1 /*
2 *******************************************************************************
3 *
4 * Copyright (C) 1999-2015, International Business Machines
5 * Corporation and others. All Rights Reserved.
6 *
7 *******************************************************************************
8 * file name: collationweights.cpp
9 * encoding: US-ASCII
10 * tab size: 8 (not used)
11 * indentation:4
12 *
13 * created on: 2001mar08 as ucol_wgt.cpp
14 * created by: Markus W. Scherer
15 *
16 * This file contains code for allocating n collation element weights
17 * between two exclusive limits.
18 * It is used only internally by the collation tailoring builder.
19 */
20
21 #include "unicode/utypes.h"
22
23 #if !UCONFIG_NO_COLLATION
24
25 #include "cmemory.h"
26 #include "collation.h"
27 #include "collationweights.h"
28 #include "uarrsort.h"
29 #include "uassert.h"
30
31 #ifdef UCOL_DEBUG
32 # include <stdio.h>
33 #endif
34
35 U_NAMESPACE_BEGIN
36
37 /* collation element weight allocation -------------------------------------- */
38
39 /* helper functions for CE weights */
40
41 static inline uint32_t
getWeightTrail(uint32_t weight,int32_t length)42 getWeightTrail(uint32_t weight, int32_t length) {
43 return (uint32_t)(weight>>(8*(4-length)))&0xff;
44 }
45
46 static inline uint32_t
setWeightTrail(uint32_t weight,int32_t length,uint32_t trail)47 setWeightTrail(uint32_t weight, int32_t length, uint32_t trail) {
48 length=8*(4-length);
49 return (uint32_t)((weight&(0xffffff00<<length))|(trail<<length));
50 }
51
52 static inline uint32_t
getWeightByte(uint32_t weight,int32_t idx)53 getWeightByte(uint32_t weight, int32_t idx) {
54 return getWeightTrail(weight, idx); /* same calculation */
55 }
56
57 static inline uint32_t
setWeightByte(uint32_t weight,int32_t idx,uint32_t byte)58 setWeightByte(uint32_t weight, int32_t idx, uint32_t byte) {
59 uint32_t mask; /* 0xffffffff except a 00 "hole" for the index-th byte */
60
61 idx*=8;
62 if(idx<32) {
63 mask=((uint32_t)0xffffffff)>>idx;
64 } else {
65 // Do not use uint32_t>>32 because on some platforms that does not shift at all
66 // while we need it to become 0.
67 // PowerPC: 0xffffffff>>32 = 0 (wanted)
68 // x86: 0xffffffff>>32 = 0xffffffff (not wanted)
69 //
70 // ANSI C99 6.5.7 Bitwise shift operators:
71 // "If the value of the right operand is negative
72 // or is greater than or equal to the width of the promoted left operand,
73 // the behavior is undefined."
74 mask=0;
75 }
76 idx=32-idx;
77 mask|=0xffffff00<<idx;
78 return (uint32_t)((weight&mask)|(byte<<idx));
79 }
80
81 static inline uint32_t
truncateWeight(uint32_t weight,int32_t length)82 truncateWeight(uint32_t weight, int32_t length) {
83 return (uint32_t)(weight&(0xffffffff<<(8*(4-length))));
84 }
85
86 static inline uint32_t
incWeightTrail(uint32_t weight,int32_t length)87 incWeightTrail(uint32_t weight, int32_t length) {
88 return (uint32_t)(weight+(1UL<<(8*(4-length))));
89 }
90
91 static inline uint32_t
decWeightTrail(uint32_t weight,int32_t length)92 decWeightTrail(uint32_t weight, int32_t length) {
93 return (uint32_t)(weight-(1UL<<(8*(4-length))));
94 }
95
CollationWeights()96 CollationWeights::CollationWeights()
97 : middleLength(0), rangeIndex(0), rangeCount(0) {
98 for(int32_t i = 0; i < 5; ++i) {
99 minBytes[i] = maxBytes[i] = 0;
100 }
101 }
102
103 void
initForPrimary(UBool compressible)104 CollationWeights::initForPrimary(UBool compressible) {
105 middleLength=1;
106 minBytes[1] = Collation::MERGE_SEPARATOR_BYTE + 1;
107 maxBytes[1] = Collation::TRAIL_WEIGHT_BYTE;
108 if(compressible) {
109 minBytes[2] = Collation::PRIMARY_COMPRESSION_LOW_BYTE + 1;
110 maxBytes[2] = Collation::PRIMARY_COMPRESSION_HIGH_BYTE - 1;
111 } else {
112 minBytes[2] = 2;
113 maxBytes[2] = 0xff;
114 }
115 minBytes[3] = 2;
116 maxBytes[3] = 0xff;
117 minBytes[4] = 2;
118 maxBytes[4] = 0xff;
119 }
120
121 void
initForSecondary()122 CollationWeights::initForSecondary() {
123 // We use only the lower 16 bits for secondary weights.
