1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Scopers help you manage ownership of a pointer, helping you easily manage a
6 // pointer within a scope, and automatically destroying the pointer at the end
7 // of a scope. There are two main classes you will use, which correspond to the
8 // operators new/delete and new[]/delete[].
9 //
10 // Example usage (scoped_ptr<T>):
11 // {
12 // scoped_ptr<Foo> foo(new Foo("wee"));
13 // } // foo goes out of scope, releasing the pointer with it.
14 //
15 // {
16 // scoped_ptr<Foo> foo; // No pointer managed.
17 // foo.reset(new Foo("wee")); // Now a pointer is managed.
18 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
19 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
20 // foo->Method(); // Foo::Method() called.
21 // foo.get()->Method(); // Foo::Method() called.
22 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
23 // // manages a pointer.
24 // foo.reset(new Foo("wee4")); // foo manages a pointer again.
25 // foo.reset(); // Foo("wee4") destroyed, foo no longer
26 // // manages a pointer.
27 // } // foo wasn't managing a pointer, so nothing was destroyed.
28 //
29 // Example usage (scoped_ptr<T[]>):
30 // {
31 // scoped_ptr<Foo[]> foo(new Foo[100]);
32 // foo.get()->Method(); // Foo::Method on the 0th element.
33 // foo[10].Method(); // Foo::Method on the 10th element.
34 // }
35 //
36 // These scopers also implement part of the functionality of C++11 unique_ptr
37 // in that they are "movable but not copyable." You can use the scopers in
38 // the parameter and return types of functions to signify ownership transfer
39 // in to and out of a function. When calling a function that has a scoper
40 // as the argument type, it must be called with an rvalue of a scoper, which
41 // can be created by using std::move(), or the result of another function that
42 // generates a temporary; passing by copy will NOT work. Here is an example
43 // using scoped_ptr:
44 //
45 // void TakesOwnership(scoped_ptr<Foo> arg) {
46 // // Do something with arg.
47 // }
48 // scoped_ptr<Foo> CreateFoo() {
49 // // No need for calling std::move() for returning a move-only value, or
50 // // when you already have an rvalue as we do here.
51 // return scoped_ptr<Foo>(new Foo("new"));
52 // }
53 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
54 // return arg;
55 // }
56 //
57 // {
58 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
59 // TakesOwnership(std::move(ptr)); // ptr no longer owns Foo("yay").
60 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
61 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
62 // PassThru(std::move(ptr2)); // ptr2 is correspondingly nullptr.
63 // }
64 //
65 // Notice that if you do not call std::move() when returning from PassThru(), or
66 // when invoking TakesOwnership(), the code will not compile because scopers
67 // are not copyable; they only implement move semantics which require calling
68 // the std::move() function to signify a destructive transfer of state.
69 // CreateFoo() is different though because we are constructing a temporary on
70 // the return line and thus can avoid needing to call std::move().
71 //
72 // The conversion move-constructor properly handles upcast in initialization,
73 // i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
74 //
75 // scoped_ptr<Foo> foo(new Foo());
76 // scoped_ptr<FooParent> parent(std::move(foo));
77
78 #ifndef BASE_MEMORY_SCOPED_PTR_H_
79 #define BASE_MEMORY_SCOPED_PTR_H_
80
81 // This is an implementation designed to match the anticipated future TR2
82 // implementation of the scoped_ptr class.
83
84 #include <assert.h>
85 #include <stddef.h>
86 #include <stdlib.h>
87
88 #include <iosfwd>
89 #include <memory>
90 #include <type_traits>
91 #include <utility>
92
93 #include "base/compiler_specific.h"
94 #include "base/macros.h"
95 #include "base/move.h"
96 #include "base/template_util.h"
97
98 namespace base {
99
100 namespace subtle {
101 class RefCountedBase;
102 class RefCountedThreadSafeBase;
103 } // namespace subtle
104
105 // Function object which invokes 'free' on its parameter, which must be
106 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
107 //
108 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
109 // static_cast<int*>(malloc(sizeof(int))));
110 struct FreeDeleter {
operatorFreeDeleter111 inline void operator()(void* ptr) const {
112 free(ptr);
113 }
114 };
115
116 namespace internal {
117
118 template <typename T> struct IsNotRefCounted {
119 enum {
120 value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
121 !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
122 value
123 };
124 };
125
126 // Minimal implementation of the core logic of scoped_ptr, suitable for
127 // reuse in both scoped_ptr and its specializations.
