                 } else {
5266                     /* a mapping was written to the target, continue */
5267 
5268                     /* recalculate the targetCapacity after an extension mapping */
5269                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5270                 }
5271             }
5272         } else {
5273             /* target is full */
5274             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5275             break;
5276         }
5277     }
5278 
5279     /*
5280      * The sourceLimit may have been adjusted before the conversion loop
5281      * to stop before a truncated sequence.
5282      * If so, then collect the truncated sequence now.
5283      */
5284     if(U_SUCCESS(*pErrorCode) &&
5285             cnv->preFromUFirstCP<0 &&
5286             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5287         c=utf8->toUBytes[0]=b=*source++;
5288         toULength=1;
5289         toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5290         while(source<sourceLimit) {
5291             utf8->toUBytes[toULength++]=b=*source++;
5292             c=(c<<6)+b;
5293         }
5294         utf8->toUnicodeStatus=c;
5295         utf8->toULength=toULength;
5296         utf8->mode=toULimit;
5297     }
5298 
5299     /* write back the updated pointers */
5300     pToUArgs->source=(char *)source;
5301     pFromUArgs->target=(char *)target;
5302 }
5303 
5304 static void
ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs * pFromUArgs,UConverterToUnicodeArgs * pToUArgs,UErrorCode * pErrorCode)5305 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5306                   UConverterToUnicodeArgs *pToUArgs,
5307                   UErrorCode *pErrorCode) {
5308     UConverter *utf8, *cnv;
5309     const uint8_t *source, *sourceLimit;
5310     uint8_t *target;
5311     int32_t targetCapacity;
5312 
5313     const uint16_t *table, *mbcsIndex;
5314     const uint16_t *results;
5315 
5316     int8_t oldToULength, toULength, toULimit;
5317 
5318     UChar32 c;
5319     uint8_t b, t1, t2;
5320 
5321     uint32_t stage2Entry;
5322     uint32_t asciiRoundtrips;
5323     uint16_t value;
5324     UBool hasSupplementary;
5325 
5326     /* set up the local pointers */
5327     utf8=pToUArgs->converter;
5328     cnv=pFromUArgs->converter;
5329     source=(uint8_t *)pToUArgs->source;
5330     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5331     target=(uint8_t *)pFromUArgs->target;
5332     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5333 
5334     table=cnv->sharedData->mbcs.fromUnicodeTable;
5335     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5336     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5337         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5338     } else {
5339         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5340     }
5341     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5342 
5343     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5344 
5345     /* get the converter state from the UTF-8 UConverter */
5346     c=(UChar32)utf8->toUnicodeStatus;
5347     if(c!=0) {
5348         toULength=oldToULength=utf8->toULength;
5349         toULimit=(int8_t)utf8->mode;
5350     } else {
5351         toULength=oldToULength=toULimit=0;
5352     }
5353 
5354     /*
5355      * Make sure that the last byte sequence before sourceLimit is complete
5356      * or runs into a lead byte.
5357      * Do not go back into the bytes that will be read for finishing a partial
5358      * sequence from the previous buffer.
5359      * In the conversion loop compare source with sourceLimit only once
5360      * per multi-byte character.
5361      */
5362     {
5363         int32_t i, length;
5364 
5365         length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5366         for(i=0; i<3 && i<length;) {
5367             b=*(sourceLimit-i-1);
5368             if(U8_IS_TRAIL(b)) {
5369                 ++i;
5370             } else {
5371                 if(i<U8_COUNT_TRAIL_BYTES(b)) {
5372                     /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5373                     sourceLimit-=i+1;
5374                 }
5375                 break;
5376             }
5377         }
5378     }
5379 
5380     if(c!=0 && targetCapacity>0) {
5381         utf8->toUnicodeStatus=0;
5382         utf8->toULength=0;
5383         goto moreBytes;
5384         /* See note in ucnv_SBCSFromUTF8() about this goto. */
5385     }
5386 
5387     /* conversion loop */
5388     while(source<sourceLimit) {
5389         if(targetCapacity>0) {
5390             b=*source++;
5391             if((int8_t)b>=0) {
5392                 /* convert ASCII */
5393                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5394                     *target++=b;
5395                     --targetCapacity;
5396                     continue;
5397                 } else {
5398                     value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
5399                     if(value==0) {
5400                         c=b;
5401                         goto unassigned;
5402                     }
5403                 }
5404             } else {
5405                 if(b>0xe0) {
5406                     if( /* handle U+1000..U+D7FF inline */
5407                         (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) ||
5408                                                         (b==0xed && (t1 <= 0x1f))) &&
5409                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5410                     ) {
5411                         c=((b&0xf)<<6)|t1;
5412                         source+=2;
5413                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
5414                         if(value==0) {
5415                             c=(c<<6)|t2;
5416                             goto unassigned;
5417                         }
5418                     } else {
5419                         c=-1;
5420                     }
5421                 } else if(b<0xe0) {
5422                     if( /* handle U+0080..U+07FF inline */
5423                         b>=0xc2 &&
5424                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
5425                     ) {
5426                         c=b&0x1f;
5427                         ++source;
5428                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
5429                         if(value==0) {
5430                             c=(c<<6)|t1;
5431                             goto unassigned;
5432                         }
5433                     } else {
5434                         c=-1;
5435                     }
5436                 } else {
5437                     c=-1;
5438                 }
5439 
5440                 if(c<0) {
5441                     /* handle "complicated" and error cases, and continuing partial characters */
5442                     oldToULength=0;
5443                     toULength=1;
5444                     toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5445                     c=b;
5446 moreBytes:
5447                     while(toULength<toULimit) {
5448                         /*
5449                          * The sourceLimit may have been adjusted before the conversion loop
5450                          * to stop before a truncated sequence.