124 middleLength=3;
125 minBytes[1] = 0;
126 maxBytes[1] = 0;
127 minBytes[2] = 0;
128 maxBytes[2] = 0;
129 minBytes[3] = Collation::LEVEL_SEPARATOR_BYTE + 1;
130 maxBytes[3] = 0xff;
131 minBytes[4] = 2;
132 maxBytes[4] = 0xff;
133 }
134
135 void
initForTertiary()136 CollationWeights::initForTertiary() {
137 // We use only the lower 16 bits for tertiary weights.
138 middleLength=3;
139 minBytes[1] = 0;
140 maxBytes[1] = 0;
141 minBytes[2] = 0;
142 maxBytes[2] = 0;
143 // We use only 6 bits per byte.
144 // The other bits are used for case & quaternary weights.
145 minBytes[3] = Collation::LEVEL_SEPARATOR_BYTE + 1;
146 maxBytes[3] = 0x3f;
147 minBytes[4] = 2;
148 maxBytes[4] = 0x3f;
149 }
150
151 uint32_t
incWeight(uint32_t weight,int32_t length) const152 CollationWeights::incWeight(uint32_t weight, int32_t length) const {
153 for(;;) {
154 uint32_t byte=getWeightByte(weight, length);
155 if(byte<maxBytes[length]) {
156 return setWeightByte(weight, length, byte+1);
157 } else {
158 // Roll over, set this byte to the minimum and increment the previous one.
159 weight=setWeightByte(weight, length, minBytes[length]);
160 --length;
161 U_ASSERT(length > 0);
162 }
163 }
164 }
165
166 uint32_t
incWeightByOffset(uint32_t weight,int32_t length,int32_t offset) const167 CollationWeights::incWeightByOffset(uint32_t weight, int32_t length, int32_t offset) const {
168 for(;;) {
169 offset += getWeightByte(weight, length);
170 if((uint32_t)offset <= maxBytes[length]) {
171 return setWeightByte(weight, length, offset);
172 } else {
173 // Split the offset between this byte and the previous one.
174 offset -= minBytes[length];
175 weight = setWeightByte(weight, length, minBytes[length] + offset % countBytes(length));
176 offset /= countBytes(length);
177 --length;
178 U_ASSERT(length > 0);
179 }
180 }
181 }
182
183 void
lengthenRange(WeightRange & range) const184 CollationWeights::lengthenRange(WeightRange &range) const {
185 int32_t length=range.length+1;
186 range.start=setWeightTrail(range.start, length, minBytes[length]);
187 range.end=setWeightTrail(range.end, length, maxBytes[length]);
188 range.count*=countBytes(length);
189 range.length=length;
190 }
191
192 /* for uprv_sortArray: sort ranges in weight order */
193 static int32_t U_CALLCONV
compareRanges(const void *,const void * left,const void * right)194 compareRanges(const void * /*context*/, const void *left, const void *right) {
195 uint32_t l, r;
196
197 l=((const CollationWeights::WeightRange *)left)->start;
198 r=((const CollationWeights::WeightRange *)right)->start;
199 if(l<r) {
200 return -1;
201 } else if(l>r) {
202 return 1;
203 } else {
204 return 0;
205 }
206 }
207
208 UBool
getWeightRanges(uint32_t lowerLimit,uint32_t upperLimit)209 CollationWeights::getWeightRanges(uint32_t lowerLimit, uint32_t upperLimit) {
210 U_ASSERT(lowerLimit != 0);
211 U_ASSERT(upperLimit != 0);
212
213 /* get the lengths of the limits */
214 int32_t lowerLength=lengthOfWeight(lowerLimit);
215 int32_t upperLength=lengthOfWeight(upperLimit);
216
217 #ifdef UCOL_DEBUG
218 printf("length of lower limit 0x%08lx is %ld\n", lowerLimit, lowerLength);
219 printf("length of upper limit 0x%08lx is %ld\n", upperLimit, upperLength);
220 #endif
221 U_ASSERT(lowerLength>=middleLength);
222 // Permit upperLength<middleLength: The upper limit for secondaries is 0x10000.