128 template <class T, class D>
129 class scoped_ptr_impl {
130 public:
scoped_ptr_impl(T * p)131 explicit scoped_ptr_impl(T* p) : data_(p) {}
132
133 // Initializer for deleters that have data parameters.
scoped_ptr_impl(T * p,const D & d)134 scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
135
136 // Templated constructor that destructively takes the value from another
137 // scoped_ptr_impl.
138 template <typename U, typename V>
scoped_ptr_impl(scoped_ptr_impl<U,V> * other)139 scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
140 : data_(other->release(), other->get_deleter()) {
141 // We do not support move-only deleters. We could modify our move
142 // emulation to have base::subtle::move() and base::subtle::forward()
143 // functions that are imperfect emulations of their C++11 equivalents,
144 // but until there's a requirement, just assume deleters are copyable.
145 }
146
147 template <typename U, typename V>
TakeState(scoped_ptr_impl<U,V> * other)148 void TakeState(scoped_ptr_impl<U, V>* other) {
149 // See comment in templated constructor above regarding lack of support
150 // for move-only deleters.
151 reset(other->release());
152 get_deleter() = other->get_deleter();
153 }
154
~scoped_ptr_impl()155 ~scoped_ptr_impl() {
156 // Match libc++, which calls reset() in its destructor.
157 // Use nullptr as the new value for three reasons:
158 // 1. libc++ does it.
159 // 2. Avoids infinitely recursing into destructors if two classes are owned
160 // in a reference cycle (see ScopedPtrTest.ReferenceCycle).
161 // 3. If |this| is accessed in the future, in a use-after-free bug, attempts
162 // to dereference |this|'s pointer should cause either a failure or a
163 // segfault closer to the problem. If |this| wasn't reset to nullptr,
164 // the access would cause the deleted memory to be read or written
165 // leading to other more subtle issues.
166 reset(nullptr);
167 }
168
reset(T * p)169 void reset(T* p) {
170 // Match C++11's definition of unique_ptr::reset(), which requires changing
171 // the pointer before invoking the deleter on the old pointer. This prevents
172 // |this| from being accessed after the deleter is run, which may destroy
173 // |this|.
174 T* old = data_.ptr;
175 data_.ptr = p;
176 if (old != nullptr)
177 static_cast<D&>(data_)(old);
178 }
179
get()180 T* get() const { return data_.ptr; }
181
get_deleter()182 D& get_deleter() { return data_; }
get_deleter()183 const D& get_deleter() const { return data_; }
184
swap(scoped_ptr_impl & p2)185 void swap(scoped_ptr_impl& p2) {
186 // Standard swap idiom: 'using std::swap' ensures that std::swap is
187 // present in the overload set, but we call swap unqualified so that
188 // any more-specific overloads can be used, if available.
189 using std::swap;
190 swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
191 swap(data_.ptr, p2.data_.ptr);
192 }
193
release()194 T* release() {
195 T* old_ptr = data_.ptr;
196 data_.ptr = nullptr;
197 return old_ptr;
198 }
199
200 private:
201 // Needed to allow type-converting constructor.
202 template <typename U, typename V> friend class scoped_ptr_impl;
203
204 // Use the empty base class optimization to allow us to have a D
205 // member, while avoiding any space overhead for it when D is an
206 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
207 // discussion of this technique.
208 struct Data : public D {
DataData209 explicit Data(T* ptr_in) : ptr(ptr_in) {}
DataData210 Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
211 T* ptr;
212 };
213
214 Data data_;
215
216 DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
217 };
218
219 } // namespace internal
220
221 } // namespace base
222
223 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
224 // automatically deletes the pointer it holds (if any).
225 // That is, scoped_ptr<T> owns the T object that it points to.
226 // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
227 // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
228 // dereference it, you get the thread safety guarantees of T.
229 //
230 // The size of scoped_ptr is small. On most compilers, when using the
231 // std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters
232 // will increase the size proportional to whatever state they need to have. See
233 // comments inside scoped_ptr_impl<> for details.