5451                          * Here we need to use the real limit in case we have two truncated
5452                          * sequences at the end.
5453                          * See ticket #7492.
5454                          */
5455                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
5456                             b=*source;
5457                             if(U8_IS_TRAIL(b)) {
5458                                 ++source;
5459                                 ++toULength;
5460                                 c=(c<<6)+b;
5461                             } else {
5462                                 break; /* sequence too short, stop with toULength<toULimit */
5463                             }
5464                         } else {
5465                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5466                             source-=(toULength-oldToULength);
5467                             while(oldToULength<toULength) {
5468                                 utf8->toUBytes[oldToULength++]=*source++;
5469                             }
5470                             utf8->toUnicodeStatus=c;
5471                             utf8->toULength=toULength;
5472                             utf8->mode=toULimit;
5473                             pToUArgs->source=(char *)source;
5474                             pFromUArgs->target=(char *)target;
5475                             return;
5476                         }
5477                     }
5478 
5479                     if( toULength==toULimit &&      /* consumed all trail bytes */
5480                         (toULength==3 || toULength==2) &&             /* BMP */
5481                         (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5482                         (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5483                     ) {
5484                         stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5485                     } else if(
5486                         toULength==toULimit && toULength==4 &&
5487                         (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5488                     ) {
5489                         /* supplementary code point */
5490                         if(!hasSupplementary) {
5491                             /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5492                             stage2Entry=0;
5493                         } else {
5494                             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5495                         }
5496                     } else {
5497                         /* error handling: illegal UTF-8 byte sequence */
5498                         source-=(toULength-oldToULength);
5499                         while(oldToULength<toULength) {
5500                             utf8->toUBytes[oldToULength++]=*source++;
5501                         }
5502                         utf8->toULength=toULength;
5503                         pToUArgs->source=(char *)source;
5504                         pFromUArgs->target=(char *)target;
5505                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5506                         return;
5507                     }
5508 
5509                     /* get the bytes and the length for the output */
5510                     /* MBCS_OUTPUT_2 */
5511                     value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
5512 
5513                     /* is this code point assigned, or do we use fallbacks? */
5514                     if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
5515                          (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
5516                     ) {
5517                         goto unassigned;
5518                     }
5519                 }
5520             }
5521 
5522             /* write the output character bytes from value and length */
5523             /* from the first if in the loop we know that targetCapacity>0 */
5524             if(value<=0xff) {
5525                 /* this is easy because we know that there is enough space */
5526                 *target++=(uint8_t)value;
5527                 --targetCapacity;
5528             } else /* length==2 */ {
5529                 *target++=(uint8_t)(value>>8);
5530                 if(2<=targetCapacity) {
5531                     *target++=(uint8_t)value;
5532                     targetCapacity-=2;
5533                 } else {
5534                     cnv->charErrorBuffer[0]=(char)value;
5535                     cnv->charErrorBufferLength=1;
5536 
5537                     /* target overflow */
5538                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5539                     break;
5540                 }
5541             }
5542             continue;
5543 
5544 unassigned:
5545             {
5546                 /*
5547                  * Try an extension mapping.
5548                  * Pass in no source because we don't have UTF-16 input.
5549                  * If we have a partial match on c, we will return and revert
5550                  * to UTF-8->UTF-16->charset conversion.
5551                  */
5552                 static const UChar nul=0;
5553                 const UChar *noSource=&nul;
5554                 c=_extFromU(cnv, cnv->sharedData,
5555                             c, &noSource, noSource,
5556                             &target, target+targetCapacity,
5557                             NULL, -1,
5558                             pFromUArgs->flush,
5559                             pErrorCode);
5560 
5561                 if(U_FAILURE(*pErrorCode)) {
5562                     /* not mappable or buffer overflow */
5563                     cnv->fromUChar32=c;
5564                     break;
5565                 } else if(cnv->preFromUFirstCP>=0) {
5566                     /*
5567                      * Partial match, return and revert to pivoting.