223
224 if(lowerLimit>=upperLimit) {
225 #ifdef UCOL_DEBUG
226 printf("error: no space between lower & upper limits\n");
227 #endif
228 return FALSE;
229 }
230
231 /* check that neither is a prefix of the other */
232 if(lowerLength<upperLength) {
233 if(lowerLimit==truncateWeight(upperLimit, lowerLength)) {
234 #ifdef UCOL_DEBUG
235 printf("error: lower limit 0x%08lx is a prefix of upper limit 0x%08lx\n", lowerLimit, upperLimit);
236 #endif
237 return FALSE;
238 }
239 }
240 /* if the upper limit is a prefix of the lower limit then the earlier test lowerLimit>=upperLimit has caught it */
241
242 WeightRange lower[5], middle, upper[5]; /* [0] and [1] are not used - this simplifies indexing */
243 uprv_memset(lower, 0, sizeof(lower));
244 uprv_memset(&middle, 0, sizeof(middle));
245 uprv_memset(upper, 0, sizeof(upper));
246
247 /*
248 * With the limit lengths of 1..4, there are up to 7 ranges for allocation:
249 * range minimum length
250 * lower[4] 4
251 * lower[3] 3
252 * lower[2] 2
253 * middle 1
254 * upper[2] 2
255 * upper[3] 3
256 * upper[4] 4
257 *
258 * We are now going to calculate up to 7 ranges.
259 * Some of them will typically overlap, so we will then have to merge and eliminate ranges.
260 */
261 uint32_t weight=lowerLimit;
262 for(int32_t length=lowerLength; length>middleLength; --length) {
263 uint32_t trail=getWeightTrail(weight, length);
264 if(trail<maxBytes[length]) {
265 lower[length].start=incWeightTrail(weight, length);
266 lower[length].end=setWeightTrail(weight, length, maxBytes[length]);
267 lower[length].length=length;
268 lower[length].count=maxBytes[length]-trail;
269 }
270 weight=truncateWeight(weight, length-1);
271 }
272 if(weight<0xff000000) {
273 middle.start=incWeightTrail(weight, middleLength);
274 } else {
275 // Prevent overflow for primary lead byte FF
276 // which would yield a middle range starting at 0.
277 middle.start=0xffffffff; // no middle range
278 }
279
280 weight=upperLimit;
281 for(int32_t length=upperLength; length>middleLength; --length) {
282 uint32_t trail=getWeightTrail(weight, length);
283 if(trail>minBytes[length]) {
284 upper[length].start=setWeightTrail(weight, length, minBytes[length]);
285 upper[length].end=decWeightTrail(weight, length);
286 upper[length].length=length;
287 upper[length].count=trail-minBytes[length];
288 }
289 weight=truncateWeight(weight, length-1);
290 }
291 middle.end=decWeightTrail(weight, middleLength);
292
293 /* set the middle range */
294 middle.length=middleLength;
295 if(middle.end>=middle.start) {
296 middle.count=(int32_t)((middle.end-middle.start)>>(8*(4-middleLength)))+1;
297 } else {
298 /* no middle range, eliminate overlaps */
299 for(int32_t length=4; length>middleLength; --length) {
300 if(lower[length].count>0 && upper[length].count>0) {
301 // Note: The lowerEnd and upperStart weights are versions of
302 // lowerLimit and upperLimit (which are lowerLimit<upperLimit),
303 // truncated (still less-or-equal)
304 // and then with their last bytes changed to the
305 // maxByte (for lowerEnd) or minByte (for upperStart).
306 const uint32_t lowerEnd=lower[length].end;
307 const uint32_t upperStart=upper[length].start;
308 UBool merged=FALSE;
309
310 if(lowerEnd>upperStart) {
311 // These two lower and upper ranges collide.
312 // Since lowerLimit<upperLimit and lowerEnd and upperStart
313 // are versions with only their last bytes modified
314 // (and following ones removed/reset to 0),
315 // lowerEnd>upperStart is only possible
316 // if the leading bytes are equal
317 // and lastByte(lowerEnd)>lastByte(upperStart).
318 U_ASSERT(truncateWeight(lowerEnd, length-1)==
319 truncateWeight(upperStart, length-1));
320 // Intersect these two ranges.
321 lower[length].end=upper[length].end;
322 lower[length].count=
323 (int32_t)getWeightTrail(lower[length].end, length)-
324 (int32_t)getWeightTrail(lower[length].start, length)+1;
325 // count might be <=0 in which case there is no room,
326 // and the range-collecting code below will ignore this range.
327 merged=TRUE;
328 } else if(lowerEnd==upperStart) {
329 // Not possible, unless minByte==maxByte which is not allowed.