234 //
235 // Current implementation targets having a strict subset of C++11's
236 // unique_ptr<> features. Known deficiencies include not supporting move-only
237 // deleteres, function pointers as deleters, and deleters with reference
238 // types.
239 template <class T, class D = std::default_delete<T>>
240 class scoped_ptr {
241 DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
242
243 static_assert(!std::is_array<T>::value,
244 "scoped_ptr doesn't support array with size");
245 static_assert(base::internal::IsNotRefCounted<T>::value,
246 "T is a refcounted type and needs a scoped_refptr");
247
248 public:
249 // The element and deleter types.
250 using element_type = T;
251 using deleter_type = D;
252
253 // Constructor. Defaults to initializing with nullptr.
scoped_ptr()254 scoped_ptr() : impl_(nullptr) {}
255
256 // Constructor. Takes ownership of p.
scoped_ptr(element_type * p)257 explicit scoped_ptr(element_type* p) : impl_(p) {}
258
259 // Constructor. Allows initialization of a stateful deleter.
scoped_ptr(element_type * p,const D & d)260 scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
261
262 // Constructor. Allows construction from a nullptr.
scoped_ptr(std::nullptr_t)263 scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
264
265 // Move constructor.
266 //
267 // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and
268 // not just the conversion constructor) in order to warn on pessimizing moves.
269 // The requirements for the move constructor are specified in C++11
270 // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As
271 // we don't support reference (or move-only) deleters, the post conditions are
272 // trivially true: we always copy construct the deleter from other's deleter.
scoped_ptr(scoped_ptr && other)273 scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
274
275 // Conversion constructor. Allows construction from a scoped_ptr rvalue for a
276 // convertible type and deleter.
277 //
278 // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only
279 // participate in overload resolution if all the following are true:
280 // - U is implicitly convertible to T: this is important for 2 reasons:
281 // 1. So type traits don't incorrectly return true, e.g.
282 // std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value
283 // should be false.
284 // 2. To make sure code like this compiles:
285 // void F(scoped_ptr<int>);
286 // void F(scoped_ptr<Base>);
287 // // Ambiguous since both conversion constructors match.
288 // F(scoped_ptr<Derived>());
289 // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to
290 // scoped_ptr<T>.
291 // - D is a reference type and E is the same type, or D is not a reference
292 // type and E is implicitly convertible to D: again, we don't support
293 // reference deleters, so we only worry about the latter requirement.
294 template <typename U,
295 typename E,
296 typename std::enable_if<!std::is_array<U>::value &&
297 std::is_convertible<U*, T*>::value &&
298 std::is_convertible<E, D>::value>::type* =
299 nullptr>
scoped_ptr(scoped_ptr<U,E> && other)300 scoped_ptr(scoped_ptr<U, E>&& other)
301 : impl_(&other.impl_) {}
302
303 // operator=.
304 //
305 // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to
306 // require a move assignment operator to trigger the pessimizing move warning:
307 // in this case, the warning triggers when moving a temporary. For consistency
308 // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3
309 // defines several requirements around this: like the move constructor, the
310 // requirements are simplified by the fact that we don't support move-only or
311 // reference deleters.
312 scoped_ptr& operator=(scoped_ptr&& rhs) {
313 impl_.TakeState(&rhs.impl_);
314 return *this;
315 }
316
317 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
318 // type and deleter.
319 //
320 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
321 // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the
322 // requirement for this operator, but like the conversion constructor, the
323 // requirements are greatly simplified by not supporting move-only or
324 // reference deleters.
325 template <typename U,
326 typename E,
327 typename std::enable_if<!std::is_array<U>::value &&
328 std::is_convertible<U*, T*>::value &&
329 // Note that this really should be
330 // std::is_assignable, but <type_traits>
331 // appears to be missing this on some
332 // platforms. This is close enough (though
333 // it's not the same).
334 std::is_convertible<D, E>::value>::type* =
335 nullptr>
336 scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) {
337 impl_.TakeState(&rhs.impl_);
338 return *this;
339 }
340
341 // operator=. Allows assignment from a nullptr. Deletes the currently owned
342 // object, if any.