5568                      * In normal from-UTF-16 conversion, we would just continue
5569                      * but then exit the loop because the extension match would
5570                      * have consumed the source.
5571                      */
5572                     *pErrorCode=U_USING_DEFAULT_WARNING;
5573                     break;
5574                 } else {
5575                     /* a mapping was written to the target, continue */
5576 
5577                     /* recalculate the targetCapacity after an extension mapping */
5578                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5579                     continue;
5580                 }
5581             }
5582         } else {
5583             /* target is full */
5584             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5585             break;
5586         }
5587     }
5588 
5589     /*
5590      * The sourceLimit may have been adjusted before the conversion loop
5591      * to stop before a truncated sequence.
5592      * If so, then collect the truncated sequence now.
5593      */
5594     if(U_SUCCESS(*pErrorCode) &&
5595             cnv->preFromUFirstCP<0 &&
5596             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5597         c=utf8->toUBytes[0]=b=*source++;
5598         toULength=1;
5599         toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5600         while(source<sourceLimit) {
5601             utf8->toUBytes[toULength++]=b=*source++;
5602             c=(c<<6)+b;
5603         }
5604         utf8->toUnicodeStatus=c;
5605         utf8->toULength=toULength;
5606         utf8->mode=toULimit;
5607     }
5608 
5609     /* write back the updated pointers */
5610     pToUArgs->source=(char *)source;
5611     pFromUArgs->target=(char *)target;
5612 }
5613 
5614 /* miscellaneous ------------------------------------------------------------ */
5615 
5616 static void
ucnv_MBCSGetStarters(const UConverter * cnv,UBool starters[256],UErrorCode *)5617 ucnv_MBCSGetStarters(const UConverter* cnv,
5618                  UBool starters[256],
5619                  UErrorCode *) {
5620     const int32_t *state0;
5621     int i;
5622 
5623     state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5624     for(i=0; i<256; ++i) {
5625         /* all bytes that cause a state transition from state 0 are lead bytes */
5626         starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
5627     }
5628 }
5629 
5630 /*
5631  * This is an internal function that allows other converter implementations
5632  * to check whether a byte is a lead byte.
5633  */
5634 U_CFUNC UBool
ucnv_MBCSIsLeadByte(UConverterSharedData * sharedData,char byte)5635 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
5636     return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
5637 }
5638 
5639 static void
ucnv_MBCSWriteSub(UConverterFromUnicodeArgs * pArgs,int32_t offsetIndex,UErrorCode * pErrorCode)5640 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5641               int32_t offsetIndex,
5642               UErrorCode *pErrorCode) {
5643     UConverter *cnv=pArgs->converter;
5644     char *p, *subchar;
5645     char buffer[4];
5646     int32_t length;
5647 
5648     /* first, select between subChar and subChar1 */
5649     if( cnv->subChar1!=0 &&
5650         (cnv->sharedData->mbcs.extIndexes!=NULL ?
5651             cnv->useSubChar1 :
5652             (cnv->invalidUCharBuffer[0]<=0xff))
5653     ) {
5654         /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5655         subchar=(char *)&cnv->subChar1;
5656         length=1;
5657     } else {
5658         /* select subChar in all other cases */
5659         subchar=(char *)cnv->subChars;
5660         length=cnv->subCharLen;
5661     }
5662 
5663     /* reset the selector for the next code point */
5664     cnv->useSubChar1=FALSE;
5665 
5666     if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5667         p=buffer;
5668 
5669         /* fromUnicodeStatus contains prevLength */
5670         switch(length) {
5671         case 1:
5672             if(cnv->fromUnicodeStatus==2) {
5673                 /* DBCS mode and SBCS sub char: change to SBCS */
5674                 cnv->fromUnicodeStatus=1;
5675                 *p++=UCNV_SI;
5676             }
5677             *p++=subchar[0];
5678             break;
5679         case 2:
5680             if(cnv->fromUnicodeStatus<=1) {
5681                 /* SBCS mode and DBCS sub char: change to DBCS */
5682                 cnv->fromUnicodeStatus=2;
5683                 *p++=UCNV_SO;
5684             }
5685             *p++=subchar[0];
5686             *p++=subchar[1];
5687             break;
5688         default:
5689             *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5690             return;
5691         }
5692         subchar=buffer;
5693         length=(int32_t)(p-buffer);
5694     }
5695 
5696     ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
5697 }
5698 
5699 U_CFUNC UConverterType
ucnv_MBCSGetType(const UConverter * converter)5700 ucnv_MBCSGetType(const UConverter* converter) {
5701     /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5702     if(converter->sharedData->mbcs.countStates==1) {
5703         return (UConverterType)UCNV_SBCS;
5704     } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5705         return (UConverterType)UCNV_EBCDIC_STATEFUL;
5706     } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5707         return (UConverterType)UCNV_DBCS;
5708     }
5709     return (UConverterType)UCNV_MBCS;
5710 }
5711 
5712 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
5713