330 U_ASSERT(minBytes[length]<maxBytes[length]);
331 } else /* lowerEnd<upperStart */ {
332 if(incWeight(lowerEnd, length)==upperStart) {
333 // Merge adjacent ranges.
334 lower[length].end=upper[length].end;
335 lower[length].count+=upper[length].count; // might be >countBytes
336 merged=TRUE;
337 }
338 }
339 if(merged) {
340 // Remove all shorter ranges.
341 // There was no room available for them between the ranges we just merged.
342 upper[length].count=0;
343 while(--length>middleLength) {
344 lower[length].count=upper[length].count=0;
345 }
346 break;
347 }
348 }
349 }
350 }
351
352 #ifdef UCOL_DEBUG
353 /* print ranges */
354 for(int32_t length=4; length>=2; --length) {
355 if(lower[length].count>0) {
356 printf("lower[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, lower[length].start, lower[length].end, lower[length].count);
357 }
358 }
359 if(middle.count>0) {
360 printf("middle .start=0x%08lx .end=0x%08lx .count=%ld\n", middle.start, middle.end, middle.count);
361 }
362 for(int32_t length=2; length<=4; ++length) {
363 if(upper[length].count>0) {
364 printf("upper[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, upper[length].start, upper[length].end, upper[length].count);
365 }
366 }
367 #endif
368
369 /* copy the ranges, shortest first, into the result array */
370 rangeCount=0;
371 if(middle.count>0) {
372 uprv_memcpy(ranges, &middle, sizeof(WeightRange));
373 rangeCount=1;
374 }
375 for(int32_t length=middleLength+1; length<=4; ++length) {
376 /* copy upper first so that later the middle range is more likely the first one to use */
377 if(upper[length].count>0) {
378 uprv_memcpy(ranges+rangeCount, upper+length, sizeof(WeightRange));
379 ++rangeCount;
380 }
381 if(lower[length].count>0) {
382 uprv_memcpy(ranges+rangeCount, lower+length, sizeof(WeightRange));
383 ++rangeCount;
384 }
385 }
386 return rangeCount>0;
387 }
388
389 UBool
allocWeightsInShortRanges(int32_t n,int32_t minLength)390 CollationWeights::allocWeightsInShortRanges(int32_t n, int32_t minLength) {
391 // See if the first few minLength and minLength+1 ranges have enough weights.
392 for(int32_t i = 0; i < rangeCount && ranges[i].length <= (minLength + 1); ++i) {
393 if(n <= ranges[i].count) {
394 // Use the first few minLength and minLength+1 ranges.
395 if(ranges[i].length > minLength) {
396 // Reduce the number of weights from the last minLength+1 range
397 // which might sort before some minLength ranges,
398 // so that we use all weights in the minLength ranges.
399 ranges[i].count = n;
400 }
401 rangeCount = i + 1;
402 #ifdef UCOL_DEBUG
403 printf("take first %ld ranges\n", rangeCount);
404 #endif
405
406 if(rangeCount>1) {
407 /* sort the ranges by weight values */
408 UErrorCode errorCode=U_ZERO_ERROR;
409 uprv_sortArray(ranges, rangeCount, sizeof(WeightRange),
410 compareRanges, NULL, FALSE, &errorCode);
411 /* ignore error code: we know that the internal sort function will not fail here */
412 }
413 return TRUE;
414 }
415 n -= ranges[i].count; // still >0
416 }
417 return FALSE;
418 }
419
420 UBool
allocWeightsInMinLengthRanges(int32_t n,int32_t minLength)421 CollationWeights::allocWeightsInMinLengthRanges(int32_t n, int32_t minLength) {
422 // See if the minLength ranges have enough weights
423 // when we split one and lengthen the following ones.
424 int32_t count = 0;
425 int32_t minLengthRangeCount;
426 for(minLengthRangeCount = 0;
427 minLengthRangeCount < rangeCount &&
428 ranges[minLengthRangeCount].length == minLength;
429 ++minLengthRangeCount) {
430 count += ranges[minLengthRangeCount].count;
431 }
432
433 int32_t nextCountBytes = countBytes(minLength + 1);
434 if(n > count * nextCountBytes) { return FALSE; }
435
436 // Use the minLength ranges. Merge them, and then split again as necessary.
437 uint32_t start = ranges[0].start;
438 uint32_t end = ranges[0].end;
439 for(int32_t i = 1; i < minLengthRangeCount; ++i) {
440 if(ranges[i].start < start) { start = ranges[i].start; }
441 if(ranges[i].end > end) { end = ranges[i].end; }
442 }
443
444 // Calculate how to split the range between minLength (count1) and minLength+1 (count2).