343 scoped_ptr& operator=(std::nullptr_t) {
344 reset();
345 return *this;
346 }
347
348 // Reset. Deletes the currently owned object, if any.
349 // Then takes ownership of a new object, if given.
350 void reset(element_type* p = nullptr) { impl_.reset(p); }
351
352 // Accessors to get the owned object.
353 // operator* and operator-> will assert() if there is no current object.
354 element_type& operator*() const {
355 assert(impl_.get() != nullptr);
356 return *impl_.get();
357 }
358 element_type* operator->() const {
359 assert(impl_.get() != nullptr);
360 return impl_.get();
361 }
get()362 element_type* get() const { return impl_.get(); }
363
364 // Access to the deleter.
get_deleter()365 deleter_type& get_deleter() { return impl_.get_deleter(); }
get_deleter()366 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
367
368 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
369 // implicitly convertible to a real bool (which is dangerous).
370 //
371 // Note that this trick is only safe when the == and != operators
372 // are declared explicitly, as otherwise "scoped_ptr1 ==
373 // scoped_ptr2" will compile but do the wrong thing (i.e., convert
374 // to Testable and then do the comparison).
375 private:
376 typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
377 scoped_ptr::*Testable;
378
379 public:
Testable()380 operator Testable() const {
381 return impl_.get() ? &scoped_ptr::impl_ : nullptr;
382 }
383
384 // Swap two scoped pointers.
swap(scoped_ptr & p2)385 void swap(scoped_ptr& p2) {
386 impl_.swap(p2.impl_);
387 }
388
389 // Release a pointer.
390 // The return value is the current pointer held by this object. If this object
391 // holds a nullptr, the return value is nullptr. After this operation, this
392 // object will hold a nullptr, and will not own the object any more.
release()393 element_type* release() WARN_UNUSED_RESULT {
394 return impl_.release();
395 }
396
397 private:
398 // Needed to reach into |impl_| in the constructor.
399 template <typename U, typename V> friend class scoped_ptr;
400 base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
401
402 // Forbidden for API compatibility with std::unique_ptr.
403 explicit scoped_ptr(int disallow_construction_from_null);
404 };
405
406 template <class T, class D>
407 class scoped_ptr<T[], D> {
408 DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr)
409
410 public:
411 // The element and deleter types.
412 using element_type = T;
413 using deleter_type = D;
414
415 // Constructor. Defaults to initializing with nullptr.
scoped_ptr()416 scoped_ptr() : impl_(nullptr) {}
417
418 // Constructor. Stores the given array. Note that the argument's type
419 // must exactly match T*. In particular:
420 // - it cannot be a pointer to a type derived from T, because it is
421 // inherently unsafe in the general case to access an array through a
422 // pointer whose dynamic type does not match its static type (eg., if
423 // T and the derived types had different sizes access would be
424 // incorrectly calculated). Deletion is also always undefined
425 // (C++98 [expr.delete]p3). If you're doing this, fix your code.
426 // - it cannot be const-qualified differently from T per unique_ptr spec
427 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
428 // to work around this may use const_cast<const T*>().
scoped_ptr(element_type * array)429 explicit scoped_ptr(element_type* array) : impl_(array) {}
430
431 // Constructor. Allows construction from a nullptr.
scoped_ptr(std::nullptr_t)432 scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
433
434 // Constructor. Allows construction from a scoped_ptr rvalue.
scoped_ptr(scoped_ptr && other)435 scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
436
437 // operator=. Allows assignment from a scoped_ptr rvalue.
438 scoped_ptr& operator=(scoped_ptr&& rhs) {
439 impl_.TakeState(&rhs.impl_);
440 return *this;
441 }
442
443 // operator=. Allows assignment from a nullptr. Deletes the currently owned
444 // array, if any.
445 scoped_ptr& operator=(std::nullptr_t) {
446 reset();
447 return *this;
448 }
449
450 // Reset. Deletes the currently owned array, if any.
451 // Then takes ownership of a new object, if given.
452 void reset(element_type* array = nullptr) { impl_.reset(array); }
453
454 // Accessors to get the owned array.