445 // Goal:
446 // count1 + count2 * nextCountBytes = n
447 // count1 + count2 = count
448 // These turn into
449 // (count - count2) + count2 * nextCountBytes = n
450 // and then into the following count1 & count2 computations.
451 int32_t count2 = (n - count) / (nextCountBytes - 1); // number of weights to be lengthened
452 int32_t count1 = count - count2; // number of minLength weights
453 if(count2 == 0 || (count1 + count2 * nextCountBytes) < n) {
454 // round up
455 ++count2;
456 --count1;
457 U_ASSERT((count1 + count2 * nextCountBytes) >= n);
458 }
459
460 ranges[0].start = start;
461
462 if(count1 == 0) {
463 // Make one long range.
464 ranges[0].end = end;
465 ranges[0].count = count;
466 lengthenRange(ranges[0]);
467 rangeCount = 1;
468 } else {
469 // Split the range, lengthen the second part.
470 #ifdef UCOL_DEBUG
471 printf("split the range number %ld (out of %ld minLength ranges) by %ld:%ld\n",
472 splitRange, rangeCount, count1, count2);
473 #endif
474
475 // Next start = start + count1. First end = 1 before that.
476 ranges[0].end = incWeightByOffset(start, minLength, count1 - 1);
477 ranges[0].count = count1;
478
479 ranges[1].start = incWeight(ranges[0].end, minLength);
480 ranges[1].end = end;
481 ranges[1].length = minLength; // +1 when lengthened
482 ranges[1].count = count2; // *countBytes when lengthened
483 lengthenRange(ranges[1]);
484 rangeCount = 2;
485 }
486 return TRUE;
487 }
488
489 /*
490 * call getWeightRanges and then determine heuristically
491 * which ranges to use for a given number of weights between (excluding)
492 * two limits
493 */
494 UBool
allocWeights(uint32_t lowerLimit,uint32_t upperLimit,int32_t n)495 CollationWeights::allocWeights(uint32_t lowerLimit, uint32_t upperLimit, int32_t n) {
496 #ifdef UCOL_DEBUG
497 puts("");
498 #endif
499
500 if(!getWeightRanges(lowerLimit, upperLimit)) {
501 #ifdef UCOL_DEBUG
502 printf("error: unable to get Weight ranges\n");
503 #endif
504 return FALSE;
505 }
506
507 /* try until we find suitably large ranges */
508 for(;;) {
509 /* get the smallest number of bytes in a range */
510 int32_t minLength=ranges[0].length;
511
512 if(allocWeightsInShortRanges(n, minLength)) { break; }
513
514 if(minLength == 4) {
515 #ifdef UCOL_DEBUG
516 printf("error: the maximum number of %ld weights is insufficient for n=%ld\n",
517 minLengthCount, n);
518 #endif
519 return FALSE;
520 }
521
522 if(allocWeightsInMinLengthRanges(n, minLength)) { break; }
523
524 /* no good match, lengthen all minLength ranges and iterate */
525 #ifdef UCOL_DEBUG
526 printf("lengthen the short ranges from %ld bytes to %ld and iterate\n", minLength, minLength+1);
527 #endif
528 for(int32_t i=0; ranges[i].length==minLength; ++i) {
529 lengthenRange(ranges[i]);
530 }
531 }
532
533 #ifdef UCOL_DEBUG
534 puts("final ranges:");
535 for(int32_t i=0; i<rangeCount; ++i) {
536 printf("ranges[%ld] .start=0x%08lx .end=0x%08lx .length=%ld .count=%ld\n",
537 i, ranges[i].start, ranges[i].end, ranges[i].length, ranges[i].count);
538 }
539 #endif
540
541 rangeIndex = 0;
542 return TRUE;
543 }
544
545 uint32_t
nextWeight()546 CollationWeights::nextWeight() {
547 if(rangeIndex >= rangeCount) {
548 return 0xffffffff;
549 } else {
550 /* get the next weight */
551 WeightRange &range = ranges[rangeIndex];
552 uint32_t weight = range.start;
553 if(--range.count == 0) {
554 /* this range is finished */
555 ++rangeIndex;
556 } else {
557 /* increment the weight for the next value */
558 range.start = incWeight(weight, range.length);
559 U_ASSERT(range.start <= range.end);
560 }
561
562 return weight;
563 }
564 }
565
566 U_NAMESPACE_END
567
568 #endif /* #if !UCONFIG_NO_COLLATION */
569