455 element_type& operator[](size_t i) const {
456 assert(impl_.get() != nullptr);
457 return impl_.get()[i];
458 }
get()459 element_type* get() const { return impl_.get(); }
460
461 // Access to the deleter.
get_deleter()462 deleter_type& get_deleter() { return impl_.get_deleter(); }
get_deleter()463 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
464
465 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
466 // implicitly convertible to a real bool (which is dangerous).
467 private:
468 typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
469 scoped_ptr::*Testable;
470
471 public:
Testable()472 operator Testable() const {
473 return impl_.get() ? &scoped_ptr::impl_ : nullptr;
474 }
475
476 // Swap two scoped pointers.
swap(scoped_ptr & p2)477 void swap(scoped_ptr& p2) {
478 impl_.swap(p2.impl_);
479 }
480
481 // Release a pointer.
482 // The return value is the current pointer held by this object. If this object
483 // holds a nullptr, the return value is nullptr. After this operation, this
484 // object will hold a nullptr, and will not own the object any more.
release()485 element_type* release() WARN_UNUSED_RESULT {
486 return impl_.release();
487 }
488
489 private:
490 // Force element_type to be a complete type.
491 enum { type_must_be_complete = sizeof(element_type) };
492
493 // Actually hold the data.
494 base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
495
496 // Disable initialization from any type other than element_type*, by
497 // providing a constructor that matches such an initialization, but is
498 // private and has no definition. This is disabled because it is not safe to
499 // call delete[] on an array whose static type does not match its dynamic
500 // type.
501 template <typename U> explicit scoped_ptr(U* array);
502 explicit scoped_ptr(int disallow_construction_from_null);
503
504 // Disable reset() from any type other than element_type*, for the same
505 // reasons as the constructor above.
506 template <typename U> void reset(U* array);
507 void reset(int disallow_reset_from_null);
508 };
509
510 // Free functions
511 template <class T, class D>
swap(scoped_ptr<T,D> & p1,scoped_ptr<T,D> & p2)512 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
513 p1.swap(p2);
514 }
515
516 template <class T1, class D1, class T2, class D2>
517 bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
518 return p1.get() == p2.get();
519 }
520 template <class T, class D>
521 bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) {
522 return p.get() == nullptr;
523 }
524 template <class T, class D>
525 bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) {
526 return p.get() == nullptr;
527 }
528
529 template <class T1, class D1, class T2, class D2>
530 bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
531 return !(p1 == p2);
532 }
533 template <class T, class D>
534 bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) {
535 return !(p == nullptr);
536 }
537 template <class T, class D>
538 bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) {
539 return !(p == nullptr);
540 }
541
542 template <class T1, class D1, class T2, class D2>
543 bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
544 return p1.get() < p2.get();
545 }
546 template <class T, class D>
547 bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) {
548 auto* ptr = p.get();
549 return ptr < static_cast<decltype(ptr)>(nullptr);
550 }
551 template <class T, class D>
552 bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) {
553 auto* ptr = p.get();
554 return static_cast<decltype(ptr)>(nullptr) < ptr;
555 }
556
557 template <class T1, class D1, class T2, class D2>
558 bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
559 return p2 < p1;
560 }
561 template <class T, class D>
562 bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) {
563 return nullptr < p;
564 }
565 template <class T, class D>
566 bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) {
567 return p < nullptr;
568 }
569
570 template <class T1, class D1, class T2, class D2>
571 bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
572 return !(p1 > p2);
573 }
574 template <class T, class D>
575 bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) {
576 return !(p > nullptr);
577 }
578 template <class T, class D>
579 bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) {
580 return !(nullptr > p);
581 }
582
583 template <class T1, class D1, class T2, class D2>
584 bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) {
585 return !(p1 < p2);
586 }
587 template <class T, class D>
588 bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) {
589 return !(p < nullptr);
590 }
591 template <class T, class D>
592 bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) {
593 return !(nullptr < p);
594 }
595
596 // A function to convert T* into scoped_ptr<T>
597 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
598 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
599 template <typename T>
make_scoped_ptr(T * ptr)600 scoped_ptr<T> make_scoped_ptr(T* ptr) {
601 return scoped_ptr<T>(ptr);
602 }
603
604 template <typename T>
605 std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) {
606 return out << p.get();
607 }
608
609 #endif // BASE_MEMORY_SCOPED_PTR_H_
610